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Abstract: This paper concerns the global performance of modifications of the ker-

nel estimators considered in Zhang (1995) for a mixing density function g based

on a sample from f(x) =
∫

f(x|θ)g(θ)dθ under weighted Lp-loss, 1 ≤ p ≤ ∞,

where f(x|θ) is a known exponential family of density functions with respect to the

counting measure on the set of nonnegative integers. Fourier methods are used to

derive upper bounds for the rate of convergence of the kernel estimators and lower

bounds for the optimal convergence rate over various smoothness classes of mixing

density functions. In particular under mild conditions, it is shown that these esti-

mators achieve the optimal rate of convergence for the negative binomial mixture

and are almost optimal for the Poisson mixture. Global estimation of the mixing

distribution function under weighted Lp-loss is also considered.
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1. Introduction

Let X1, . . . ,Xn be independent observations from a mixture probability law

f(x; g) =
∫ θ∗

0
f(x|θ)g(θ)dθ, (1)

where f(x|θ) is a known parametric family of probability density functions with
respect to a σ-finite measure µ, and g is a mixing density function on (0, θ∗).
Suppose

f(x|θ) = C(θ)q(x)θx, ∀x = 0, 1, 2, . . . , (2)

where 0 ≤ θ ≤ (or <) θ∗ ≤ ∞, q(x) > 0 whenever x = 0, 1, 2, . . . and µ is the
counting measure on the set of nonnegative integers.

Zhang (1995) considered a class of kernel estimators for the mixing density
function g, its derivatives, and the mixing distribution function, and proved that
the mean squared error at a fixed point achieves or almost achieves the optimal
rate of convergence under mild conditions. However these estimators do not per-
form uniformly well asymptotically near the boundary of the domain of θ. In this
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paper we consider modifications of these estimators which improve their global
performance (especially near the boundary) with respect to weighted Lp-loss,
1 ≤ p ≤ ∞. In particular, Sections 2 and 3 give upper bounds for the conver-
gence rates of the estimators for the mixing density and distribution respectively
for the case where θ∗ is finite and known. Section 4 supplies corresponding lower
bounds for the optimal convergence rate. A consequence of Corollaries 1 and
2 and Theorem 3 in Sections 2, 3, and 4 is that, the kernel estimators achieve
or almost achieve the optimal rate of convergence under mild assumptions. For
the negative binomial distribution f(x|θ) =

(x+r−1
r−1

)
(1 − θ)rθx, the optimal rate

for estimating g(·) is O({1/ log n}α) under a global weighted Lp-loss, where α

denotes the degree of smoothness of g; whereas for the Poisson distribution, the
optimal rate is at most as rapid as O({1/ log n}α) and the kernel estimates con-
verge at the rate O({log log n/ log n}α) when θ∗ is known and finite. Section
5 considers the case θ∗ = ∞, where the kernel estimators achieve certain rates
of convergence which may not be optimal. For example, our kernel estimators
converge at the rate O({1/ log n}α/2) for the Poisson distribution under a global
weighted Lp-loss when θ∗ = ∞. All the proofs are given in three appendices: up-
per bounds for finite θ∗ in Appendix I, lower bounds in Appendix II, and upper
bounds for θ∗ = ∞ in Appendix III.

A key point of this paper is that, in general, without further assumptions,
global nonparametric estimation of a mixing density (or distribution) of a dis-
crete exponential family is difficult in that the optimal rate of convergence is
logarithmic (not polynomial).

Among related mixture problems, the deconvolution problem appears to be
the best understood. Recent and important advances to the solution were made
by Carroll and Hall (1988), Fan (1991a, b), Zhang (1990) and many others us-
ing Fourier analysis. In particular kernel estimators for the mixing density (or
distribution) have been obtained which achieve the optimal convergence rate.
However these methods are based on the convolution property of the mixture
problem and are not directly applicable to (2).

Another problem that has been of much interest is the estimation of the mix-
ing distribution of a Poisson mixture. Tucker (1963) approached this problem
through the method of moments, and Lambert and Tierney (1984) and Simar
(1976) considered the nonparametric maximum likelihood estimation for the mix-
ing distribution. For mixtures of more general discrete exponential distributions,
Loh (1993) and Zhang (1995) independently proposed estimates and obtained
upper and lower bounds on the mean squared error at a fixed point via Fourier
analysis, but they did not consider the global properties discussed here. Wal-
ter and Hamedani (1991) successfully applied orthogonal polynomial techniques
to mixtures of exponential families. Rolph (1968), Meeden (1972), and Datta
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(1991) used Bayesian methods to construct consistent estimators for the mixing
distribution.

Throughout this paper we shall denote by Pg and Eg the probability and
expectation, respectively, corresponding to g, by I{·} the indicator function,
by h(j) the jth derivative (if it exists) of h with h(0) = h, by h∗ the Fourier
transformation of any integrable h, h∗(t) =

∫
eityh(y)dy, and by ‖ · ‖p the Lp-

norm with respect to the Lebesgue measure, 1 ≤ p ≤ ∞. We shall use the
notation κ′ and κ′′ to denote the decomposition κ = κ′ + κ′′ such that κ′ is an
integer and 0 < κ′′ ≤ 1 for all real numbers κ.

2. Kernel Estimators

In this and the next two sections, we assume that θ∗ is finite and known.
The case θ∗ = ∞ is considered in Section 5.

Let k(·) be a symmetric function satisfying
∫ ∞
−∞ k(y)dy = 1, k∗(t) = 0, ∀|t| >

1, ∫ ∞

−∞
yjk(y)dy = 0, ∀1 ≤ j < α0,

∫ ∞

−∞
|yα0k(y)| dy < ∞. (3)

For suitable positive constants mn and cn tending to ∞ and to be specified later,
define

Kn(x, θ) =
I{0 ≤ x ≤ mn}

2πq(x)x!

∫ cn

−cn

tx cos(xπ/2 − tθ)k∗(t/cn)dt. (4)

Given any probability density function g on (0, θ∗), we shall extend its domain
to the whole real line by setting g(y) = g(y)I{0 < y < θ∗} for all y ∈ R. Let

h(y) = C(y)g(y), ∀ −∞ < y < ∞. (5)

It follows from (1) and (2) that f(x; g)/q(x) =
∫ θ∗
0 θxh(θ)dθ. Taking infinite

series expansions in the Fourier inversion formula as in Zhang (1995), we obtain∫ ∞

−∞
h(θ − y/cn)k(y)dy =

∫ θ∗

0
cnk(cn(θ − y))h(y)dy

=
∞∑

x=0

(2πx!)−1
∫ θ∗

0
yxh(y)dy

∫ cn

−cn

(it)xe−itθk∗(t/cn)dt.

