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Abstract: Bioequivalence is an important area of pharmaceutical research contain-

ing many questions which are not yet resolved. Various statistical approaches have

been discussed in the literature. We address stopping rules for testing bioequiv-

alence from a decision-theoretic point of view. Numerical techniques for Bayes

sequential decision problems are employed to obtain solutions of the continuous

time optimal stopping problem on bioequivalence.
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1. Statement of the Problem

Two or more formulations of a drug are often compared in a bioequivalence
trial. The purpose of such a trial is to determine whether alternative formulations
which contain equal amount of the same active ingredient give rise to comparable
concentrations in the blood or produce, in some sense, equivalent therapeutic
effects.

Let µ, measured on some scale, represent the true difference between the two
population treatment means. The regulatory agency demands that the proposer
claiming bioequivalence demonstrates that it is reasonably certain that |µ| ≤ ∆,

where ∆ is a prespecified tolerance limit. One major statistical assessment of
bioequivalence is the interval hypothesis proposed by Schuirmann (1987) and
Anderson and Hauck (1983). It is different from usual hypothesis testing because
of the hypothesis expressed as an interval, Ha : |µ| ≤ ∆. The other version is
based on confidence intervals associated with tests for bioequivalence developed
by Hsu, Hwang, Liu and Ruberg (1994). For other important issues regarding
bioequivalence studies, readers are referred to Chow and Liu (1992).

We consider a clinical trial with an associated design for comparing two for-
mulations, a new formulation and the standard. To formalize the bioequivalence
problem for the trial, we present a Bayesian decision theoretic approach instead
of a traditional hypothesis testing approach. The design allows the manager to
terminate the program early if the two formulations are almost equivalent or far
from equivalent and to continue the trial otherwise.
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The Bayesian approach allows, in fact requires, explicit consideration of the
information available about the drug prior to the current trial. The prior infor-
mation is quantified in terms of a (prior) probability distribution on µ. To be
specific we assume µ ∼ N(µ0, σ

2
0). If µ0 and σ0 are close to zero then the man-

ager’s prior assessment is that the two formulations are likely to be bioequivalent;
and large σ0 corresponds to a high degree of uncertainty regarding µ.

Let Xi denote the observed difference in responses for the ith pair of patients,
i = 1, . . . , n. Assume that X1, . . . ,Xn are independent N(µ, σ2), where σ2 is
known. The posterior distribution of µ given X1, . . . ,Xn is N(Yn, sn), where

Yn =
µ0σ

−2
0 + (X1 + · · · + Xn)σ−2

σ−2
0 + nσ−2

and s−1
n = σ−2

0 + nσ−2.

So, after each observation, we need to know n, the current Bayes estimate Yn

of µ, and its precision sn; (Yn, sn) is the “state of information” after the nth
observation. Then we may decide to continue sampling or to stop. In the latter
case we must decide on whether or not we have bioequivalence. While it will be
only approximately true in practice, we assume that the cost of the trial is linear
in the number of pairs of patients in the experiment. That is, we assume that the
marginal sampling cost per pair is c. When the trial is stopped, one must decide
to reject or claim bioequivalence. The cost of rejecting bioequivalence is k, the
expected cost of having to start over. The cost of claiming bioequivalence may
be an increasing function of the absolute difference between the two population
treatment means. We consider the quadratic cost µ2 in the following illustrations
and refer to the related problem as problem 1.

At stage n, we have the risk associated with stopping and deciding for or
against bioequivalence plus the cost of sampling cn yielding d1(Yn, sn), where

d1(y, s) = cn + min{k,E[µ2|Yn = y, sn = s]}
=

cσ2

s
+ min{k, y2 + s} − cσ2

σ2
0

. (1)

The problem of finding the Bayes procedure for testing bioequivalence has
been reduced to a standard stopping problem of the type described in Chernoff
(1972). That is, to find a stopping rule (a random variable N) so as to minimize
E[d1(YN , sN )].

For the continuous time version of the bioequivalence problem, µ is regarded
as a random variable, and the limiting form of the (Yn, sn) process is a Gaussian
process of independent increments Y (s) in the −s scale for s0 ≥ s ≥ 0, where
E[dY (s)] = 0, Var [dY (s)] = −ds, with Y (s0) = µ0 at s0 = σ2

0 and s−1 =
σ−2

0 + tσ−2. Note that as time t increases from 0 to ∞, s decreases from σ2
0 to 0.

