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Abstract: In this paper we define a class of continuous-time threshold ARMA

(CTARMA) processes uniquely in terms of the weak solution of a certain stochastic

differential equation, and investigate stability properties of these processes. We ap-

ply criteria for stability of weak solutions (see Meyn and Tweedie (1993b), Stramer

and Tweedie (1994) and Stramer and Tweedie (1996)) to CTARMA processes and

thus obtain criteria for transience, Harris recurrence, positive Harris recurrence

and geometric ergodicity for these processes. In order to do this it is shown that

CTARMA processes satisfy suitable continuity conditions, and so can be analyzed

as ϕ-irreducible T -processes (Meyn and Tweedie (1993b)).
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1. Introduction

In recent years there has been great interest in the development of non-linear
models for discrete time processes observed at equally spaced times. One class
of nonlinear models which has been particularly fruitful includes the self-exciting
threshold ARMA processes (SETARMA models). Basically SETARMA models
are piecewise linear ARMA models in which the linear relationship varies over
regimes delineated by the threshold values. A process {Xt} is a SETARMA
model of order (l, p, q) (with 0 ≤ q < p) and delay parameter d (see Tong (1990))
with thresholds −∞ = r0 < r1 < · · · < rl = ∞ if it is a solution of the equation

Xt = a
(i)
0 +

p∑
j=1

a
(i)
j Xt−j +

q∑
j=0

b
(i)
j et−j , ri−1 ≤ Xt−d < ri, (1)

where a
(i)
j and b

(i)
j i = 1, . . . , l are constants, and {et} is a white noise sequence

with unit variance.
Many data sets are, in fact, observations of continuous-time processes at

discrete times. As pointed out in the linear case, the use of continuous-time
models also facilitates the analysis of irregularly spaced data, which are common
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in practice (Jones (1981)). They may be partially observed with some missing
observations or irregularly observed with an arbitrary sampling interval.

Continuous-time analogues of the non-linear model (1) have been developed
recently (see Brockwell, Hyndman and Grunwald (1991), Tong and Yeung (1991),
Brockwell and Hyndman (1992), Brockwell (1994) and Stramer, Brockwell and
Tweedie (1996)). Inference for such models has been based on the conditional
Gaussian likelihood of the data (see Brockwell and Hyndman (1992) and Brock-
well (1994)). If the process is stationary then it is possible to compute (and
numerically maximize) the unconditional Gaussian likelihood provided the first
two moments of the stationary and transition distributions of the underlying
state process can be computed. Necessary and sufficient conditions for the ex-
istence of a stationary distribution in the special case of a CTAR(1) process, as
well as an explicit expression for the stationary mean and variance have been
developed in Stramer, Brockwell and Tweedie (1996).

In this paper we find sufficient conditions for transience and positive Harris
recurrence for a more general class of CTARMA(p, q) processes with constant
moving average parameters and scale parameter and with p ≥ 2. We estimate
the stationary mean and variance using the approximating sequence of Brockwell
and Hyndman (see Brockwell and Hyndman (1992) and Brockwell (1994)) with
t large, in the case when there exists a stationary solution.

We then find conditions for geometric rates of convergence to stationarity;
and this strengthens the justification for the use of the approximating sequence
for estimating the stationary moments.

2. CTARMA Models: Definition and Existence

A continuous-time (linear) ARMA, or CARMA(p, q), process, with 0 ≤ q < p

is defined (see Brockwell and Hyndman (1992) and Brockwell (1994)) to be a
strong solution of the p-th order linear differential equation

Y (p)(t)+a1Y
(p−1)(t)+· · ·+apY (t) = σ[W (1)(t)+b1W

(2)(t)+· · ·+bqW
(q+1)(t)+c],

(2)
where the superscript (j) denotes j-fold differentiation with respect to t, {W (t)}
is standard Brownian motion and a1, . . . , ap, b1, . . . , bq, c and σ (the scale param-
eter) are constants. We assume that σ > 0 and bq �= 0 and define bj := 0 for
j > q. Since the derivatives W (j)(t), j > 0 do not exist in the usual sense, we
interpret (2) as being equivalent to the observation and state equations,

Y (t) = σb′X(t), t ≥ 0, (3)

and
dX(t) = AX(t)dt + e(c dt + dW (t)), (4)
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where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1




, e =




0
0
...
0
1




, b =




1
b1
...

bp−2

bp−1




and (4) is an Itô differential equation for the state vector X(t). We assume also
that X(0) is independent of {W (t)}. The state-vector X(t) is in fact the vector
of derivatives,

X(t) =




X(t)
X(1)(t)

...
X(p−1)(t)


 ,

of the continuous-time AR(p) process to which {Y (t)} reduces when bj = 0,
j ≥ 1.