Thus, Kn(x, θ) can be used as a kernel for h in the sense that for −∞ < θ < ∞,

EgKn(X1, θ) − h(θ) = b1n(θ) + b2n(θ) → 0, (6)

as (mn, cn) → (∞,∞) along a suitable path for continuous h(θ) = g(θ)C(θ),
where

b1n(θ) =
∫ ∞

−∞
[h(θ − y/cn) − h(θ)]k(y)dy, (7)
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b2n(θ) = −
∑

x>mn

∫ θ∗
0 yxh(y)dy

2πx!

∫ cn

−cn

tx cos(xπ/2 − tθ)k∗(t/cn)dt. (8)

With this as motivation, we estimate g(θ) by

ĝn(θ) = n−1
n∑

j=1

{Kn(Xj , θ)/C(θ)} I{0 ≤ θ ≤ an}. (9)

The positive integers mn and positive constants cn and an are chosen such that

mn = min {m ≥ 1 : (θ∗e)cn(m) + β1 log cn(m) < m + 1}, (10)

cn = cn(mn), cn(m) = β0 log n − max
1≤x≤m

log(1/q(x)), (11)

an = θ∗ − a∗/cn if C(θ∗) = 0, and an = θ∗ if C(θ∗) > 0, (12)

with some constants 0 < β0 < 1/2, β1 > 0, and 0 < a∗ < ∞. It will be shown
in the proof of Theorem 1 that (10) implies ‖b2n‖∞ = O(c−β1

n ) and that (11)
implies ‖Kn‖∞ = O(nβ0).

We shall investigate the global performance of (9) over the following classes
of mixing densities. Let 1 ≤ p ≤ ∞ and w be a member of Lp on (0, θ∗). For
α > 0 we define Gα,θ∗ = Gα,θ∗(p,w,M) to be the set of all densities g on (0, θ∗)
such that

‖w(θ){g(α′)(θ) − g(α′)(θ + δ)}‖p < M |δ|α′′
, ∀δ, (13)

where α′ is the integer with 0 < α′′ = α − α′ ≤ 1, and 0 < M < ∞.
Assume that there exist constants γ ≥ 0, C∗

1 , C∗
2 , and C∗

3 such that

sup
0<θ<θ∗

(θ∗ − θ)γ/C(θ) < C∗
1 , (14)

sup
0<θ<θ∗

(θ∗ − θ)j|C(j)(θ)|/{C(θ)j!} < C∗
2 , ∀0 ≤ j ≤ ρ′, (15)

|C(ρ′)(θ + δ) − C(ρ′)(θ)| < C∗
3δρ′′ , 0 < θ < θ + δ < θ∗, (16)

where ρ′ is a nonnegative integer with 0 < ρ′′ = ρ − ρ′ ≤ 1.

Theorem 1. Suppose α > 0, 1 ≤ p ≤ ∞, and (14)-(16) hold with γ ≥ 0
and ρ = α + γ. Let ĝn be given by (9) with the kernel Kn(x, θ) in (4) such that
α0 ≥ α+γ in (3). Let (10)-(12) hold with β1 ≥ α+γ. Then, sup{Eg‖w(ĝn−g)‖p :
g ∈ Gα,θ∗(p,w,M)} = O(c−α

n ).

Remark. If C(θ∗) > 0, we shall set γ = 0 although (14) holds for all γ ≥ 0
and ρ > 0. Conditions (15) and (16) are satisfied for every ρ > 0 if C(θ) is an
analytic function in a neighborhood of θ∗ (e.g. C(θ) = (1 − θ)ν with θ∗ = 1 for
the negative binomial family).
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Corollary 1. Suppose the conditions of Theorem 1 are satisfied and

q(x)B0B
x(x!)β ≥ 1, ∀x ≥ 0, (17)

for some constants B0, B, and β. Then, supg∈Gα,θ∗ Eg‖w(ĝn − g)‖p = O(1)(1/
log n)α if β = 0, and supg∈Gα,θ∗ Eg‖w(ĝn − g)‖p = O(1)(log log n/ log n)α if 0 <

β < ∞.

The conditions of Corollary 1 are satisfied in the following examples.

Example 1. (Negative Binomial) Since C(θ) = (1 − θ)r and q(x) =
(x+r−1

r−1

)
for

some known integer r ≥ 1 and θ∗ = 1, (14)-(16) hold for γ = r − 1 and all ρ > 0
and (17) holds for β = 0. By (10) and (11) cn = β0 log n+(r−1) log log n+O(1)
and mn = eβ0 log n + (e(r − 1) + β1) log log n + O(1).

Example 2. (Poisson with θ∗ < ∞) Here C(θ) = e−θ and q(x) = 1/x!, so that
(14)-(16) hold for γ = 0 and all ρ > 0 and (17) holds for β = 1. By (10) and (11)
cn = (θ∗e)−1(β0 + o(1)) log n/ log log n and mn = (β0 + o(1)) log n/ log log n.

3. Estimating a Mixing Distribution

Let f(x|θ) be as in (2) with θ∗ finite and known. Suppose the marginal
density of X is

f(x;G) =
∫ θ∗

0
f(x|θ)dG(θ), (18)

where G is the mixing distribution. If the density g = G(1) exists, then f(x;G) =
f(x; g). In this section we consider the estimation of the mixing distribution G.
Our results here are parallel to those in Section 2 for the estimation of the mixing
density. We denote by EG the expectation when G is the true mixing distribution.

Let Kn(x, θ) be as in (4) with the constants mn and cn in (10) and (11).
Define

Ĝn(θ) =

{
n−1 ∑n

j=1

∫ θ
a∗ Kn(Xj , y){C(y)}−1dy, if 0 < θ ≤ an,

1, if θ > an,
(19)

where an is as in (12), and a∗ is a negative constant such that 1/C(y) =∑∞
x=0 q(x)yx is an increasing analytic function for a∗ ≤ y < θ∗. Similar to

(6)–(8), for continuous G(θ) we have

EGĜn(θ) − G(θ) = B1n(θ) + B2n(θ) → 0 (20)

for 0 < θ < an, where

B1n(θ) =
∫ ∞

−∞

∫ θ

a∗

{
C(z − y/cn)

C(z)

}
dzG(z − y/cn)k(y)dy − G(θ), (21)
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B2n(θ) = −
∑

x>mn

∫ θ∗
0 yxh(y)dy

2πx!

