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Abstract: Statistical estimates and procedures that err on the side of caution are

often desirable when dealing with public health issues. The U.S. Environmental

Protection Agency, under the Superfund program, takes this approach in its de-

termination of human exposure to soil contaminants at toxic waste sites. Due to

uncertainties in estimating the true average contaminant concentration based on

site sampling and the need to be conservative in assessing health risk, the EPA

advocates the use of the 95% upper confidence limit (UCL) on the mean to pro-

vide “reasonable confidence that the true site average will not be underestimated”.

Skewness of the underlying distribution of the contaminant contributes to the per-

sistent underestimation of the population mean when sample size is small and the

need for a conservative procedure as attempted by the EPA. In this article, we

propose an estimator for the mean of positively skewed distributions based on a

penalized least squares criterion. When sample size is small or moderate, the new

estimator has smaller mean square error and greater probability of falling within

two standard deviations of the sample mean above the true mean than the UCL

estimator currently being used by EPA.

Key words and phrases: Coverage, penalized least squares, penalty constant, su-

perfund program.

1. Introduction

In an effort to protect human health and the environment from threats posed
by hazardous substances the U.S. Environmental Protection Agency’s Office of
Emergency and Remedial Response has developed a process of human health risk
assessment. This process is described in EPA (1989) Risk Assessment Guidance
for Superfund: Volume I - Human Health Evaluation Manual (RAGS/HHEM).
It details, in part, procedures for data collection and evaluation, exposure as-
sessment, toxicity assessment, and risk characterization due to human exposure
to hazardous substance releases at Superfund sites. A determination of contami-
nant concentration based on site sampling is required for the estimation of human
exposure. Due to uncertainties in estimating the true average concentration and
the need to be conservative in assessing health risk, EPA (1989) RAGS/HHEM
and EPA (1992) Supplemental Guidance to RAGS: Calculating the Concentration
Term both advocate the use of the upper 95 percent confidence limit (UCL) of
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the arithmetic mean to provide “reasonable confidence that the true site average
will not be underestimated.”

If the extent and level of this average contamination is underestimated then
any resulting estimates of the risk of human health will also be underestimated.
Such underestimation has been evident in random samples of concentrations at
many sites listed in the U.S. Superfund program. The problem lies in the skewed
distribution of the contaminant concentrations. Although the sample mean from
a skewed distribution is unbiased for the population mean, the population skew-
ness causes substantially more than half of the sample means to fall below the
population mean for small to moderate sample sizes. This results in a sample
mean with a large probability of falling below the population mean. Such a sam-
ple mean we say has low coverage, the probability of falling above the population
mean.

Several estimators of the mean have been developed for asymmetric distri-
butions, such as the smearing estimate (Duan (1983)), the retransformed mean
obtained through Box-Cox transformations (Taylor (1985, 1986); Shumway, et al.
(1989)) and the Once-Winsorized mean (Fuller (1970, 1991)). These procedures
do not address the underestimation and coverage problems that concern us here.

The EPA (1992), through various pilot studies and workshops, considered
many approaches to correct this underestimation problem and decided that to
estimate the mean in a conservative manner, the upper point of a 95 percent
normal theory confidence interval (UCL = X̄ + 1.96σX̄ ) would be used, irrespec-
tive of the underlying distribution. Obviously the essence of the problem here is
different from conventional methods that develop estimators through a trade-off
between bias and variance. We will formulate an estimator through a trade-off of
bias and coverage of the parameter. Thus, we should choose a biased estimator
not only with a small mean square error but also with a large probability falling
within an allowance range of the estimation. In this particular problem it will
be reasonable to choose the allowance range as [θ, θ + 2σX̄ ], where θ is the true
mean of the underlying distribution.

In this article, we propose a realistic estimate for the mean of such skewed
distributions when high coverage is desired. The new estimate is based on a
penalized sum of squares consisting of a squared error loss plus a penalty for each
observation that falls above the estimate. The resulting penalized least squares
estimator, called the penalized mean, is biased but it has a smaller variance than
both X̄ and UCL and a smaller mean square error than the UCL estimator while
it has greater probability of falling within the allowance range of the estimation.

The new penalized least squares criterion, is proposed in Sections 2. The pe-
nalized mean is derived in Section 3 and its large sample properties are discussed.
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A choice of the penalty constant is presented in Section 4. The simulation re-
sults in Section 5 are based on lognormal, exponential, chi-squared and Weibull
distributions. Section 6 is conclusions.