The process {Y (t), t ≥ 0} is thus equivalently said to be a CARMA(p, q)
process with parameters (a1, . . . , ap, b1, . . . , bq, σ, c) if Y (t) = σ[1 b1 · · · bp−1]
X(t) where {X(t)} is a strong solution of (4). The solution of (4) can be written
as

X(t) = eAtX(0) +
∫ t

0
eA(t−u)e dW (u) + c

∫ t

0
eA(t−u)e du.

Hence X(t) is a Gaussian diffusion process which is stationary if and only if

X(0) ∼ N
(
c

∫ ∞

0
eAyedy,

∫ ∞

0
eAye e′eA′ydy

)

and all the eigenvalues of A (i.e. the roots of zp + a1z
p−1 + · · · + ap = 0) have

negative real parts (see Proposition 6.2 of Ichihara and Kunita (1974)). Note
that it is easily shown, using the spectral representation of the matrix A, that
c
∫ ∞
0 eAyedy = a−1

p c[1 0 · · · 0].
Based on the CARMA(p, q) process, we now develop a continuous time ana-

logue of the discrete-time SETARMA process of Tong (1990). To do this assume
we are given a fixed linear function f(x) =

∑p
i=1dixi, where di ≥ 0, i = 1, . . . , p

are constants, and allow the parameters a1, . . . , ap,b1, . . . , bq, c and σ of the pro-
cess {Y (t)} in the defining equations (3) and (4) to depend on the linear func-
tion f(X(t)) of the state vector X(t), taking fixed values in each of the l regions
ri−1 ≤ f(X(t)) < ri, i = 1, . . . , l where −∞ = r0 < r1 < · · · < rl = ∞.

In particular, the change of dynamics might depend on f(X(t)) = Y (t) =
σb′X(t) or, in the case when there is no MA part (i.e. bj = 0 for j ≤ q), on the
velocity X ′(t) or the acceleration X ′′(t) of the process X(t).
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In this paper we assume that only the autoregressive coefficients a1, . . . , ap

and c change with the value of f(X(t)). This restriction is satisfied by all thresh-
old autoregressive models with constant σ. The case of non-constant σ seems
much harder (although if p = 1, q = 0 it can be solved (see Stramer, Brockwell
and Tweedie (1996)). We shall also restrict attention to the case of a single
threshold, since the extension to more than one is straightforward.

Thus, we define {Y (t)} to be a CTARMA(p, q) process with threshold at r,
and constants b1, . . . , bq, σ, analogously to (3) and (4), except that we allow the
parameters a1, . . . , ap and c to depend on the linear function f(X(t)) of the state
vector X(t) in such a way that

ai(f(X(t))) = a
(j)
i , i = 1, . . . , p ; c(f(X(t))) = c(j), (5)

where j = 1 or 2 according as f(X(t)) ≤ r or f(X(t)) > r. All of our results
will be true for any segmentation of the state space into regions over which the
instantaneous mean function of X(t) in {x : f(x) ≤ r} is A(1)X(t) + c(1)e and
in {x : f(x) > r} is A(2)X(t) + c(2)e, where A(j), j = 1, 2 are defined in (4) with
elements a

(j)
i , i = 1, . . . , p.

We first show, following the argument of Brockwell (1994) and Brockwell and
Stramer (1995), that (4) with X(0) = x = [x1 · · · xp]′, and coefficients as defined
in (5) has a unique (in law) weak solution {X(t)}, and determine the distribution
of X(t) for any given X(0) = x. These distributions determine, in particular, the
joint distribution of the values of the process {Y (t)} at times t1, . . . , tN , given
X(0).

Before proving this we need the following notation. Let Bxp be Brownian
motion with Bxp(0) = xp defined on the probability space (C[0,∞),B[0,∞), Pxp )
and let Ft

x = σ{Bxp(s), s ≤ t}∨N xp , where N xp is the sigma algebra of Pxp-null
sets of B[0,∞) and Pxp denotes the law of Bxp; we use Exp to denote expectation
relative to Pxp .

We now have

Theorem 2.1. For any x, the stochastic differential equation (4) with coeffi-
cients a1(f(X(t))), . . . , ap(f(X(t))) and c(f(X(t))) as defined in (5) has a weak
solution with initial condition X(0) = x and this solution is unique in the sense
of probability law.