∫ cn

−cn

tx
∫ θ

a∗

cos(xπ/2 − tz)
C(z)

dzk∗(t/cn)dt. (22)

Let α > −1, 1 ≤ p ≤ ∞ and w(·) be a decreasing function on [0, θ∗]. Define
Gcdf

α,θ∗ = Gcdf
α,θ∗(p,w,M) to be the set of all distribution functions G on (0, θ∗) such

that

‖w(θ){G(α′+1)(θ) − G(α′+1)(θ + δ)}‖p < M |δ|α′′
, ∀δ. (23)

Remark. If 0 < 1 + α ≤ 1/p, w = 1, and M > 1, then Gcdf
α,θ∗ is the class of all

distribution functions on (0, θ∗). If α > 0, then Gcdf
α,θ∗(p,w,M) = Gα,θ∗(p,w,M).

Theorem 2. Let α > −1 and 1 ≤ p ≤ ∞. Suppose (14)-(16) hold with ρ ≥
α + 1 + max(γ, 1) if γ �= 1 and ρ > α + 2 if γ = 1. Let Ĝn be given by (19) with
α0 ≥ α+1+ γ in (3) and β1 ≥ α+ γ in (10). Then, sup{EG‖w(Ĝn −G)‖p : G ∈
Gcdf

α,θ∗(p,w,M)} = O(c−α−1
n ).

Corollary 2. Suppose that (17) and the conditions of Theorem 2 hold. If β = 0
then sup

G∈Gcdf
α,θ∗

EG‖w(Ĝn − G)‖p = O(1)(1/ log n)α+1. If 0 < β < ∞ then

sup
G∈Gcdf

α,θ∗
EG‖w(Ĝn − G)‖p = O(1)(log log n/ log n)α+1.

4. Optimal Rate of Convergence

In Sections 2 and 3, we obtained upper bounds for the maximum ‖ · ‖p

risk of our kernel estimators over the classes Gα,θ∗ and Gcdf
α,θ∗ . Here we derive

corresponding lower bounds for the rate of the local minimax risk at interior
points g0 and G0 of these classes

rn,α,θ∗(g0) = inf
g̃n

sup{Eg‖g̃n − g‖p : g ∈ Gα,θ∗ , ‖g − g0‖p ≤ M1(log n)−α}, (24)

rcdf
n,α,θ∗(G0) = inf

G̃n

sup{EG‖G̃n − G‖p : G ∈ Gcdf
α,θ∗ , ‖G − G0‖p ≤ M1(log n)−α−1},

(25)
where the infimum runs over all statistics based on X1, . . . ,Xn, and the classes
are given by (13) and (23) respectively with w(θ) = I{0 ≤ θ ≤ θ∗}. The rates of
(24) and (25) can be regarded as characterizations of the degree of difficulty for
estimating g and G respectively.

Theorem 3. Let M1 > 0 and g0 and G0 be interior points of Gα,θ∗(p, 1,M) and
Gcdf

α,θ∗(p, 1,M).
(i) If 1 ≤ p ≤ ∞ and α > 0, then lim infn→∞(log n)αrn,α,θ∗(g0) > 0.
(ii) If 1 ≤ p ≤ ∞ and α ≥ 0, then lim infn→∞(log n)α+1rcdf

n,α,θ∗(G0) > 0.
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The basic idea behind the proof of Theorem 3 is to find mixing densities g0n,
g1n, and g2n, close to g0 and in Gα,θ∗(p, 1,M), such that maxj=1,2 ‖gjn − g0n‖p

tends to 0 at a much slower rate than f(·; gjn) − f(·; g0n), j = 1, 2.
We shall show in the proof of Theorem 3 that

lim inf
n→∞ pn = p0 > 0, pn = inf

g̃n

max
0≤j≤2

Pgjn{‖g̃n − gjn‖p > ε0(log n)−α} (26)

for some ε0 > 0, and that gjn, 0 ≤ j ≤ 2, are members of Gα,θ∗(p, 1,M) for
small w0 with ‖gjn − g0‖p ≤ M1(log n)−α. This will prove Theorem 3 (i), since
rn,α,θ∗(g0) ≥ ε0pn(log n)−α.

The densities gjn are constructed in the following manner. Let 0 < θ0 <

θ1 < a < θ2 < θ3 < θ∗ be fixed constants. Define

hu,v(θ) = vuθu−1e−vθ/Γ(u), (27)

gu,v(θ) = {χ0(θ)l1,u,v(θ) + χ1(θ)hu,v(θ) + χ2(θ)l2,u,v(θ)}/C(θ), (28)

where χj = χj(θ) = I{θj ≤ θ < θj+1} and lj,u,v, j = 1, 2, are polynomials each
of degree (2α′ + 1) such that gu,v is α′ times continuously differentiable. Define

g0n(θ) = g0(θ)+
3w0

u
(p−1)/(2p)
n

(
θ2

un

)α

{gun,vn(θ)+g00(θ)−(w0n+1)g0(θ)} , (29)

g1n(θ) = g0n(θ) +
w0

u
(p−1)/(2p)
n

(
θ2

un

)α [
sin

(
un

θ − a

θ2

)
− w1n

w0n

]
gun,vn(θ), (30)

g2n(θ) = g0n(θ) +
w0

u
(p−1)/(2p)
n

(
θ2

un

)α [
cos

(
un

θ − a

θ2

)
− w2n

w0n

]
gun,vn(θ), (31)

where g00 is a density in Gα,θ∗(p, 1, 1) bounded away from 0 in [θ0, θ3], wjn are
constants given by

∫
gjn(θ)dθ = 1, w0 > 0, un = δ0 log n, and vn = un/a, with

δ0 =max
{

θ2/(θ3−θ2)
log(θ3/θ2)

, 2
log(1+a2/θ2

2)
, 1

θ1/a−1−log(θ1/a),
1

θ2/a−1−log(θ2/a)

}
. (32)

5. The Case of Infinite θ∗

The natural value of θ∗ in (2) is θ∗0 = sup{θ :
∑

x q(x)θx < ∞}. If (17) holds
with β = 0, then θ∗0 is finite and known, and we can set θ∗ = θ∗0 and the results of
Sections 2 and 3 follow. However, when θ∗0 = ∞ the condition θ∗ < ∞ becomes
an assumption in addition to the knowledge of q(·). In this section, we consider
the case of θ∗ = ∞. Upper bounds of the Lp risks of our kernel estimators are
provided in Theorems 4 and 5 below. The lower bounds of Theorem 3 still apply
here.
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Let η =
√