2. A Penalized Least Squares Criterion

Our goal is to find a nonparametric estimator for the mean of a positively
skewed distribution by tolerating some bias in the estimator in order to improve
its coverage. To accomplish this goal we extend the usual least squares approach
since a traditional decision theoretic approach would be extremely difficult in this
nonparametric setting. We define a penalized squared error in order to balance
bias, variance, and coverage as follows:

L∗(xi, t) = (xi − t)2 + 2λnpr(t < X < xi), (2.1)

where λn > 0, λn = o(1). Here, the penalty we impose is proportional to the
probability that X falls between the observation and the estimate t. Based on the
form of the penalty term in (2.1), the more extreme an observation, the greater
the penalty it imposes on our estimator. To minimize the penalty, the estimator
will tend to be larger, and thus have a small probability of falling below the
population mean, θ.

The penalized sum of squares is

R(t) =
∑

L∗(xi, t) =
∑

(xi − t)2 + 2λn

∑
pr(t < X < xi). (2.2)

We shall find an estimator of θ by minimizing this penalized sum of squares.
The estimator is called penalized least squares estimator, or simply called penal-
ized mean.

3. One-step Iterate of the Penalized Mean

To find the penalized least squares estimator of the mean, let us examine the
properties of the penalized sum of squares function R(t).

Let X be a continuous random variable with positive skewness, f(x) and
Fn(x) be the probability density function and the empirical distribution of X,
respectively. For ease of notation, we will denote the order statistics by a notation
that is more commonly used for the sample. Let X1 ≤ · · · ≤ Xn denote the order
statistics of the sample. Then we have the following results.
(1) R(t) is a continuous function of t.

(2) R(t) is piecewise differentiable. The derivative does not exist at t = xi, and
R′(x−

i ) < R′(x+
i ), i = 1, . . . , n.

(3) If |f ′(t)| ≤ M for some M and λn = o(1), then the minimum value of R(t)
exists and is unique.
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All the proofs in this paper are given in Appendix I.
Based on these results we have the following theorem.

Theorem 3.1. Suppose |f ′(t)| ≤ M , for some M < ∞ and λn = o(1). Then
the penalized sum of squares function R(t) is minimized by the solution to the
equation

t = x̄ + λnf(t){1 − Fn(t)}, (3.1)

if it exists, where Fn(t) is the empirical distribution function of X, and f(·) is
the probability density function of X.

The solution of (3.1) is not a viable penalized least squares estimator of θ,
since (3.1) includes the unknown probability density function of the population.
To find a suitable estimator, a density estimator f̂(t) is substituted into Equation
(3.1), and a new estimator of the mean is defined as follows.

Definition 3.1. If (X1, . . . ,Xn) denotes a random sample from a positively
skewed distribution, then the solution θ̂ to the equation

θ̂ = X̄ + λnf̂(θ̂){1 − Fn(θ̂)} (3.2)

is called a penalized mean, where f̂(·) is a density estimator of X, Fn(·) is the
empirical distribution function of X and λn is a penalty constant.

Equation (3.2) defining θ̂ includes an estimate of the underlying density
function, whose complete knowledge would make estimation of θ unnecessary.
But complete knowledge of the density is not needed. We need an estimate of
the density function only at one point which we approximate by f̂(θ̂). Since θ̂

is an estimate of the mean, it will not be in the tail of the distribution, and
therefore estimating f(θ̂) is not difficult.

The penalized mean is defined implicitly. Ideally, it can be obtained itera-
tively. However, due to the substitution of f̂(θ) in (3.1), the recursive algorithm
utilizing an initial estimate θ̂0,

θ̂k+1 = X̄ + λnf̂(θ̂k){1 − Fn(θ̂k)}, k ≥ 0,

may not be convergent. In simulations, we have found that if we choose x̄ as a
starting point, most of the improvement of the estimate occurs after one step.
Thus we define the one-step iterate of the penalized mean as

θ̂ = X̄ + λnf̂(X̄){1 − Fn(X̄)}, (3.3)

where λn is a constant and Fn(·) is the empirical distribution function of X.

For simplicity, the one-step iterate of the penalized mean is called the pmean.
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Although we are interested in the small sample properties of the pmean, the
following theorem shows that even though the pmean is biased, it has other large
sample properties similar to the sample mean.

