
Statistica Sinica 6(1996), 693-702

LAW OF THE ITERATED LOGARITHM FOR EMPIRICAL

CUMULATIVE QUANTILE REGRESSION FUNCTIONS

C. R. Rao and L. C. Zhao

Penn State University and Penn State University
University of Science & Technology of China

Abstract: Under some mild conditions we establish Strassen’s law of the iterated

logarithm for the empirical cumulative quantile regression function.

Key words and phrases: Cumulative quantile regression function, Lorenz curves,

quantile regression function, relative compactness, reproducing kernel Hilbert space,

Strassen’s law of the iterated logarithm.

1. Introduction

Let (X,Y ) be a bivariate random vector with E|Y | finite and denote by
m(x) = E(Y |X = x) the regression function of Y on X. Further let F (x) be
the marginal distribution function of X, taken to be left continuous, and let F−1

be the right continuous inverse of F . In Rao and Zhao (1993a) we defined the
quantile regression (QR) function of Y on X as

r(u) = E(Y |X = F−1(u)) = m(F−1(u)), 0 ≤ u ≤ 1 (1.1)

and the cumulative QR(CQR) function as

M(u) =
∫ u

0
m(F−1(t))dt =

∫ u

0
r(t)dt, 0 ≤ u ≤ 1. (1.2)

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample on (X,Y ) and X(1) ≤ · · · ≤ X(n)

be the order statistics of X1, . . . ,Xn. Denote the Y associated with X(i) by Y[i].
Then an empirical version of M(u) is

Mn(u) =
∫

(−∞,F−1
n (u)]

∫ ∞

−∞
ydPn(x, y)=n−1

[nu]+1∑
i=1

Y[i], 0≤u<1,Mn(1)=Mn(1−),

(1.3)
where Pn and Fn are the empirical distribution functions of (X,Y ) and X respec-
tively, both taken to be left continuous, and F−1

n is the right continuous inverse
of Fn. These curves are related to the usual Lorenz curves and the Mahalanobis
fractile ordinates (see Rao and Zhao (1993a) for the details).
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There is considerable literature on the usual Lorenz curves. See, for instance,
papers by Gastwirth (1971, 1972), Kakwani and Podder (1973, 1976), Bishop,
Chakraborti and Thistle (1989). Most of the papers deal with the asymptotic
distribution of a fixed number of Lorenz ordinates. Goldie (1977) initiated a
new line of investigation by establishing convergence theorems for the empirical
Lorenz curve and its inverse. Rao and Zhao (1995b) proved the Strassen law of
iterated logarithm for the empirical Lorenz curve.

Given the above definitions of QR and CQR curves, Rao and Zhao (1995a)
established the uniform strong consistency and the functional limit theorem for
the empirical CQR′s. In this paper, it is desired to establish the almost sure
convergence rate for the sequence

√
n(Mn(·) − M(·))/bn (1.4)

with
bn = (2 log log n)

1
2 . (1.5)

For simplicity and without loss of generality, we need only consider the case when
Y ≥ 0. We assume that the following conditions hold:
(A) Y ≥ 0 and E|Y |2+α < ∞ for some α > 0.
(B) F has a continuous and positive density f on (a, b), where −∞ ≤ a = sup{x :
F (x) = 0} and +∞ ≥ b = inf{x : F (x) = 1}, and m has a continuous derivative
function m′ on (a, b).
(C) One of the following is true.
(C1) r = m ◦ F−1 is bounded on [0,1], where ◦ denotes a composite function.
(C2) If r(t) is not bounded when t ↓ 0 (resp. t ↑ 1), then r(t) is nonincreasing
(resp. nondecreasing) and

√
t r(t) (resp.