θ, 0 < cn → ∞ and k(·) be as in (3). Define

Ks,n(x, η) = [πq(x)(2x)!]−1(−1)x
∫ cn

−cn

cos(tη)t2xk∗(t/cn)dt, (33)

gs(η) = g(η2)I{η ≥ 0}, Cs(η) = 2ηC(η2), hs(η) = gs(η)Cs(η). (34)

Since f(x; g) =
∫ ∞
−∞ y2xhs(y)dy by (1) and (2), we have

EgKs,n(X1, η) − 2ηC(η2)g(η2)I{η ≥ 0}
=

∫ ∞

0
cn{k(cn(η − y)) + k(cn(η + y))}hs(y)dy − hs(η) = b3n(η) + b4n(η)

by the Fourier inversion formula, where

b3n(η) =
∫ ∞

−∞
k(y){hs(η − y/cn) − hs(η)}dy, (35)

b4n(η) =
∫ ∞

−∞
k(y)hs(y/cn − η)dy. (36)

Zhang (1995) used Ks,n(x,
√

a)/[2
√

aC(a)] as a kernel for g(a) in the case θ∗ = ∞.
Define

ĝn,∞(θ) = ĝs,n(
√

θ)I{a2
0n ≤ θ ≤ a2

1n}, ĝs,n(η) = n−1
n∑

j=1

Ks,n(Xj , η)
Cs(η)

, (37)

where a0n and a1n are positive constants tending to 0 and ∞ respectively. We
shall study the global performance of this estimator under weighted Lp-loss.

Let 1 ≤ p ≤ ∞ and w be as in Section 2. For α > 0 define Gα,∞ =
Gα,∞(p,w, α1,M,M1) to be the set of all probability density functions g on (0,∞)
such that

‖ws(|η|){g(α′)
s (η + δ) − g(α′)

s (η)}‖p < M |δ|α′′
, ∀δ, (38)

‖w(θ)g(θ)I{θ > a}‖p < M1[C(a)]α1 , ∀a > 0, (39)

where ws(η) = (2η)1/pw(η2), and α1, M , and M1 are given constants. Note that
with η =

√
θ, ‖w(θ)h0(

√
θ)‖p = ‖ws(η)h0(η)‖p for all Borel functions h0.

We assume that for every 0 < δ < 1 there exists a finite constant C∗
δ such

that
|C(j)(θ)|{C(θ)}δ−1 < C∗

δ , ∀θ ≥ 0, (40)

for all 0 ≤ j < ρ. This condition holds for C(θ) = e−θ of the Poisson mixture.

Theorem 4. Let α > 0 and 1 ≤ p ≤ ∞. Suppose (14)-(16) and (40) hold with
ρ > α(1+1/α1) and ρ ≥ α+1, and (17) holds with 0 < β < 2. Let ĝn,∞ be given
by (37) with a0n = a∗/cn, C(a2

1n) = c
−α/α1
n , cn = B−1{(β0 log n)/(1−β/2)}1−β/2,
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and Ks,n(x, η) as in (33) with α0 ≥ ρ in (3), where a∗ and β0 < 1/2 are positive
constants. Then,

sup{Eg‖w(ĝn,∞ − g)‖p : g ∈ Gα,∞(p,w, α1,M,M1)} = O(1)(log n)−α(1−β/2).

Conditions of Theorem 4 hold for the Poisson example.

Example 3. (Poisson with θ∗ = ∞) As in Example 2, (14)-(16) hold for γ = 0
and all ρ > 0, (40) holds for all ρ > 0 and 0 < δ < 1, and (17) holds for
B0 = B = β = 1. Taking β0 = 1/4, α1 = α and a∗ = 1, we have cn =

√
(log n)/2,

a0n = 1/cn and a1n =
√

log cn.
Now consider the estimation of the mixing distribution G for θ∗ = ∞. Define

Ĝn,∞(θ) =

{
n−1 ∑n

j=1

∫ √
θ

0 Ks,n(Xj , y){C(y2)}−1dy, if 0 < θ ≤ a2
n,

1, if θ > a2
n,

(41)

where Ks,n(x, η) is as in (33) and 0 < an → ∞. Similar to (20)-(22) and (35)-(36),

EGĜn,∞(θ) − G(θ) = B3n(
√

θ) + B4n(
√

θ) (42)

for 0 < θ < an, where, with Gs(y) = G(y2)I{y ≥ 0} and Cs,0(y) = C(y2),

B3n(η) =
∫ ∞

−∞

∫ η

0

{Cs,0(z − y/cn)
Cs,0(z)

}
dzGs(z − y/cn)k(y)dy − Gs(η),

B4n(η) = −
∫ ∞

−∞

∫ η

0

{Cs,0(y/cn − z)
Cs,0(z)

}
dzGs(y/cn − z)k(y)dy.

Let w be a decreasing function on (0,∞) with ‖w‖p < ∞. For α > 0 define
Gα,∞ = Gα,∞(p,w, α1,M,M1,M2) to be the set of all densities g on (0,∞) such
that

‖ws(|η|){G(α′+1)
s (η + δ) − G(α′+1)

s (η)}‖p < M |δ|α′′
, ∀δ, (43)

‖w(θ)(1 − G(θ))I{θ > a}‖p < M1[C(a)]α1 , ∀a > 0, (44)
G(θ) ≤ M2θ

(α+1)/2, ∀θ > 0, (45)

where ws is as in (38), and α1, M , M1, and M2 are given constants.

Remark. Although b3n(η) → 0 for −∞ < η < ∞ as cn → ∞, we have b4n(η) →
hs(−η). Thus, the bias of Ĝn,∞ will not tend to 0 if we integrate from a negative
number in (41) as we did in (19). This caused us to add Condition (45).