Proof. Assuming that X(0) = x, we can write the components X1(t), . . ., Xp(t)
of the state vector X(t) in terms of {Xp(s), 0 ≤ s ≤ t} using the relations
Xp−1(t) = xp−1 +

∫ t
0 Xp(s)ds, . . ., X1(t) = x1 +

∫ t
0 X2(s)ds. The resulting func-

tional relationship will be denoted by

X(t) = Fx(Xp, t). (6)
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Substituting from (6) into (4), we see that it can be written in the form

dXp = Dx(Xp, t)dt + dW (t), (7)

where Dx(Xp, t), like Fx(Xp, t), depends on {Xp(s), 0 ≤ s ≤ t}.
The equations dZ1 = Z2dt, dZ2 = Z3dt, . . ., dZp−1 = Zpdt, dZp = dBxp(t),

with Zx(0) = x = [x1 · · · xp]′, clearly have the unique strong solution Zx(t) =
Fx(Bxp, t), where Fx is defined as in (6). Let Dx be the functional appearing in
(7) and suppose that B̂xp is the Itô integral defined by B̂xp(0) = xp and

dB̂xp(t) = −Dx(Bxp, t)dt + dBxp(t) = −Dx(Zx
p , t)dt + dZx

p (t). (8)

If we define the new measure P̂xp on (C[0,∞),B[0,∞)) satisfying

dP̂xp = Mx(Bxp, t)dPxp ,

where

Mx(Bxp , t) = exp
[
−1

2

∫ t

0
[Dx(Bxp , s)]2ds +

∫ t

0
Dx(Bxp, s)dBxp(s)

]
,

then, by the Cameron-Martin-Girsanov formula (see e.g. Oksendal (1992),
p.126), B̂xp is Brownian motion under P̂xp . Hence, from (8) we see that
(Bxp , B̂xp) is a weak solution of (7) (on (C[0,∞),B[0,∞), P̂xp , {Ft})) with initial
condition Xp(0) = xp. Hence, (Zx(t), B̂xp(t)) is a weak solution (on the same
probability space) of the Equation (4) with initial condition X(0) = x and coeffi-
cients as defined in (5). By Proposition 5.3.10 of Karatzas and Shreve (1991) and
by Theorem 10.2.2 of Stroock and Varadhan (1979) the weak solution is unique
in law.

Corollary 2.2. With the notation developed in the above proof and with 0 ≤
t1 < t2 < · · · < tn < T , we have

P̂xp [(Xt1 , . . . ,Xtn) ∈ Γ] = Exp [1l{(Fx(Bxp ,t1),...,Fx(Bxp ,tn))∈Γ}Mx(Bxp , T )];

Γ ∈ B(Rpn). (9)

Remark 2.3. The importance of Equation (9) is that it gives the conditional
distribution of the state-vector X(t) (and in particular of the CTARMA process,
Y (t) = σ b′X(t)) given X(0) = x, as an expectation of a functional of the
Brownian motion {Bxp(t)} starting at xp.

3. Irreducibility and Continuous Components of CTARMA Processes

Our aim in the following sections is to investigate stability properties of
CTARMA processes. We consider the state vector X(t) of a CTARMA process
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as a continuous time-homogeneous Markov process evolving on (Rp,B(Rp)), with
transition probability P t(x, A) = Px(X(t) ∈ A), x ∈ R

p, A ∈ B(Rp); here B(Rp)
denotes the Borel σ-field on R

p.
Following Meyn and Tweedie (1993a), in order to investigate stability of X,

for a measurable set A ⊆ R
p, we denote the hitting times and occupation times

of X by

τX
A = inf{t ≥ 0 : X(t) ∈ A}, ηX

A =
∫ ∞

0
1l{X(t) ∈ A} dt.

We write
LX(x, A) = Px(τX

A < ∞); UX(x, A) = Ex[ηX
A ].

A Markov process is called ϕ-irreducible if for the σ-finite measure ϕ

ϕ{B} > 0 =⇒ UX(x, B) > 0, ∀x ∈ R
p.

Stability properties of Markov processes are much easier to establish for T -
processes, introduced in Meyn and Tweedie (1993a).

Definition 3.1. A process will be called a T -process if there exists a kernel
T (x,A) such that
(i) For A ∈ B(Rp) the function T (·, A) is lower semi-continuous;
(ii) For all x ∈ R

p and A ∈ B(Rp), the measure T (x, ·) satisfies, for some proba-
bility measure a on [0,∞),

∫ ∞
0 P t(x,A) a(dt) ≥ T (x,A) with T (x, R

p) > 0 for all
x ∈ R

p.

We now show that the state vectors of CTARMA processes with constant σ

are µLeb-irreducible T -processes where µLeb denotes Lebesgue measure. We first
need a preliminary lemma concerning the process {Fx(Bxp , t)} which appears in
the key representation (9).