√
1 − t r(t)) is nondecreasing (resp.

nonincreasing) in the interval (0, δ] (resp. [1-δ,1)) for some δ ∈ (0, 1
2), and there

exist constants C1 > 0 and τ < 1 such that for any t1, t2 ∈ (0, δ] (resp.[1− δ, 1)),

∣∣∣r(t1)
r(t2)

∣∣∣ ≤ C1

(
(t1 ∨ t2)(1 − y1 ∧ t2)
(t1 ∧ t2)(1 − t1 ∨ t2)

)τ

, (1.6)

where t1 ∧ t2 = min(t1, t2) and t1 ∨ t2 = max(t1, t2).
For convenience we write

V (x) = E((Y − m(X))2|X = x) (1.7)

and
ζ(u) =

∫ u

0
V (F−1(t))dt with ζ(1) ≡ σ2

1 . (1.8)

Note that σ2
1 = E(Y − m(X))2.
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Let D ≡ D[0, 1] be the space of functions on [0,1] that are right-continuous
and have left-side limits, and D be the σ-field generated by all the cylinder sets
of D induced by the maps z → z(t). For each z ∈ D[0, 1] we define the norm
‖z‖ = sup0≤t≤1 |z(t)|, and use C[0, 1] to denote the subset of D[0, 1] consisting
of all continuous functions on [0,1]. Define

K =
{
k : k is absolutely continuous on [0,1]

with k(0) = 0 and
∫ 1

0
(k′(t))2dt ≤ 1

}
, (1.9)

H =
{
h : h is absolutely continuous on [0,1]

with h(0) = h(1) = 0 and
∫ 1

0
(h′(t))2dt ≤ 1

}
, (1.10)

and

G =
{
g : g(u) = σ1k(ζ(u)/σ2

1) −
∫ u

0
h(t)dr(t), 0 ≤ u ≤ 1,

k ∈ K and h ∈ H
}
. (1.11)

We establish the following theorem.

Theorem. Suppose that Assumptions (A), (B) and (C) are satisfied. Then the
sequence (1.4) is, with probability one, relatively compact in (D,D) with respect
to the metric determined by the sup-norm ‖ ‖, and the set of its limit points
coincides with G.

For simplicity, we write this fact as
√

n(Mn − M)/bn ∼→ G a.s. w.r.t. ‖ ‖ on (D,D) (1.12)

using the notation of Shorack and Wellner (1986, p. 69).

2. Proof of the Theorem

First we review (see Kuelbs (1976), Ledoux and Talagrand (1991)) some rel-
evant results on the LIL for D[0, 1] valued random variables. In this case, the set
of limit points is uniquely determined by the covariance function. To be precise
let {Z(t), 0 ≤ t ≤ 1} be such a random element on (D,D) with mean function
identically zero and continuous covariance function R(s, t) = E(Z(s)Z(t)), 0 ≤
s, t ≤ 1. Then, since R(s, t) is symmetric, continuous, and nonnegative definite,
by Mercer’s theorem (see Riesz and Sz-Nagy (1955, p. 245)), it has the eigen-
function expansion

∑
n λnφn(s)φn(t) which converges uniformly on [0, 1] × [0, 1],

the eigenfunctions {φn(t)} are continuous orthonormal elements of L2[0, 1], and
the eigenvalues λn are positive numbers such that

∑
n λn < ∞.
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Let HR denote the set of elements in L2[0, 1] which are in the closure of the
span of {φn, n ≥ 1} and such that

∑
n

(z, φn)2

λn
< ∞,

where (z1, z2) =
∫ 1
0 z1(t)z2(t)dt. HR is a Hilbert space with the inner product

(z1, z2)HR
=

∑
n

(z1, φn)(z2, φn)
λn

,

and {λ
1
2
nφn, n ≥ 1} is a complete orthonormal set in HR.

If KR is the unit ball of HR (in the HR norm) then, since R(s, t) is continuous,
it is fairly easy to see that KR is a compact subset of C[0, 1] in the sup-norm,
and we shall see that KR is the set of limit points of interest. Here, of course,
we identify equivalence classes of HR with their continuous representative.