Theorem 5. Let α > −1 and 1 ≤ p ≤ ∞. Suppose (14)-(16) and (40) hold with
ρ > (α+1)(1+α−1

1 ), and that (17) holds for some 0 < β < 2. Let Ĝn,∞ be given
by (41) with cn as in Theorem 4, C(a2

n) = c
−(α+1)/α1
n and α0 ≥ ρ in (3). Then

sup{EG‖w(Ĝn,∞ − G)‖p : G ∈ Gcdf
α,∞(p,w, α1,M,M1,M2)}

= O(1)(log n)−(α+1)(1−β/2).
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Appendix I. Proofs of the Upper Bounds for Finite θ∗

Throughout Appendices I, II and III, we use Remh(x, δ,m) to denote the
remainder of the (m + 1)-term Taylor expansion of h, which can be written as

Remh(x, δ,m) = h(x + δ) −
m∑

j=0

h(j)(x)δj/j!, m ≥ 0,

=
∫ δ

0

(δ − y)m−1

(m − 1)!
{h(m)(x + y) − h(m)(x)}dy, m ≥ 1. (46)

Proof of Theorem 1. Let χ[0,a](θ) = I{0 ≤ θ ≤ a}. By (46)

‖χ[0,a]wg(j)‖p =
∥∥∥χ[0,a](θ)w(θ)Remg(j)(θ − a, a, α′ − j)

∥∥∥
p

≤
∫ a

0

(a − y)α
′−j−1

(α′ − j − 1)!

∥∥∥w(θ){g(α′)(θ − a + y) − g(α′)(θ − a)}
∥∥∥

p
dy

due to g(j)(θ − a) = 0 for 0 ≤ θ < a, so that for all a > 0 and 0 ≤ j ≤ α′ (13)
implies

‖χ[0,a]wg(j)‖p ≤ 2Maα−j/(α′ − j)! . (47)

Taking the expansion at θ + θ∗ − a, we obtain in the same manner

‖(1 − χ[0,a])wg(j)‖p ≤ 2M(θ∗ − a)α−j/(α′ − j)! , a ≤ θ∗, 0 ≤ j ≤ α′. (48)

Let χn(θ) = I{0 ≤ θ ≤ an} and δn = θ∗ − an. By (5) and (6),

Eg‖w(ĝn − g)‖p

≤ Eg‖w(ĝn − Eĝn)‖p + ‖χnwb1n/C‖p + ‖χnwb2n/C‖p + ‖(1 − χn)wg‖p .

By (12) and (48) ‖(1 − χn)wg‖p ≤ 2Mδα
n/α′! = O(c−α

n ). It follows from Zhang
(1995), Proof of Theorem 1, that ‖b2n‖∞ = O(c−β1

n ) and ‖Kn(x, ·)‖∞ =O(1)cx+1
n /

{q(x)(x + 1)!}, so that by (12) and (14) ‖χnwb2n/C‖p = O(c−β1
n )‖χn/C‖∞ =

O(c−α
n ) and by (11)

Eg‖w(ĝn − Eĝn)‖p = O(1)‖w‖p

mn∑
x=0

Eg|fn(x) − f(x, g)|cx+1
n /{q(x)(x + 1)!}

= O(1)n−1/2 exp{cn + max
o≤x≤mn

log(1/q(x))} = O(n−1/2+β0),
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where fn(x), x ≥ 0, is the relative frequency function. These and Lemma 1 below
imply Eg‖w(ĝn − g)‖p = ‖χnwb1n/C‖p + O(c−α

n ) = O(c−α
n ).

Lemma 1. Suppose the conditions of Theorem 1 hold. Then, ‖χnwb1n/C‖p

≤ O(c−α
n ), where the O(1) is uniform over Gα,θ∗(p,w,M).

Proof. We extend the domain of C such that (16) holds for all real numbers θ

and δ. By (46) we have the expansion

C(θ − y/cn)g(θ − y/cn) =
4∑

j=1

ξj(θ,−y/cn), (49)

where ξj(θ, δ) = ξj(θ, δ; g,C, α, γ, ρ) are given by ξ1(θ, δ) =
∑α′

j=0 g(j)(θ){δj/j!}
RemC(θ, δ, ρ′ − j), ξ2(θ, δ) = Remg(θ, δ, α′)

∑γ′
j=0C

(j)(θ){δj/j!}, ξ3(θ, δ) = Remg

(θ, δ, α′) RemC(θ, δ, γ′) and ξ4(θ, δ) =
∑α′

j=0g
(j)(θ){δj/j!}∑ρ′−j

l=0 C(l)(θ){δl/l!}.
Let ρ = α + γ. As

∫
ξ4(θ,−y/cn)k(y)dy = h(θ) by (3) and (5), (5) and (7)

imply

b1n(θ) =
3∑

j=1

∫ ∞

−∞
ξj(θ,−y/cn)k(y)dy. (50)

Treating ξj = ξj(θ, δ) as functions of θ, we obtain ‖χ[0,a]wξ1/C‖p = O(1)δρ/C(a)

by (47), ‖χ[0,a]wξ2/C‖p = O(1)δα ∑γ′
j=0 (δ/(θ∗ − a))j by (13) and (15), and

‖χ[0,a]wξ3/C‖p = O(1)δρ/C(a) by (13), where the O(1) is uniform in (a, δ). The
details of the above calculation can be found in Loh and Zhang (1993). Hence,
by (50), (14), (12), and (3)

‖χnwb1n/C‖p = O(1)
∫ ∞

−∞

{
|y/cn|ρ/C(an) + |y/cn|α

γ′∑
j=0

|y/a∗|j
}
|k(y)|dy

= O(c−α
n ) {‖yρk(y)‖1 + ‖yαk(y)‖1} = O(c−α

n ) .

Proof of Theorem 2. By (20)-(22) and the proof of Theorem 1 EG‖w(Ĝn−G)‖p

is bounded by

EG‖w(Ĝn − EGĜn)‖p + ‖χnw(B1n + B2n)‖p + ‖(1 − χn)w(1 − G)‖p

≤ O(c−α−1
n ) + ‖χnwB1n‖p + ‖(1 − χn)w(1 − G)‖p,

since cn‖χnB2nC‖∞ ≤ 2(1 + 1/mn)
∑

x>mn
(θ∗)xC(0)cx+1

n ‖k‖1/{π(x + 1)!} =
O(c−α

n ) by (10) and the fact that | ∫ θ
a∗ e−itz{C(z)}−1dz| ≤ 2/{|t|C(θ)}. By the

proof of (48), we have ‖(1−χn)w(1−G)‖p ≤ 3Mδα+1
n /(α′ + 1)!. The conclusion

follows from
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Lemma 2. Let χn(θ) = I{0 ≤ θ ≤ an}. Under the conditions of Theorem 2,
‖χnwB1n‖p = O(c−α−1

n ), where the O(1) is uniform over Gcdf
α,θ∗(p,w,M).