Theorem 3.2. Let f̂n(x) be a density estimator of f(x) and θ̂n be the one-step
iterate of the penalized mean. Assume that
(1) ‖f̂n − f‖ →a.s. 0, as n → ∞; (‖f‖ = supx |f(x)|)
(2) λn → 0, as n → ∞.

Then
(i) θ̂n →a.s. θ, as n → ∞;
(ii) If λn = cn−1/2, then, n1/2(θ̂n − θ) →L N(cf(θ){1 − F (θ)}, σ2), as n → ∞,

where c is a constant and F (·) is the distribution function of X.

Theorem 3.2 shows that the pmean is strongly consistent for estimating the
true mean. Its asymptotic bias is related to f(θ){1 − F (θ)}. The values of
f(θ){1 − F (θ)} for the distributions lognormal(0,1), lognormal(0,1.25), lognor-
mal(0,1.5), χ2(1), exponential(1) and Weibull(1,0.5) are listed in Table 1. In
Section 4, we shall propose a choice of the penalty constant λn = 4.5σ2n−1/2.
The asymptotic bias, 4.5σ2g(θ), and the probability for θ̂ to fall in the allowance
range [θ, θ +2σn−1/2] of the pmean using such a penalty constant are also shown
in the table.

Table 1. Asymptotic results of the PMEAN

logN(0,1) logN(0,1.25) logN(0,1.5) χ2(1) E(1) Weib(1,0.5)

θ 1.6487 1.8682 2.1170 1.0000 1.0000 2.0000
σ2 4.6708 8.6922 15.604 2.0000 1.0000 20.000

g(θ) 0.0659 0.0435 0.0289 0.0768 0.1353 0.0209
4.5σ2g(θ) 1.3849 1.6998 2.0299 0.6910 0.6091 1.8807

p2 0.6795 0.6412 0.6269 0.6224 0.6468 0.6057

Note: θ and σ2 denote mean and variance of the distribution, respectively.
g(θ) = f(θ){1 − F (θ)} and p2 = pr(θ ≤ θ̂ ≤ θ + 2σn−1/2)

Note that the asymptotic bias of the UCL estimator is 1.96σ. Thus, the proba-
bility of the UCL falling within the allowance range is only 0.491 which is more
than 10% lower than that of the pmean. The asymptotic bias of the UCL is
much larger than that of the pmean. Therefore, when the sample size is large,
the pmean is preferable.

4. A Choice of the Penalized Constant

We have found a point estimator of the population mean for a positively
skewed distribution, the one-step iterate of the penalized mean – pmean, under
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penalized least squares. Although the pmean has large sample properties similar
to those of the sample mean, in our particular application the small sample
behavior of the pmean is of greater concern. For a study of the small sample
behavior of the pmean we consider the lognormal distribution, which has received
special attention in modeling pollutant concentrations.

Figure 1 shows the scatter plot of the penalty factor f̂(x̄){1−Fn(x̄)} versus
x̄ , in 1,000 repetitions with sample size 25 from the lognormal(0,1) distribution,
where f̂(·) is the k-NN (Nearest Neighbor) density estimator with k = n1/2 (See
Appendix II). From the figure, we can see the negative correlation between the
sample mean and the penalty term for a fixed penalty constant λn. Note that

Var (θ̂) = Var (X̄) + 2λn Cov (X̄, f̂(X̄){1 − Fn(X̄)})
+λ2

nVar (f̂(X̄){1 − Fn(X̄)}).
For certain λn, it is possible for the variance of the pmean to be smaller than the
variance of X̄.

The vertical line in the graph indicates the position of the population mean.
It is easy to see that the factor f̂(x̄){1−Fn(x̄)} gives small weight to λn when x̄

is larger than the population mean. Thus a large value of the sample mean would
get a smaller penalty. This would result in more shrinkage of the distribution of
pmean towards the true mean.

Figure 2 shows the sampling distribution of X̄ and the pmean in 1,000 rep-
etitions with λn = 1, . . . , 6. (Note: when λn = 0, pmean = X̄.) It is interesting
that when the λn increase from 1.0 to 4.0, the maximum value of the distribution
does not increase much but the distribution of the pmean shrinks from the left
towards to the true mean. The minimum value, MIN, maximum value, MAX,
variance, VAR, bias, BIAS, the ratio of the mean square error of the pmean to
that of the X̄ , RATIO, and the coverage, Pc of the pmeans are calculated and
listed in Table 2. From Figure 2 and Table 2, we can see the changes of the sam-
pling distribution along with the penalty constant. The variance of the pmean
is less than that of the X̄ even when the coverage of pmean reaches 0.983 in the
case of λn = 6. When λn = 4, the coverage of the pmean reaches 90.7% which
is twice as large as that of the X̄. The ratio of the mean square errors is only
1.7162. Compared with X̄, the maximum value of pmean is only 0.0232 units
greater than that of X̄ , meanwhile the minimum value of the pmean increases
to 1.3449 from 0.7651. Furthermore, when λn = 1, or 2, the ratio of the mean
square error is less than one.