The Hilbert space HR is commonly called the reproducing kernel Hilbert
space (RKHS) of the kernel R. We have the following

Lemma 1. Let Z1, Z2, . . . be i.i.d. random elements of (D,D) such that each
{Zi(t) : 0 ≤ t ≤ 1} is a martingale. Further, assume there exists a constant
α > 0 such that

EZi(t) = 0, and E|Zi(t)|2+α < ∞, 0 ≤ t ≤ 1,

and the covariance function

R(s, t) = E(Zi(s)Zi(t))

is continuous on [0, 1]× [0, 1]. If KR denotes the unit ball of the RKHS HR, then

n∑
i=1

Zi/(
√

nbn) ∼→ KR a.s. w.r.t. ‖ ‖ on (D,D),

with the notation of (1.12). Refer to Kuelbs (1976).

Let {Un} be a sequence of independent uniform (0,1) random variables with
Un = F (Xn). Define the empirical process

βn(t) =
√

n
( 1
n

n∑
i=1

χ(0 < Ui ≤ t) − t
)
, 0 ≤ t ≤ 1,

where χ(A) denotes the indicator function of a set A. We have



ITERATED LOGARITHM LAW FOR QUANTILE REGRESSION 697

Lemma 2. (James (1975)) Suppose that q is a continuous, nonnegative function
on [0, 1] that is symmetric about t = 1

2 , and that

q ↑ and q(t)/
√

t ↓ on
[
0,

1
2

]
.

If ∫ 1

0
(q2(t) log log[t(1 − t)]−1)−1dt < ∞,

then

βn

qbn
∼→ Hq = {h/q : h ∈ H} a.s. w.r.t. ‖ ‖ on (D,D).

For a proof, see Shorack and Wellner (1986), Theorem 13.4.1, pp. 517-525.

Now we are in a position to prove the theorem.
Proof. Without loss of generality we can assume that r(t) ↓ √

t r(t) ↑ on (0, δ],
and r(t) ↑ √

1 − t r(t) ↓ on [1 − δ, 1), r(0+) = r(1−) = ∞, and (1.6) holds. For
the cases when r is bounded on [0,1], or r is bounded on [0, δ] or [1 − δ, 1], the
proof may be easier. Write

αn1(t) = n− 1
2

n∑
i=1

(Yi − m(Xi))χ(Xi ≤ F−1(t)),

αn2(t) = n− 1
2

n∑
i=1

(m(Xi)χ(Xi ≤ F−1(t)) − M(t)),

βn(t) = n
1
2 (FnR ◦ F−1(t) − t), 0 ≤ t ≤ 1, (2.1)

where FnR is the right-continuous version of the empirical distribution function
Fn. Put Ui = F (Xi),

Zi(t) = (Yi − m(Xi))χ(Ui ≤ ζ−1(σ2
1t))/σ1,

ξn(t) = αn1(ζ−1(σ2
1t))/σ1, 0 ≤ t ≤ 1. (2.2)

It is easy to check that

EZi(t) = 0, E(Zi(s)Zi(t)) = ζ(ζ−1(σ2
1(t ∧ s)))/σ2

1 = t ∧ s, 0 ≤ s, t ≤ 1. (2.3)

Now we proceed to show that for each i, {Zi(t), 0 ≤ t ≤ 1} is a martingale. To
this end, we need only show that for 0 ≤ s < t ≤ 1,

E(Zi(t) − Zi(s)|Fs) = 0 a.s., (2.4)

where Fs = σ{Zi(u), 0 ≤ u ≤ s}. Write η = (Yi − m(Xi))/σ1 and denote by
B1 the σ-field of Borel subsets of (−∞,∞) − {0}. Then Fs is generated by the
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family Cs of all sets of the form {η ∈ B1}∩ {Ui ≤ ζ−1(σ2
1u)}, where B1 ∈ B1 and

0 ≤ u ≤ s. Denote by (Ω,F , P ) the probability space and write

A = {A ∈ F : E(Zi(t) − Zi(s))χ(A) = 0}.
Since E(Zi(t)−Zi(s)) = 0, we have Ω ∈ A. By the fact that (Zi(t)−Zi(s))χ(Ui ≤
ζ−1(σ2

1u)) = 0 for any u ≤ s, we see that A ⊃ Cs. Now it follows that A is a
σ-field and A ⊃ Fs, and (2.4) is proved.