Proof. Let ξj(θ, δ; g,C, α, γ, ρ) be as in (49). For j = 0, 1, define

ξjn = ξjn(θ) =
∫ ∞

−∞

3∑
l=1

ξl(θ,−y/cn;G,C(j), α + 1, γj , ρj)k(y)dy,

where ρj = α + 1 + γj, min(γ0, γ1) ≥ 0, and max(ρ0, ρ1 + 1) ≤ ρ. Note that the
pair (g,C) in (49) is replaced by (G,C(j)) here. Integrating by parts in (21), we
find

B1n =
ξ0n(θ)
C(θ)

− ξ0n(a∗)
C(a∗)

+
∫ θ

a∗

{C(1)(z)
C(z)

ξ0n(z)
C(z)

− ξ1n(z)
C(z)

}
dz. (51)

Since the proof of Lemma 1 depends only on the smoothness and boundedness
of g(j), C(j), and χn/C, it also applies to the components of ξ0n and ξ1n. It
follows that ‖χnwξ0n/C‖p = O(c−α−1

n ) and that there exist functions ζjn with
‖χnwζjn‖p = O(c−α−1

n ) such that

C(1)(z)
C(z)

ξ0n(z)
C(z)

− ξ1n(z)
C(z)

=
2∑

j=0

ζjn(z)hjn(z),

where h0n = C(1)/[cγ0
n C2], h1n = 1/[cγ1

n C], and h2n = 1/[cn(θ∗ − θ)2]. Note the
cancellation of the term {C(1)/C}Remg here. By the Hölder inequality and the
monotonicity of w,

∣∣∣w(θ)
∫ θ

a∗

{C(1)(z)
C(z)

ξ0n(z)
C(z)

− ξ1n(z)
C(z)

}
dz

∣∣∣ ≤ O(c−α−1
n )

2∑
j=0

h̄jn(θ)

for fixed θ ≤ an, where h̄jn(θ) = ‖χ[0,θ]hjn‖p/(p−1). This and (51) imply

‖χnwB1n‖p ≤ ‖w‖p

∣∣∣ξ0n(a∗)
C(a∗)

∣∣∣ + O(c−α−1
n )

(
1 +

2∑
j=0

‖χnh̄jn‖p

)
. (52)

Set γ0 = γ, γ1 = max(γ − 1, 0) if γ �= 1, and 1 ≥ γ1 > 0 if γ = 1. Let h0(z) =
(θ∗ − z)−κ−1 and h̄0(θ) = ‖χ[0,θ]h0‖p/(p−1). Then for κ > 0 and 1 ≤ p ≤ ∞,

‖χn(θ)h̄0(θ)‖p ≤ (θ∗ − an)−κ{(pκ + 1)/(p − 1)}−(p−1)/p{pκ}−1/p.

This gives ‖χnh̄2n‖p = O(1) by (12). This also gives ‖χnh̄0n‖p = O(1) if γ > 0,
while ‖h̄0n‖∞ = O(1) by (16) if γ = 0. Since C(θ) =

∑∞
x=0 q(x)θx, by (14) and

the choice of γ1, we have

‖χnh̄1n‖p

≤ c−γ1
n

∞∑
x=0

ax+1
n (xp/(p − 1) + 1)−(p−1)/p(px + p)−1/p ≤ c−γ1

n ‖χn/C‖1 = O(1).
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So, ‖χnh̄jn‖p = O(1) in all the cases. The proof is completed by (52) and
|ξ0n(a∗)/C(a∗)|≤

∫
G(a∗−y/cn)|k(y)|dy≤∫ a∗cn

−∞ |y/(cna∗)|α+1|k(y)|dy=O(c−α−1
n ).

Appendix II. Proofs of the Lower Bounds

The proofs of the following two lemmas are deferred to the end of Appendix
II.

Lemma 3. Let hu,v be given by (27) with u/v = a. Then as u → ∞, we have
‖θxhu,v(θ)‖∞ ≈ ax−1√u/

√
2π for x ≥ 0, ‖hu,v‖p ≈{u/(2πa2)}(p−1)/(2p)p−1/(2p),

and ‖h(j)
u,v‖p/‖hu,v‖p ≈ a−juj/2{E|Qj(p−1/2Z)|p}1/p,∀j ≥ 0 for 1≤p<∞, where

Z is a N(0, 1) random variable and Qj(x) are polynomials such that Q0(x) = 1
and Qj+1(x)=xQj(x) − (d/dx)Qj(x). In addition, there exist constants c∗j such

that |h(j)
u,v(θ)|/hu,v(θ)≤ c∗jθ−j{1 + |u − 1 − vθ|j + (vθ)j/2} for all j≥0. If u=un

and v = vn as in (30) and (31), then |h(j)
u,v(θ1)| + |h(j)

u,v(θ2)| = O(n−1uj+1/2) and
‖hu,v(1 − χ1)‖p = O(1)u(p−1)/(2p)/n, 1 ≤ p ≤ ∞.

Remark. Qj(x) =
∑

0≤l≤j/2{j!(−1)lxj−2l}/{(j − 2l)!l!2l} by mathematical in-
duction.

Lemma 4. There exists a constant C∗ such that ‖l(m)
1,u,vχ0‖p ≤ C∗ ∑α′

j=0 |h(j)
u,v(θ1)|

and ‖l(m)
2,u,vχ2‖p ≤ C∗ ∑α′

j=0 |h(j)
u,v(θ2)| for all u > 0 and v > 0. If u = un and

v = vn as in (30) and (31), then ‖l(m)
1,u,vχ0‖p + ‖l(m)

2,u,vχ2‖p = O(n−1u
α′+1/2
n ).

Proof of Theorem 3. We drop the subscript n in un and vn throughout the
proof. Part (i) is proved in Steps 1-3, while Part (ii) is proved in Step 4.
Step 1. Verify the membership of gjn in Gα,θ∗(p, 1,M). By Lemma 4, ‖(χ0 +
χ2)gu,v‖∞ = O(n−1uα′+1/2). Also, we have by (29),

1/C(θ2) + o(1) ≥ w0n =
∫ θ3

θ0

gu,v(y)dy ≥ 1/C(θ1) + o(1). (53)

By (29) and Lemma 4, (χ0 + χ2)g0n ≥ 0 for small w0 and (p − 1)/(2p) + α ≥ 0.
It follows that g0n is a density. In the same manner, we find |wjn| ≤ w0n + o(1),
so that by (30) and (31) g1n and g2n are all density functions.

It remains to verify (13). By the smoothness of C(θ) on [θ0, θ3] and Lemmas
3 and 4, we have u−(p−1)/(2p)‖g(m)

u,v ‖p = O(um/2) = O(um) for m = α′, α′ + 1,
which implies

u−(p−1)/(2p)−α‖g(α′)
u,v (θ) − g(α′)

u,v (θ + δ)‖p = O(1)min(u−α′′
, u1−α′′

δ).