The penalty constant λn should be specified before applying the penalized
mean. In sampling from strongly positively skewed distributions, the distribution
of the sample mean remains quite positively skewed for small to moderate sample
sizes. The pmean is a modification of the sample mean imposing a non-constant
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penalty factor f̂(x̄){1 − Fn(x̄)} to improve coverage of the population mean.
This penalty factor allows us to minimize the mean square error while retaining
a large probability of falling into the allowance range [θ, θ+2σX̄ ] of the estimation.
According to Tchebysheff’s theorem, at most 5% of the observations are below
4.5 standard deviations of the mean. Since the density f(x) is generally inversely
proportional to the scale parameter σ, we define λn to be 4.5σ2n−1/2 so that the
additive penalty term is proportional to σ. Because the penalty factor f̂(x̄){1 −
Fn(x̄)} is negatively correlated with x̄, we expect that the pmean, with this
penalty constant, will have a small variance with the desirable coverage. Here
we assume the population variance is known.
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Figure 1. Penalty plot for Lognormal(0,1) with n = 25.
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Table 2. Statistical summary of the PMEAN for the Lognormal(0,1)
distribution with n = 25

λn MIN MAX VAR BIAS RATIO Pc

0 0.7651 4.1095 0.1817 −.0073 1.0000 0.4250
1 0.9398 4.1153 0.1521 0.1000 0.8916 0.5400
2 1.1145 4.1211 0.1343 0.2073 0.9752 0.6960
3 1.2578 4.1269 0.1283 0.3146 1.2497 0.8150
4 1.3449 4.1327 0.1340 0.4219 1.7162 0.9070
5 1.4188 4.7692 0.1515 0.5291 2.3735 0.9650
6 1.4924 5.4827 0.1808 0.6364 3.2228 0.9830

5. Monte Carlo Study

5.1. Description of the Monte Carlo experiment

The three procedures studied are X̄, UCL and pmean. Random variables
were generated from positively skewed distributions which included lognormal
distributions with parameters µ = 0 and σ2 = 1.00, 1.25, and 1.50, χ2

1, exponen-
tial(λ = 1) and Weibull(a = 1, b = 0.5). The notation of Mood, Graybill, and
Boes (1974), appendix B has been used to denote the distribution parameters.
Because we are more concerned with the small or moderate large sample behav-
ior of the estimators, only sample sizes of 15, 25, 35 and 50 were used in the
simulation. The sampling distributions of the estimators were simulated using a
Monte Carlo sample of size 5,000.

5.2. Simulation results

The empirical results presented in Tables 3 and 4 are variance, bias, mean
square error and the proportion of the estimates falling in the allowance range
[θ, θ + 2σn−1/2] for each estimator in our study. It can been seen from the tables
that except for n = 15, the variance of the pmean is smaller than that of X̄.
The bias of the pmean decreases when the sample size increases and it is smaller
than that of the UCL. Because we have assumed the variance of the population
is known, the variance of the UCL is the same as that of X̄. Hence, the UCL has
larger mean square error than the pmean. For an estimator which has a normal
limiting distribution when the sample size is large, a proper location shift will
result in a proportion of 68.26% of the estimates falling in the allowance range.
However, the proportion of the values of pmean falling in the allowance range
can reach 85% (see lognormal(0,1.50), n = 35). It should be noted that when the
skewness of a population is large, such as for lognormal(0,1.25), lognormal(0,1.50)
and Weibull(1,0.5), the results for the pmean are surprisingly good — compared
to UCL, the pmean has lower mean square error and higher coverage within the
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allowance range. Even for distributions with small skewness, the results for the
pmean are still much better than that of the UCL.

Figure 3 shows a comparison among three estimators of their variance, bias,
mean square error and percentage of estimates falling within the allowance range
(denoted by p2) in lognormal(0,1) case.