Denote by W (t), 0 ≤ t < ∞, the standard Brownian motion on [0,∞). By
the well known Strassen’s LIL on Brownian motion (refer to Shorack and Wellner
(1986), Theorem 2.9.1, p. 80),

W (nI)/(
√

nbn) ∼→ K a.s. w.r.t. ‖ ‖ on (D,D) (2.5)

as n → ∞, where I is the identity mapping on [0,1].
Noting that

ξn(t) = n− 1
2

n∑
i=1

Zi(t), W (nt)/
√

n = n− 1
2

n∑
i=1

(W (it) − W ((i − 1)t))

and that {Zi(t), 0 ≤ t ≤ 1} and {W (it) − W ((i − 1)t), 0 ≤ t ≤ 1} have the same
covariance functions, by Lemma 1 we get

ξn/bn ∼→ K a.s. w.r.t. ‖ ‖ on (D,D), (2.6)

and
αn1/bn ∼→ G1 = {g1 : g1(u) = σ1k(ζ(u)/σ2

1), k ∈ K}
a.s. w.r.t. ‖ ‖ on (D,D). (2.7)

Now

αn2(u) =
∫ u

0
r(t)dβn(t) = r(u)βn(u) −

∫ u

0
βn(t)dr(t). (2.8)

Write

νn = n
1
2 (M ◦ θn − M) with θn = FnR ◦ F−1 = I + n− 1

2 βn. (2.9)

We proceed to prove that

(αn2 − νn)/bn ∼→ G2 = {g2 : g2(u) = −
∫ u

0
h(t)dr(t), h ∈ H}

a.s. w.r.t. ‖ ‖ on (D,D). (2.10)

Take a small constant C2 > 0 and write q(t) = 1/(r(t) ∨ C2). By the
monotonicity of r(t) on (0, δ] and E(m(X))2+α < ∞, we have

(r(u))2+α · u ≤
∫ u

0
(r(t))2+αdt → 0 as u → 0,
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and
r(u) = o(u−1/(2+α)) as u ↓ 0. (2.11)

In the same way,

r(u) = o((1 − u)−1/(2+α)) as u ↑ 0. (2.12)

By (2.11) and (2.12), it is easily seen that
∫ 1

0
(q2(t) log log[t(1 − t)]−1)−1dt < ∞. (2.13)

From the behavior of r(t) on (0, δ] and [1− δ, 1), (2.13) and Lemma 2, it is easily
shown that, with probability one,

βn

qbn
∼→ Hq = {h/q : h ∈ H} w.r.t. ‖ ‖ on (D,D). (2.14)

For any fixed λ ∈ (0, 1), by Lemma 2, with probability one we have

βn

bn(I(1 − I))(1−λ)/2
∼→ H0 =

{ h

(I(1 − I))(1−λ)/2
: h ∈ H

}

w.r.t. ‖ ‖ on (D,D). (2.15)

It means that there is a event N with P (N) = 0 such that (2.14) and (2.15) hold
for ω /∈ N . In the following we always assume that ω /∈ N .

By the formula θn = I +n− 1
2 βn and (2.14), there exists a constant δ1 ∈ (0, δ)

such that for n large, u ∈ (0, δ1) implies θn(u) ∈ (0, δ) and u ∈ (1− δ1, 1) implies
θn(u) ∈ (1− δ, 1). By the monotonicity of r(t) on (0, δ] and (1.6), for n large and
u ∈ (0, δ1),

0 ≤ q(u) · M(θn(u)) − M(u)
θn(u) − u

≤ q(u) · u−1
∫ u

0
r(t)dt

≤ C3u
−1

∫ u

0
(u/t)τ dt ≤ C3/(1 − τ),

where C3 is a constant. Now we write

νn = (βn/q) · q · (M ◦ θn − M)/(θn − I).