Since g0 ∈ Gα,θ∗(p, 1,M − ε1) for some ε1 > 0 and min(u−α′′
, u1−α′′

δ) ≤ δα′′
,

‖g(α′)
0n (θ) − g

(α′)
0n (θ + δ)‖p ≤ (M − ε1 + O(1)w0)δα′′

(54)
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by (29). This implies (13) with g = g0n for small w0. Since ‖(d/dθ)jh0(u(θ −
a)/θ2)‖∞ = (u/θ2)j for h0(y) = sin(y) and h0(y) = cos(y), we also have for
m = α′, α′ + 1, and j = 1, 2,

∥∥∥g
(m)
jn − g

(m)
0n

∥∥∥
p
≤ O(1)

w0θ
α
2

u(p−1)/(2p)+α

m∑
l=0

‖g(l)
u,v‖p

{
1 + (u/θ2)(m−l)

}
= w0O(um−α)

so that ‖(gjn−g0n)(α
′)(θ)− (gjn−g0n)(α

′)(θ+δ)‖p = O(1)w0δ
α′′

. Therefore, (13)
holds with g = g1n and g2n for small w0.
Step 2. Next we show that

∞∑
x=0

|f(x; gjn) − f(x; g0n)| =
∞∑

x=0

q(x)
∣∣∣ ∫ θ∗

0
θxC(θ){gjn(θ) − g0n(θ)}dθ

∣∣∣ = o(n−1).

(55)
We prove this only for g2n. As in Zhang (1995) and by the definition of δ0

∞∑
x=0

q(x)
∣∣∣ ∫ θ2

θ1

cos(u(θ − a)/θ2)θxhu,v(θ)dθ
∣∣∣ = O(1/n). (56)

Set lj,u,v,x(θ) = θxlj,u,v(θ). By the definition of lj,u,v and Lemmas 3 and 4 we
have

|l(m)
1,u,v,x(θ1)|+|l(m)

2,u,v,x(θ2)| = O(1)
m∑

j=0

(x + 1)j [θx−j
1 |h(m−j)

u,v (θ1)|+θx−j
2 |h(m−j)

u,v (θ2)|]

= O(n−1um+1/2)(x + 1)mθx
2 , m ≥ 0,

and by Lemma 4
∫
[|l(α′+1)

1,u,v,x(θ)|χ0(θ) + |l(α′+1)
2,u,v,x(θ)|χ2(θ)]dθ = O(n−1uα′+1/2)(x +

1)α
′+1θx

3 . Integrating by parts α′ + 1 times, we obtain

∞∑
x=0

q(x)
∣∣∣ ∫

cos(u(θ − a)/θ2)θxl2,u,v(θ)χ2(θ)dθ
∣∣∣

≤
∞∑

x=0

q(x)(θ3/u)α
′+1

∫
|l(α′+1)

2,u,v,x(θ)|χ2(θ)dθ +
∞∑

x=0

q(x)
α′∑

j=0

(θ3/u)j+1|l(j)2,u,v,x(θ2)|

≤ O(n−1u−1/2)
∞∑

x=0

q(x)(x + 1)α
′+1θx

3 = o(n−1)

and the same with respect to l2,u,v(θ)χ2(θ), so that by (28) and (56)

∞∑
x=0

q(x)
∣∣∣ ∫ θ3

0
cos(u(θ − a)/θ2)θxC(θ)gu,v(θ)dθ

∣∣∣ = O(n−1). (57)
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Since
∑

x q(x)θxC(θ) = 1, (53) and (57) imply

‖gu,v‖1

∣∣∣w2n

w0n

∣∣∣ =
‖gu,v‖1

|w0n|
∣∣∣ ∫ θ3

0
cos(u(θ − a)/θ2)gu,v(θ)dθ

∣∣∣ = O(n−1). (58)

Thus, by (31) the left-hand side of (55) is o(n−1) for j = 2, as it is bounded by
the product of w0θ

α
2 u−(p−1)/(2p)−α and the sum of (57) and (58).

Step 3. Verify (26) and prove Part (i). In view of (55) and the existence of
M∗ < ∞ such that ‖gjn − g0n‖p ≤ w0M

∗u−α
n for j = 0, 1, 2, we only need to

show
lim inf
n→∞ (log n)α max

j=1,2
‖gjn − g0n‖p > 2ε0, for some ε0 > 0. (59)

By Lemma 3 there exists a positive constant δ1 such that for large n, C(0) ‖gu,v‖p

≥‖hu,v‖p−‖(1−χ1)hu,v‖p≥ δ1u
(p−1)/(2p). Since max{| sin(x)|, | cos(x)|} ≥ 1/

√
2,

by (30) and (31)

w−1
0 (

u

θ2
)α{‖g1n − g0n‖p

p + ‖g2n − g0n‖p
p}1/p ≥ {δ1/C(0)}

(
1/
√

2 − max
j=1,2

|wjn

w0n
|
)
,

which implies (59), as wjn/w0n → 0 and u = δ0 log n.
Step 4. Prove Part (ii). Let Gu,v and Gjn be the integrals of gu,v and gjn

respectively. If α > 0, then gjn ∈ Gα,θ∗ ⊆ Gcdf
α,θ∗ by Step 1. For α = 0, we have

‖Gu,v(θ) − Gu,v(θ + δ)‖p ≤ δ‖gu,v‖p, so that gjn ∈ Gcdf
0,θ∗ for small w0 by Lemma

3. By Steps 2 and 3, Part (ii) holds if

lim inf
n→∞ (log n)α+1 max

j=1,2
‖Gjn − G0n‖p > 2ε0. (60)

The difference G2n − G0n is proportional to
∫ θ
0 cos(u(y − a)/θ2)gu,v(y)dy, which

can be expressed via three times of integrating by parts by

3∑
j=1

(−θ2/u)j cos(u(θ−a)/θ2−jπ/2)g(j−1)
u,v (θ)+(θ2/u)3

∫ θ

0
sin(u(y−a)/θ2)g(3)

u,v(y)dy.

It follows from (30), (31), (58), and Lemmas 3 and 4 that ‖G2n − G0n‖p =
(θ/u)(1+O(u−1/2))‖g1n−g0n‖p, and likewise ‖G1n−G0n‖p = (θ/u)(1+O(u−1/2))
‖g2n − g0n‖p . Hence, (60) follows from (59).