Lemma 3.2. If {Bxp(t)} is Brownian motion started at xp, then the process
{Fx(Bxp , t)} defined as in (6) (with deterministic initial state x) is a Gaussian
diffusion process. The covariance matrix V (t) of Fx(Bxp, t) (strictly positive
definite for t > 0) can be written as

V (t) =
∫ t

0
eH(t−y)e e′eH′(t−y)dy,

where

H =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




and e =




0
0
...
0
1




.
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Proof. Observe that Fx(Bxp , t) satisfies the stochastic differential equation (4)
with c = a1 = · · · = ap = 0. Since H is the value of the coefficient matrix A when
a1 = · · · = ap = 0, it suffices, by Proposition 6.2 of Ichihara and Kunita (1974),
to check that rank(H0ee′,Hee′, . . . ,Hp−1ee′) = p. This elementary calculation
completes the proof.

We now turn to the main result of this section.

Theorem 3.3. Any weak solution X(t) of (4) with coefficients as defined in (5)
is a µLeb-irreducible T -process. Moreover, the transition probability P t(x, A) is
positive, whenever µLeb(A) > 0, for all x ∈ R

p and all t > 0.

Proof. We first note that, by Corollary 2.2,

P̂xp [(Xt) ∈ Γ] = Exp [1l{Fx(Bxp ,t)∈Γ}Mx(Bxp , t)]; Γ ∈ B(Rp). (10)

We have immediately from (10) and Lemma 3.2 that the transition probability
P t(x,A) is positive whenever µLeb(A) > 0, for all x ∈ R

p and t > 0. The proof
that X(t) is a T -process will now follow directly from Theorem 6.4 of Tweedie
(1994), provided we can show that X has the weak Feller property, i.e. Ex[g(Xt)]
is a continuous function of x, for all bounded continuous functions g: R

p → R and
all t ≥ 0.

In the notation of (6) and (7), let

F̃x(B̃, t) = Fx(Bxp , t); M̃x(B̃, t) = Mx(Bxp , t),

where Bxp = B̃ + xp and B̃ is a standard Brownian motion (with B̃(0) = 0).
Then

Ex[g(Xt)] = E0[g(F̃x(B̃, t))M̃x(B̃, t)].

It is easy to show that, with probability one, as xn → x

g(F̃xn(B̃, t))M̃xn(B̃, t) → g(F̃x(B̃, t))M̃x(B̃, t).

By Example 16.21 of Billingsley ((1986), p.223), it then suffices for the Feller
property to show that {g(F̃xn(B̃, t))M̃xn(B, t)} is uniformly integrable. Accord-
ing to Corollary 3.5.16 of Karatzas and Shreve (1991) Mx(Bxp , t) is a martingale
under the measure Pxp and hence for each x ∈ R

p, E0[M̃x(B̃, t)] = 1. We conclude
from the positivity of M̃x(B̃, t) and from Example 16.21 of Billingsley ((1986),
p.223), that {M̃xn(B̃, t)} is also uniformly integrable. Finally we observe that
g(M̃xn(B̃, t)) is uniformly bounded in n and hence {g(F̃xn(B̃, t))M̃xn(B̃, t)} is
uniformly integrable. Therefore X has the weak Feller property and this com-
pletes the proof.
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4. Recurrence and Ergodicity Properties

It is known that if X is a time-homogeneous irreducible Markov process on
R

p then we have a dichotomy between recurrence and transience (see Tweedie
(1994)). The process X is called Harris recurrent if for some σ-finite measure
µ, LX(x,A) ≡ 1 whenever µ{A} > 0, and transient if there exists a countable
cover of R

p by sets Aj such that UX(x,Aj) ≤ Mj < ∞ for all j. For a discussion
of these concepts see Meyn and Tweedie (1993a) and Tweedie (1994). It is also
known (cf. Azéma, Duflo and Revuz (1967) and Getoor (1979)) that if X is
Harris recurrent then an essentially unique invariant measure π exists. If the
invariant measure is finite, then it may be normalized to a probability measure;
in this case X is called positive Harris recurrent.

In general (under some aperiodicity assumptions) we then have convergence
of P t to π. However, for the models here we can say much more. For a function
V ≥ 1 we say that X is V -exponentially ergodic if there exists a constant β < 1
and R < ∞ such that

‖P t(x, ·) − π‖V ≤ V (x)R βt for all t ∈ R+, x ∈ R
p,

where the V -norm ‖ · ‖V is defined by

‖P t(x, ·) − π‖V = sup
|g|≤V

∣∣∣∫
R

p
P t(x, dy)g(y) −

∫
R

p
π(dy)g(y)

∣∣∣.
In this section we find criteria for ergodicity and transience of the state vectors of
CTARMA processes in terms of A(j), j = 1, 2, where A(j) are defined in (4) with
elements a

(j)
i . All of our criteria will be based on use of the Itô formula leading

to “drift conditions” on the generator of the process, and we describe this briefly
here for completeness.