5.3. Notes on computational techniques

Fortran 77 was used in the Monte Carlo studies reported in this article. CM-
LIB random-generating functions UNI and RNOR were used to generate pseudo
uniform and normal random numbers. The other random variates were created
from uniform random numbers or normal random numbers using standard tech-
niques. All programs were run on a VMS Dec-Alpha-7620.
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Figure 3. Comparison of X̄, UCL and pmean in lognormal(0,1) case

Note: “�” denotes X̄, “+” denotes UCL and “�” denotes pmean. The upper
left, lower left, upper right and lower right figures are scatter plots of variance
(var) vs sample size, mean square error (mse) vs sample size, bias vs sample
size and the proportion of the estimates falling within allowance range (p2)
vs sample size respectively.
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Table 3. Summary of behaviors of X̄, UCL and pmean in lognormal cases

logN(0,1.00) logN(0,1.25) logN(0,1.50)

n est. var bias mse p2 var bias mse p2 var bias mse p2

15 X̄ 0.32 0.00 0.32 0.37 0.58 -0.01 0.58 0.36 1.16 0.02 1.16 0.37
UCL 0.32 1.09 1.51 0.60 0.58 1.48 2.78 0.62 1.16 2.02 5.25 0.61

pmean 0.49 0.70 0.97 0.79 0.99 1.01 2.01 0.80 2.11 1.50 4.35 0.79

25 X̄ 0.19 0.00 0.19 0.39 0.34 -0.01 0.34 0.39 0.58 -0.02 0.58 0.37
UCL 0.19 0.85 0.91 0.59 0.34 1.15 1.66 0.59 0.58 1.53 2.92 0.61

pmean 0.16 0.44 0.35 0.79 0.29 0.62 0.68 0.83 0.55 0.90 1.35 0.84

35 X̄ 0.13 -0.01 0.13 0.40 0.27 0.00 0.27 0.39 0.46 0.01 0.46 0.38
UCL 0.13 0.71 0.63 0.58 0.27 0.98 1.22 0.59 0.46 1.32 2.20 0.59

pmean 0.10 0.33 0.21 0.78 0.19 0.48 0.42 0.82 0.32 0.66 0.76 0.85

50 X̄ 0.09 0.00 0.09 0.41 0.18 -0.01 0.18 0.39 0.33 0.00 0.33 0.39
UCL 0.09 0.60 0.45 0.56 0.18 0.81 0.83 0.58 0.33 1.09 1.52 0.59

pmean 0.07 0.26 0.14 0.76 0.12 0.35 0.24 0.79 0.22 0.49 0.46 0.83

Note: For each distribution, the last column p2 indicates the proportion of
estimates that fell into [θ, θ + 2σn−1/2].

Table 4. Summary of behaviors of X̄ , UCL and pmean in other cases

χ2(1) E(1) Weibull(1,0.5)

n est. var bias mse p2 var bias mse p2 var bias mse p2

15 X̄ 0.14 0.00 0.14 0.41 0.06 0.00 0.06 0.44 1.30 -0.01 1.30 0.36
UCL 0.14 0.72 0.66 0.56 0.06 0.51 0.32 0.53 1.30 2.26 6.38 0.62

pmean 0.13 0.32 0.23 0.71 0.07 0.25 0.13 0.71 2.25 1.33 4.01 0.81

25 X̄ 0.08 -0.01 0.08 0.42 0.04 0.00 0.04 0.45 0.77 -0.01 0.77 0.38
UCL 0.08 0.55 0.38 0.55 0.04 0.39 0.19 0.53 0.77 1.75 3.82 0.60

pmean 0.07 0.20 0.11 0.69 0.04 0.17 0.06 0.69 0.57 0.72 1.09 0.79

35 X̄ 0.06 0.00 0.06 0.43 0.03 0.00 0.03 0.44 0.57 0.00 0.57 0.39
UCL 0.06 0.47 0.28 0.54 0.03 0.33 0.13 0.54 0.57 1.48 2.76 0.58

pmean 0.05 0.16 0.07 0.69 0.03 0.13 0.04 0.69 0.38 0.54 0.67 0.76

50 X̄ 0.04 0.00 0.04 0.44 0.02 0.00 0.02 0.44 0.39 0.00 0.39 0.40
UCL 0.04 0.39 0.19 0.53 0.02 0.28 0.10 0.53 0.39 1.24 1.92 0.57

pmean 0.03 0.12 0.05 0.66 0.02 0.11 0.03 0.67 0.27 0.39 0.43 0.70

Note: For each distribution, the last column p2 indicates the proportion of
estimates that fell in to [θ, θ + 2σn−1/2].
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6. Conclusions