Proof of Lemma 3. The approximations for ‖θxhu,v(θ)‖∞ and ‖hu,v‖p follow
from the Stirling formula. Define Q∗

j(x, y) by h
(j)
u,v(θ) = hu,v(θ)θ−jQ∗

j(u − 1 −
vθ,

√
vθ). Clearly Q∗

0 = 1. Since (∂/∂θ) log hu,v(θ) = (u−1)/θ−v, θ−j−1Q∗
j+1(u−

1 − vθ,
√

vθ) equals

[(u − 1)/θ − v]θ−jQ∗
j − jθ−j−1Q∗

j + θ−j
[
−vQ∗

j,1 +
√

vθQ∗
j,2/(2θ)

]
,
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where Q∗
j,1 = (∂/∂x)Q∗

j and Q∗
j,2 = (∂/∂y)Q∗

j . It follows that Q∗
j+1 = xQ∗

j −
jQ∗

j − y2Q∗
j,1 + (y/2)Q∗

j,2, so that Q∗
j(x, y) is a polynomial of degree j. This

gives the inequality for |h(j)
u,v(θ)|. For the ‖ · ‖p norm, we have |h(j)

u,v|p/‖hu,v‖p
p =

|θ−jQ∗
j |php(u−1)+1,pv. Since hu,v has mean u/v and variance u/v2, by the moment

convergence in the central limit theorem and law of large numbers
∫ ∞

0

∣∣∣Q(
(u − vθ)/

√
u,

√
vθ/u

)∣∣∣phu,v(θ)dθ → E|Q(Z, 1)|p

for all polynomials Q and p ≥ 0. Therefore, as u → ∞

‖h(j)
u,v‖p

p/‖hu,v‖p
p =

∫
|θ−jQ∗

j(u − 1 − vθ,
√

vθ)|php(u−1)+1,pv(θ)dθ

≈ E|(u/v)−jQ∗
j (Z

√
pu/p,

√
u)|p ≈ a−juj/2E|Qj(Z/

√
p)|p,

where Qj(x) = Qj(x, 1) and Qj(x, y) is the sum of all terms of degree j in
Q∗

j(x, y). The recursion of Qj follows from that of Q∗
j .

If u = un and v = vn as in (30) and (31), then ‖hu,v(1 − χ1)‖1 = O(1/n) by
the standard large deviation formula. The rest follows, since by the expression
for δ0 and the Stirling formula we have hu,v(θ)[1 − χ1(θ)] = O(1)u1/2/n.

Proof of Lemma 4. Define ‖Q‖0 =
∑α′

j=0{|Q(j)(θ0)|+ |Q(j)(θ1)|}. Since ‖ ·‖0 is
a norm for the (2α′ +2)-dimensional space of all polynomials Q of degree 2α′ +1
on [θ0, θ1], it is equivalent to all other norms on this linear space. This implies
‖l(m)

1,u,vχ0‖p ≤ C∗ ∑α′
j=0 |h(j)

u,v(θ1)| as l
(j)
1,u,v(θ0) = 0 for 0 ≤ j ≤ α′. The proof of the

inequality with respect to ‖l(m)
2,u,vχ2‖p is the same. The rest follows from Lemma

3.

Appendix III. Proofs of the Upper Bounds for θ∗ = ∞
Proof of Theorem 4. Clearly, ‖w(θ)g(θ)I{θ > a2

1n}‖p = O(c−α
n ) by (39) and

the choice of a1n. Also, as in Zhang (1995) ‖Ks,n(x, ·)‖∞ ≤ 2nβ0B0‖k‖1/(πB).
It follows from (37) and the argument in the proof of Theorem 1 that

Eg‖w(ĝn,∞−Egĝn,∞)‖p =O(1)nβ0−1/2 max
a0n≤η≤a1n

1/Cs(η)=O(1)nβ0−1/2cmax(1,α/α1)
n ,

so that Eg‖w(ĝn,∞ − g)‖p ≤ ‖I{0 ≤ θ ≤ a2
1n}w(Eg ĝn,∞ − g)‖p + O(c−α

n ).
For the rest of the proof, and unless otherwise specified, we write everything

as functions of η =
√

θ, for which ws is the actual weight function. Set χ0n =
I{0 ≤ η < a0n}, χ1n = I{a0n ≤ η < 1}, and χ2n = I{1 ≤ η ≤ a1n}. By (47)
and (38) we have ‖wsgsχ0n‖p = O(c−α

n ), so that Eg‖w(θ)(ĝn,∞(θ) − g(θ))‖p ≤
‖ws(χ1n + χ2n)(b3n + b4n)/Cs‖p + O(c−α

n ), where bjn(η) are given by (35) and
(36).
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For j = 1, 2, define ξjn(η, y) =
∑3

l=1 ξl(η,−y/cn; gs, Cs, α, γj , ρj), where ξj

are as in (49), ρj = α + γj , γ1 = 1, and α/α1 < γ2 ≤ ρ − α. Then, by (35)
χjnb3n(η) = χjn

∫
ξjn(η, y)k(y)dy, j = 1, 2. As in the proof of Lemma 1, we have

‖wsχjnb3n/Cs‖p = O(c−α
n ), j = 1, 2. Note that on the set [0, 1] (14) is replaced

by η/Cs(η) ≤ 1/C(1) with γ = γ1 = 1. Also note that ‖χ2nC
(j)
s /Cs‖∞ = o(cε1

n )
and a1n = o(cε1

n ) for all small ε1 > 0, while γ = γ2 > α/α1.
The proof of ‖wsχjnb4n/Cs‖p = O(c−α

n ) is similar and is omitted. Note that
(38) implies ‖I{η > 0}ws(η)g(α′)

s (δ − η)‖p < M |δ|α′′
for all δ.

Proof of Theorem 5. We combine the methods in the proofs of Theorem 4
and Lemma 2 with the (g,C) in (49) replaced by (Gs(y), C(j)

s,0(y)) in the case of

B3n and by (Gs(−y), C(j)
s,0(−y)) in the case of B4n, j = 0, 1. This gives

EG‖w(Ĝn,∞ − G)‖p ≤ O(c−α
n ) + O(1)

∣∣∣ ∫ ∞

0
C((y/cn)2)G((y/cn)2)k(y)dy

∣∣∣.
The proof is now complete, as the integration on the right-hand side is bounded
in absolute value by C(0)M2

∫ ∞
0 (y/cn)α+1|k(y)|dy = O(c−α−1

n ) due to (45).
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