Let V ∈ C2(Rp), where C2(Rp) is the class of functions on R
p with continuous

first and second partial derivatives. Then

dV (X(t)) = LV (X(t))dt +
∂V (X(t))
∂Xp(t)

dW (t),

where LV is the second-order differential operator defined as

(LV )(x) =
1
2

∂2V (x)
∂x2

p

− aj
1 xp

∂V (x)
∂xp

− · · · − aj
p x1

∂V (x)
∂xp

+ cj ∂V (x)
∂xp

+ xp
∂V (x)
∂xp−1

+ · · · + x2
∂V (x)
∂x1

(11)

and j = 1 or 2 according as f(x) ≤ r or f(x) > r. It is easy to verify that
the “local mean drift” LV (X(t)) of V (X(t)) is the extended generator as defined
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in Meyn and Tweedie (1993b) and hence we can apply the drift criteria for
general continuous time Markov processes (Meyn and Tweedie (1993b)) and in
particular for weak solutions to stochastic differential equations (Stramer and
Tweedie (1994b)) to our models. From this approach we will be able to conclude
that a CTARMA process is exponentially ergodic if there is a compact set C

towards which the process drifts, in the sense that for some constant c ≥ 0 and
constant d < ∞, LV (x) ≤ −cV (x) + d1lC(x), and conversely, if there is outward
drift in the sense that for some bounded function h ≥ 0, LV (x) ≥ h(x)1lCc(x)
then the process is transient. In this section and the next we use specific forms
of the test function V in these results to classify the CTARMA models.

If x = [x1 · · · xp] and y = [y1 · · · yp] then we use the inner product notation
(x, y) =

∑p
i=1 xi yi, and ‖x‖2 = (x, x). We will need a preliminary well known

lemma.

Lemma 4.1. (i) Let M be a symmetric matrix and let λ
(M)
min and λ

(M)
max be the

smallest and largest eigenvalues of M, respectively. Then

λ
(M)
min‖x‖2 ≤ xT Mx ≤ λ(M)

max‖x‖2

(ii) Let A be an n × n matrix and let B be a symmetric n × n matrix. Then
(Bx,Ax) = 1

2xT Nx where N = AT B + BA.

We first give a sufficient condition for V -exponential ergodicity.

Theorem 4.2. If there exists a positive definite matrix P such that −N (j),

j = 1, 2 are positive definite matrices, where N (j) = (A(j))
T
P + P (A(j)), then

the state vector X of the CTARMA(p,q) process is V -exponentially ergodic with
V = ‖x‖2 + 1.

Proof. We first show that inequality (15) of Stramer and Tweedie (1996) is
satisfied for large ‖x‖ and this choice of V . Setting B = P , we have from Lemma
4.1 that

(Bx,A(j)x) ≤ 1
2
λ(N(j))

max ‖x‖2; (Bx, x) ≥ λ
(B)
min‖x‖2.

Using the assumption that −N (j), j = 1, 2 and B are positive definite, we have
that λ

(N(j))
max < 0 and λ

(B)
min > 0 and hence (15) of Stramer and Tweedie (1996)

holds for ‖x‖ large. We next note that by Theorem 3.3 any skeleton chain is a
µLeb-irreducible T -process. The proof follows now from Proposition 4.2 of Stramer
and Tweedie (1996).

We first note that the condition of Theorem 4.2 does not depend on the
segmentation of the state space and in particular does not depend on b, where
b (the MA part of the CTARMA process) is defined in (4).
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We also note that this theorem gives sufficient conditions for existence of a
second order stationary solution as well as V -norm convergence of the distribu-
tions for each initial condition. In particular this shows that

lim
t→∞Ex(Yt) =

∫
R

p
b′xπ(dx) (12)

and
lim
t→∞Ex(Yt

2) =
∫
R

p
(b′x)2 π(dx), (13)

where π denotes the unique invariant probability measure for X and the
CTARMA process Yt is defined in (3).

For the linear case (i.e. A(1) = A(2) = A), the condition of the theorem holds
when all the eigenvalues of A have negative real parts (see Theorem 8-20 of Chen
(1984)). We conjecture that this is true for CTARMA processes also, but have
not so far proved this. However, in the case p = 2 we will use a different method
in Section 5 to prove that if all the eigenvalues of A(1) and A(2) have negative
real parts and the change of dynamics of the process X(t) depends on either the
state of the process at time t or the state of its velocity at time t, then the state
vector X(t) = [X(t) X ′(t)]′ of the CTAR(2) process is V -exponentially ergodic.

We next give a sufficient condition for transience.

Theorem 4.3. The state vector X of CTARMA(p, q) process is transient if there
exists a positive definite matrix P such that for j = 1, 2 N (j) = (A(j))

T
P+P (A(j))

are positive definite matrices.

Proof. We infer from Lemma 4.1 that if we set B = P then

(Bx,A(j)x) ≥ 1
2
λ

(Nj)
min ‖x‖2;

(B2x, x)
(Bx, x)

≤ λ
(B2)
max

λ
(B)
min

.