In this article, we have developed a new estimator, the pmean, for the mean
of skewed distributions when underestimation of the mean is undesirable. The
pmean involves a penalty constant λn. For a given allowance range [θ, θ+2σn−1/2],
we suggest choosing λn = 4.5σ2n−1/2. The simulation results show that when
the sample size is small, the pmean with this choice of λn is better than the
UCL estimator currently being used by EPA in the sense of having smaller mean
square error and larger probability of falling in the allowance range.

Under some mild assumptions, we have derived the large sample properties
of the pmean. The pmean is asymptotically normally distributed. If we choose
λn = 4.5σ2n−1/2, the asymptotic bias of the pmean is less than σ in all the cases
we have studied. This implies that the probability of the pmean falling within
the allowance range decreases when n increases. However, from Table 1, one can
see that the asymptotic probability of the pmean falling within the allowance
range can still reach more than 60%.

The choice of the penalty constant is not unique. It can vary based on differ-
ent applications. However, we point out that it must be related to the variance
of the underlying distribution; and to keep its normal limiting distribution, its
order must be O(n−1/2).

The pmean is a very attractive biased estimator. The choices of the penalty
constant for the pmean are under further investigation.
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Appendix I. Proofs

1. Proof of the properties of the sum of squares function R(t) defined in (2.2):

(2) Let Q(t) =
n∑

i=1

pr(t < X < xi). The result follows from the fact that

Q′(t) =
n∑

n=k+1

{−f(t)} = −f(t)(n − k), xk < t < xk+1,

and hence Q′(x−
k ) < Q′(x+

k ).

(3) R(t) =
n∑

i=1

(xi − t)2 + 2λn

n∑

i=1

P (t < X < xi).

∂R(t)
∂t

= −2
n∑

i=1

(xi − t) − 2λn

n∑

i=1

f(t)I{t<xi}. (A.1)
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∂2R(t)
∂t2

= 2n − 2λnf ′(t)
n∑

i=1

I{t<xi}.

For f ′(t) < 0, we have ∂2R(t)/∂t2 > 0. Otherwise,

∂2R(t)
∂t2

≥ 2n − 2λnnf ′(t) ≥ 2n(1 − λnM).

Since λn → 0, as n → ∞, by choosing n large so that λn < 1/M , we have
∂2R(t)/∂t2 > 0, where t �= xi, i = 1, . . . , n. Combining the above and assertion
(2), we conclude that R(t) is strictly convex and continuous. Hence, the minimum
value of R(t) exists and is unique.

2. Proof of Theorem 3.1.:
Let ∂R(t)/∂t in (A.1) be equal to zero. Solving for t yields t = x̄+λnf(t){1−

Fn(t)}. By result (3), this result holds.

3. Proof of Theorem 3.2.:
(i) According to Condition (1), with probability one for large n, we have

‖f̂(X̄){1 − Fn(X̄)}‖ ≤ ‖f̂(X̄)‖ < M < ∞.

Thus,
λnf̂(X̄){1 − Fn(X̄)} →a.s. 0.

Note that when X̄ →a.s. θ, the result holds.
(ii) n1/2(θ̂n − θ) = n1/2(X̄ − θ) + n1/2λnf̂(X̄){1 − Fn(X̄)}.

By λn = cn−1/2, we have

n
1
2 λnf̂(X̄){1 − Fn(X̄)} →a.s. cf(θ){1 − F (θ)}.

Note that n1/2(X̄ − θ) →L N(0, σ2). Thus the result holds.

Appendix II. Definition of k-NN Density Estimator

Let kn be an integer between 1 and n. Given any x, let

an(x) = an(x; X1, . . . ,Xn)
= min{ a | # kn of X1, . . . ,Xn ∈ [x − a, x + a] },

then f̂n(x) = kn/(2nan(x)). If kn satisfies
(1) kn/n → 0;
(2)

∑
e−ckn < ∞, for any c > 0, (A.2)

then, limn→∞ f̂n(x) = f(x), a.s. for all continuous points x of f(x), where f(x)
is the probability density function of the population.

Note that an important case for satisfying (A.2) is limn→∞ log(n)/kn = 0.
Therefore, in our simulation, we chose kn = n1/2.
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