If for some h ∈ H,

‖(βn′/bn′ − h)/q‖ → 0 as the subsequence n′ → ∞, (2.16)

then by using (h/q)(0) = 0 = (h/q)(0+), for any given ε > 0, we may find a
constant δ2 ∈ (0, δ1) such that for n′ large,

sup
0≤u≤δ2

|νn′(u)/bn′ | < ε/2

and
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sup
0≤u≤δ2

|(νn′(u) − r(u)βn′(u))/bn′ | < ε. (2.17)

Similarly we may find a constant δ3 ∈ (0, δ1) such that for n′ large,

sup
1−δ3≤u≤1

|(νn′(u) − r(u)βn′(u))/bn′ | < ε. (2.18)

For δ2 ≤ u ≤ 1 − δ3, by the uniform continuity of r(t) on [δ2, 1 − δ3] and (2.16),

|(νn′(u) − r(u)βn′(u))/bn′ | =
(n′)

1
2

bn′

∣∣∣
∫ u+(n′)−

1
2 βn′ (u)

u
(r(t) − r(u))dt

∣∣∣
→ 0 uniformly on [δ2, 1 − δ3] (2.19)

as the subsequence n′ → ∞. From (2.14) and (2.16)-(2.19), it follows that

‖(νn − rβn)/bn‖ → 0 a.s. (2.20)

Take λ ∈ (0, α
2+α), then 1−λ

2 > 1
2+α . By (2.11),

lim
t→0+

(t(1 − t))(1−λ)/2r(t) = lim
t→0+

t(1−λ)/2 · o(t−1/(2+α)) = 0.

In the same way
lim

t→1−(t(1 − t))(1−λ)/2r(t) = 0.

From these, (2.11) and (2.12), and noting that 2−1(1 − λ) > 2 + α−1, we have
∣∣∣
∫ 1

0
(t(1 − t))(1−λ)/2dr(t)

∣∣∣ =
∣∣∣
∫ 1

0
r(t)d(t(1 − t))(1−λ)/2

∣∣∣
≤ C4

∫ 1

0
(t(1 − t))−

1
2+α

+ 1−λ
2

−1dt < ∞, (2.21)

where C4 is a constant. By Assumption (B), the monotonicity of r(t) on (0, δ]
and [1 − δ, 1), (2.21) implies that

∫ 1

0
(t(1 − t))(1−λ)/2 |m′(F−1(t))|

f(F−1(t))
dt < ∞. (2.22)

If for some h ∈ H,

ε(n′) �=
∥∥∥(

βn′

bn′
− h)/(I(1 − I))(1−λ)/2

∥∥∥ → 0

as the subsequence n′ → ∞, (2.23)

then by (2.22),

sup
0≤u≤1

∣∣∣
∫ u

0
(
βn′(t)
bn′

− h(t))
m′(F−1(t))
f(F−1(t))

dt
∣∣∣

≤ ε(n′)
∫ 1

0
(t(1 − t))(1−λ)/2 |m′(F−1(t))|

f(F−1(t))
dt → 0. (2.24)
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By (2.15), (2.23) and (2.24),

− 1
bn

∫ ·

0
βn(t)dr(t) ∼→ G2 a.s. w.r.t. ‖ ‖ on (D,D). (2.25)

Now (2.10) follows from (2.8), (2.20) and (2.25).
By (2.7) and (2.10), we have

n
1
2

bn
(Gn ◦ F−1 − M ◦ FnR ◦ F−1) = (αn1 + αn2 − νn)/bn

∼→ G a.s. w.r.t. ‖ ‖ on (D,D), (2.26)

where Gn(x) = n−1 ∑n
1 Yiχ(Xi ≤ x).

Let U(1) ≤ · · · ≤ U(n) be the order statistics of U1 = F (X1), . . . , Un = F (Xn).
For 0 ≤ u < 1,

F ◦ F−1
n (u) = F (X([nu]+1)) = U([nu]+1).