Since λ
(Nj)
min > 0, λ

(B2)
max > 0 and λ

(B2)
min > 0, it follows from Proposition 3.5 of

Stramer and Tweedie (1996), X is transient.

Remark 4.4. For the linear case (i.e. A(1) = A(2) = A), the condition of the
theorem holds when all the eigenvalues of A have positive real parts (see Theorem
8-20 of Chen (1984)).

5. The One and Two Dimensional Cases

We can give more explicit results when p ≤ 2. In the one dimensional
case (p = 1), we showed in Stramer, Brockwell and Tweedie (1996) that we
could identify explicitly conditions for recurrence, transience and exponential
ergodicity. There we proved, in particular



EXISTENCE AND STABILITY OF CTARMA PROCESSES 725

Theorem 5.1. Let X be a CTAR(1) process. Then X is Harris recurrent if and
only if

lim
|x|→∞

[a(x)x2 − 2c(x)x] < 0.

Moreover, if this condition is satisfied then
(i) X is positive Harris recurrent and the stationary distribution has probability
density

π(x) = kσ−2(x) exp{−σ−2(x)[a(x)x2 − 2c(x)x]} (14)

and k is the uniquely determined constant such that
∫ ∞
−∞ π(x)dx = 1.

(ii) X is V -exponentially ergodic, where V = x2m + 1 or V = exp{x2m} + 1 for
m ∈ Z+.

Note also that, in the case of p = 1, we can in fact allow σ to depend also
on the threshold. (See Stramer, Brockwell and Tweedie (1996) for details.)

We now discuss the CTAR(2) process in more detail. Here it is possible to
give more results than in the case when p > 2, although the results are not as
complete as those of Theorem 5.1 for CTAR(1) processes.

We first give a sufficient condition for the state vector X of the CTAR(2)
process to be V -exponentially ergodic.

Theorem 5.2. If all the eigenvalues of

A(1) =

[
0 1

−a1
2 −a1

1

]
, A(2) =

[
0 1

−a2
2 −a2

1

]
(15)

(i.e. the roots of z2 + a
(j)
1 z + a

(j)
2 = 0 for j = 1, 2) have negative real parts and

f(x) as defined in (5) is either x1 or x2, then the state vector X of the CTAR(2)
process is V-exponentially ergodic where V (x) = xt B(f(x))x + 1, x = [x1 x2]
and B(f(x)) is positive definite.

Proof. By Proposition 6.1 of Meyn and Tweedie (1993b) it is suffices to prove
that
(i) some skeleton chain is an irreducible T -process;
(ii) there exists a function V ∈ C2(R2) such that V is positive, V (x) → ∞ as
x → ∞, and for some c > 0 and d < ∞,

(LV )(x) ≤ −cV (x) + d x ∈ R
2, (16)

where LV is the second-order differential operator defined as in (11) with p = 2:
that is

(LV )(x) =
1
2

∂2V (x)
∂x2

2

−a
(j)
1 x2

∂V (x)
∂x2

−a
(j)
2 x1

∂V (x)
∂x2

+c(j) ∂V (x)
∂x2

+x2
∂V (x)
∂x1

(17)
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and j = 1 or 2 according as f(x) ≤ r or f(x) > r.
But (i) follows directly from Theorem 3.3, so we need only prove that (ii) holds.

We first assume that f(x) = x1. Let ε be a constant such that

0 < ε < min
( a1

1

M
,
a2

1

M

)
,

where M > 2 is an arbitrary constant. For any δ > 0 we define

P (x1) =

[
p11(x1) ε

ε 1
2

]
,

where p11(x1) = a
(j)
1 ε+ a

(j)
2
2 and j = 1 or 2 according as x1 ≤ r− δ or x1 > r + δ.

For r − δ < x1 ≤ r + δ, we define p11(x1) such that p11(x1) ∈ C2(R2). We next
define

V1(x) := xtP (x1)x = p11(x1)x2
1 + 2εx1 x2 +

1
2
x2

2. (18)

By Equation (17)

(LV1)(x) =
1
2
−a1(x1)x2(2ε x1 + x2)−a2(x1)x1(2ε x1 + x2)+c(x1)(2ε x1 + x2)

+x2(x2
1p11

′(x1) + 2x1 p11(x1) + 2ε x2).

It is easy to see that for large values of ‖x‖ we get:
(a1) if x1 ≤ r − δ or x1 > r + δ then

(LV1)(x) ∼ −xt N (j) x where N (j) =

[
2ε a

(j)
2 0

0 a
(j)
1 − 2ε

]

and j = 1 or 2 according as x1 ≤ r− δ or x1 > r + δ. We assume that M is large
enough so that N (j) is positive definite for j = 1 and 2.
(a2) if r−δ < x1 ≤ r+δ then (LV1)(x) ∼ −x2

2 (a(j)
1 −2ε), and j = 1 or 2 according

as r − δ < x1 ≤ r or r < x1 ≤ r + δ.
Let amin = min {a(j)

1 − 2ε : j = 1, 2} and K = min {λ(N1)
min , λ

(N2)
min , amin}/2. By

Lemma 4.1 and positivity of K we get that there exists some constant d such
that

(LV1)(x) ≤ −K‖x‖2 + d x ∈ R
2.

It is readily seen that P (x1) is positive definite for all x1 ∈ R and hence we have
from Lemma 4.1 that there exist some constants K̂ and d̂ such that

(LV1)(x) ≤ −K̂V1(x) + d̂ x ∈ R
2.

This completes the proof of (ii) for f(x) = x1.
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We next assume that f(x) = x2. For any δ > 0 we define

P (x2) =

[
1 ε

ε p22(x2)

]
,

where p22(x2) = (1 − a
(j)
1 ε)/aj

2 and j = 1 or 2 according as x2 ≤ r−δ or x2 > r+δ.
For r − δ < x2 ≤ r + δ, we again define p22(x2) such that p22(x2) ∈ C2(R2). We
also assume that ε > 0 is small enough so that P (x2) is positive definite for all
x2 ∈ C2(R2). We now define

V2(x) := xtP (x2)x = x2
1 + 2εx1 x2 + p22(x2)x2

2. (19)

Using the same argument as for f(x) = x1 we can show that for large values of
‖x‖ we get:
(b1) if x2 ≤ r − δ or x2 > r + δ then (LV2)(x) ∼ −xt N (j) x, where

N (j) =

[
2ε a

(j)
2 0

0 2a(j)
1 (1 − a

(j)
1 ε)(a(j)

2 )−1 − 2ε

]

and j = 1 or 2 according as x2 ≤ r − δ or x2 > r + δ. We assume that ε is small
enough so that N (j) is positive definite for j = 1 and 2.
(b2) if r − δ < x2 ≤ r + δ then (LV2)(x) ∼ −x2

1 2ε a
(j)
2 , and j = 1 or 2 according

as r − δ < x2 ≤ r or r < x2 ≤ r + δ.
We now use Lemma 4.1 twice to show that (ii) holds for f(x) = x2.

Finally, since (ii) holds for f(x) = x1 and f(x) = x2 we conclude that the
process X(t) is V -exponentially ergodic where V (x) = V1(x)+1 if f(x) = x1 and
V (x) = V2(x) + 1 if f(x) = x2.

Remark 5.3. We now sketch an extension of the proof of Theorem 5.2 to
indicate how to find a broader class of functions V such that the state vector
X of a CTAR(2) processes is V -exponentially ergodic. The basic idea is first to
note that by using Theorem 8-20 of Chen (1984) we can find two test functions
V1j, j = 1, 2 for the linear cases

dX(j)(t) = A(j)X(t)dt + e(c(j) dt + dW (t)),

such that (16) holds for some cj > 0 and dj < ∞, j = 1, 2. We then define the
function V1 as V11 if f(x) ≤ r and V12 if f(x) > r. Since V1 is not in C2(R2) we
smooth V1(x) in the region r − δ < f(x) ≤ r + δ to give a viable test function V

which is in C2(R2).

If say f(x) = x1 (the case f(x) = x2 is similar) then any test functions V1j,
j = 1, 2 for which V (x) is of order −K x2

2 + d for constants K > 0 and d < ∞



728 O. STRAMER, R. L. TWEEDIE AND P. J. BROCKWELL

when both r − δ < x1 ≤ r + δ and also x2 is large will provide in this way a
function V̂ = V + 1 such that X is V̂ exponentially ergodic.

Remark 5.4. We also remark that the proof of Theorem 5.2 holds under the
assumption that in the region r − δ < f(x) < r + δ, only one variable x1 or x2 is
unbounded (see (a2) and (b2)). Therefore this proof cannot be extended to the
case where p = 2 and f(x) = d1x1 + d2x2, d1, d2 > 0, or to the higher order case
where p > 2.

We conclude with a sufficient condition for the state vector X of the CTAR(2)
process to be transient.

Theorem 5.5. If all the eigenvalues of A(j), j = 1, 2 have positive real parts
(i.e. a

(j)
1 < 0, a

(j)
2 > 0) and f(x) as defined in (5) is either x1 or x2, then the

state vector X of a CTAR(2) process is transient.