By the LIL of the quantile processes (the Smirnov theorem, refer to Shorack and
Wellner (1986), Theorem 13.1.1, p. 504),

‖F ◦ F−1
n − I‖ = 0(bn/

√
n) a.s. (2.27)

By (2.26) and (2.27), and noting that G ⊂ C[0, 1], we have

n
1
2

bn
(Gn ◦ F−1

n − M ◦ FnR ◦ F−1
n ) ∼→ G a.s.

w.r.t. ‖ ‖ on (D,D). (2.28)

For any 0 ≤ u ≤ 1, FnR ◦ F−1
n (u) = ([nu] + 1)/n. Since r(u) ≥ 0, r(u) ↓ for

u ∈ (0, δ), we have for n large and 0 ≤ u < δ1,

0 ≤ n
1
2

bn
(M(u) − M ◦ FnR ◦ F−1

n (u)) ≤ n
1
2

bn

∫ 1
n

0
r(t)dt

≤ n
1
2

bn
· n− 1

2

(∫ 1
n

0
r2(t)dt

) 1
2 → 0. (2.29)

Similarly, we have for n large and 1 − δ1 < u ≤ 1,

0 ≤ n
1
2

bn
(M ◦ FnR ◦ F−1

n (u) − M(u)) ≤ n
1
2

bn

∫ 1

1− 1
n

r(t)dt → 0. (2.30)

Write K = max{ |r(u)| : δ1/2 ≤ u ≤ 1 − δ1/2}. Then

sup
δ1≤n≤1−δ1

n
1
2

bn
|(M ◦ FnR ◦ F−1

n (u) − M(u))|

≤ K/(n
1
2 bn) → 0. (2.31)
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By (2.29)-(2.31),

∥∥∥
√

n

bn
(M ◦ FnR ◦ F−1

n − M)
∥∥∥ → 0 a.s. (2.32)

From (2.28) and (2.32), it follows that

n
1
2 (Mn − M)/bn ∼→ G a.s. w.r.t. ‖ ‖ on (D,D) (2.33)

and the theorem is proved.

Acknowledgement

The research of the authors is sponsored by the Army Research Office under
Grant DAAH04-93-G-0030. The second author is also partially supported by the
National Natural Science Foundation of China.

References

Bishop, J. A., Chakraborti, S. and Thistle, P. D. (1989). Asymptotically distribution-free

statistical inference for generalized Lorenz curves. Rev. Econom. Statist. 71, 725-727.

Gastwirth, J. L. (1971). A general definition of the Lorenz curve. Econometrika 39, 1037-1039.

Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. Rev. Econom.

Statist. 54, 306-316.

Goldie, C. M. (1977). Convergence theorems for empirical Lorenz curves and their inverses.

Adv. in Appl. Probab. 9, 765-791.

James, B. R. (1975). A functional law for the iterated logarithm for weighted empirical distri-

butions. Ann. Probab. 3, 762-772.

Kakwani, N. C. and Podder, N. (1973). On the estimation of Lorenz curves from grouped

observations. Internat. Econom. Rev. 14, 278-292.

Kakwani, N. C. and Podder, N. (1976). Efficient estimation of the Lorenz curve and associated

inequality measures from grouped observations. Econometrika 44, 137-148.

Kuelbs, J. (1976). A strong convergence theorem for Banach space valued random variables.

Ann. Probab. 4, 744-771.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Space. Springer-Verlag, New

York.

Rao, C. R. and Zhao, L. C. (1995a). Convergence theorems for empirical cumulative quantile

regression function. Mathematical Methods of Statistics 4, 81-91.

Rao, C. R. and Zhao, L. C. (1995b). Strassen’s law of iterated logarithms for Lorenz curves. J.

Multivariate Anal. 54, 239-252.

Riesz, F. and Sz-Nagy, B. (1955). Functional Analysis. Ungar, New York.

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics.

John Wiley, New York.

Department of Statistics, Penn State University, University Park, PA 16802, U.S.A.

Department of Mathematics, University of Science & Technology of China, Hefei, Anhui 230026.

(Received February 1994; accepted July 1995)