Proof. By Theorem 3.3 and Theorem 3.3 of Stramer and Tweedie (1994) it
suffices to prove that there exists a closed set C in R

2 with Cc nonempty and
a function W bounded on Cc such that (LW )(x) ≥ 0, x ∈ Cc. Let Wj(x) =
1−Vj(x)−α, j = 1, 2 where α > 0 is a constant and Vj(x) are defined in (18) and
(19) except that ε < 0 is a constant such that P (f(x)) and −N (j), j = 1, 2 as
defined in Theorem 5.2 for f(x) = x1 and f(x) = x2 are positive definite. The
proof is now analogous to the proof of Theorem 5.2.

Remark 5.6. Theorem 5.2 and Theorem 5.5 cover most common cases. The
type of behavior which is not covered is when all the eigenvalues of A(1) have
positive real parts and all the eigenvalues of A(2) have negative real parts or vice
versa and when for some j = 1, 2 not all the eigenvalues of −A(j) or A(j) have
negative real parts. The stability properties of X for these cases are still unclear.

The approximation sequence approach of Brockwell and Hyndman (see
Brockwell and Hyndman (1992) and Brockwell (1994)) provides one method of
simulating approximate sample paths of CTARMA procrsses. In Figure 1 and
Figure 2 we use this approximation with n = 10 to give two sample paths of
CTAR(2) processes which have the same coefficient σ(y) ≡ 1 but different a1(x),
a2(x) and c(x). The first process has

a1(y) =

{
2, if y < 0,
1, if y ≥ 0,

a2(y) =

{
1.5, if y < 0,
0.5, if y ≥ 0,

c(y) =

{
2, if y < 0,
0, if y ≥ 0,

(20)
giving vector drift so that all the eigenvalues of A1, A2 as defined in (15) have
negative real parts. The second has

a1(y) =

{
−.2, if y < 0,
−.1, if y ≥ 0,

a2(y) =

{
.15, if y < 0,
0.5, if y ≥ 0,

c(y) =

{
.2, if y < 0,
0, if y ≥ 0,
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giving vector drift so that all the eigenvalues of A(1), A(2) have positive real
parts. The sample paths show that the first process, being Harris recurrent,
returns to neighborhoods of [0, 0]′. The second, being transient, leaves all such
neighborhoods.
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Figure 1. CTAR(2) path with 0 ≤ t ≤ 10, a
(1)
1 = 2, a

(2)
1 = 1, a

(1)
2 = 1.5,

a
(2)
2 = 0.5, c(1) = 2, c(2) = 0, σ = 1, X′(0) = (1, 0).
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Figure 2. CTAR(2) path with 0 ≤ t ≤ 23, a
(1)
1 = −.2, a

(2)
1 = −.1, a

(1)
2 = .15,

a
(2)
2 = 0.5, c(1) = .2, c(2) = 0, σ = 1, X′(0) = (1, 0).

6. Estimation of Stationary Moments

We consider finally the estimation of the stationary mean and the stationary
variance. For CTAR(1) processes, the representation (14) determines the station-
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ary moments and provides us with a method to calculate the stationary mean
and variance (see Stramer, Brockwell and Tweedie (1996)). For CTARMA(p, q)
processes with p > 1 we have not yet found an explicit expression for the sta-
tionary mean and variance as we did in the case when p = 1. One way around
this problem is to simulate a long series and use ergodicity. To illustrate this we
consider the CTAR(2) process in Example 6.1.

Example 6.1. Let Y (t) = [1 0]X(t) be the CTAR(2) process, where the com-
ponents X1, X2 of the state vector Xt satisfy

dX1 = X2(t)dt

dX2 = [−a2(X1(t))X1(t) − a1(X1(t))X2(t) + c(X1(t))]dt + dW (t),

with a1(y), a2(y), and c(y) defined as in (20).

We again use the approximating sequence of Brockwell and Hyndman (see
Brockwell and Hyndman (1992) and Brockwell (1994)), with n = 10, to estimate

m(x, t) = E(Y (t)|X(0) = x); v(x, t) = E(Y 2(t)|X(0) = x) − (m(x, t))2.

The estimation of the functions m((0, x), t) and v((x, 0), t) for t = 1, 3, 5, 7 are
shown in Figure 3 and Figure 4 respectively. As expected, the values for larger
t are closer to each other, and for t = 7 there is little distinguishable difference,
indicating the effect of the initial value has worn off and the asymptotic effect
of (12) and (13) holds. Thus we can estimate the stationary mean and variance
using the approximating sequence method, for values of t ≥ 7 in this case.

-15 -10 -5 0 5 10 15

-5
0

5
10

t=1
t=3
t=5
t=7

m((x, 0)t)

x

Figure 3. Conditional mean m((x, 0), t), −15 ≤ x ≤ 15 for Example 6.1 with
lead times t = 1, 3, 5 and 7.
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Figure 4. Conditional variance v((x, 0), t), −15 ≤ x ≤ 15, for Example 6.1
with lead times t = 1, 3, 5 and 7.
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