Thus (−ds) may be thought of as positive.
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The continuous time version of the bioequivalence problem is essentially de-
termined by finding a stopping time S to minimize the risk, E[d1(Y (S), S)],
where the cost function d1(y, s) = cσ2/s + min{k, y2 + s}, after dropping the
constant cσ2/σ2

0 which does not affect the choice of the optimal procedure.
From the point of view of solving the bioequivalence problem, certain sim-

plifying transformations can be made. With the transformation y∗ = k−1/2y,
s∗ = k−1s, our problem may be normalized to that of dealing with a stop-
ping cost d∗1(y∗, s∗) = c∗/s∗ + min{0, y∗2

+ s∗ − 1} and sampling cost parameter
c∗ = cσ2k−2. We can now drop the stars and express the optimal stopping
problem in a standard form with

d1(y, s) =
c

s
+ min{0, y2 + s − 1}. (2)

This form involves only the single parameter c.

2. Numerical Techniques and Implementation

Chernoff and Petkau (1986) have described a number of techniques employed
in obtaining numerical descriptions of the solutions of the general optimal stop-
ping problem for a zero drift Wiener process in the (y, s) scale. These procedures
are useful tools for solving general optimal stopping problems. But for the bioe-
quivalence problem, we need additional techniques to overcome a difficulty in the
implementation.

The symmetry of d1(y, s) about y = 0 implies that the computations involved
in the backward induction can be confined to y ≥ 0, that is, computing on the
grid

{(y, s) : s = s1 + iδ, y = j
√

δ; i = 0, 1, . . . ,ms, j = 0, 1, . . . ,my}, (3)

which yields the optimal solution to the stopping problem as

d̂1(y, s) = d1(y, s) for s = s1, (4)

= min
{
d1(y, s),

1
2
[d̂1(y +

√
δ, s − δ) + d̂1(y −

√
δ, s − δ)]

}
for s > s1.

In the course of this computation which yields the optimal risk for the ran-
dom walk problem, each individual grid point is classified as either a stopping
point or a continuation point for the random walk. Thus, the continuation re-
gions and their boundaries are determined and continuity correction methods can
be employed to obtain approximations to the continuous time boundaries. For
accuracy, the computation is carried out in stages or phases where grid spacings
are changed from one phase to the next.
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The first phase consists of starting at s1 = 0 and applying ms steps of size
δ for a suitably small value of δ. Then my, the number of grid points along
the y-axis, must be chosen large enough to contain all the continuation points
for this first phase. In the next phase we increase the size of δ by a factor of
4 which automatically doubles the grid distance along the y-axis. Instead of
starting phase 2 at the end of phase 1 where s = msδ, we prefer to overlap these
two phases, to give the new coarser calculation an opportunity to adjust, thereby
avoiding some possible discontinuities due to the transition. Thus we have a new
δ, four times the original, and a new s1 between the original s1 and s1 +msδ, and
new values of ms and my. Where we have overlapping phases, we use the finer
grid to determine the values of the Bayes risk and optimal stopping boundaries.
This procedure can be repeated through successive phases of coarsening the grid.

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CONT

STOP

STOP

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CONT

STOP

STOP

0.0 0.4 0.8 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CONT

STOP

STOP

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

CONT

S
T
O
P

STOP

c = 1.0 c = 0.5

Y Y

S S

c = 0.25 c = 0.1

Y Y

S S

Figure 1. Stopping boundaries of problem 1.

Referring to Figure 1, we see that there are two boundaries above the y-



A SEQUENTIAL APPROACH TO BIOEQUIVALENCE 667

axis. For sufficiently large values of the constant c, the outer boundary turns
back toward the s-axis. It may be desirable to change δ again so that the grid
spacings become more refined as the boundary gets closer to the s-axis. In this
case we refine the grids by reducing δ by a factor 4 when moving to the next
phase. Then the new s1 will be the last value of s, i.e., s1 + msδ = s∗. Now
we face a technical difficulty. If we label the old and new values of δ, δ0 and
δn = δ0/4, then the new values of y are i

√
δn = i

√
δ0/2 and we can not proceed

because we have not evaluated d̂1 at i
√

δn = i
√

δ0/2 for the odd values of i when
s = s∗.

To overcome this difficulty we evaluate d̂1(y, s∗) for y = i
√

δ0/2 with odd
values of i, by replacing the last dichotomous step of ±√

δ0 by a four valued step
with the same mean 0 and variance δ0. In other words, if we let y go to y± 1

2

√
δ0

with probability p1 and y ± 3
2

√
δ0 with probability p2, then the mean change

E[dY ] = 0 and the variance E[dY ]2 = δ0 if p1 + p2 = 1
2 and p1 + 9p2 = 2.

Thus, for the intermediate values of y = i
√

δ0/2 with odd i, the Bayes risk
at (y, s∗) will be the minimum of d1(y, s∗) and

d̂1(y, s∗) =
5
16

d̂1

(
y − 1

2

√
δ0, s

∗ − δ0

)
+

5
16

d̂1

(
y +

1
2

√
δ0, s

∗ − δ0

)

+
3
16

d̂1

(
y − 3

2

√
δ0, s

∗ − δ0

)
+

3
16

d̂1

(
y +

3
2

√
δ0, s

∗ − δ0

)
. (5)

Having calculated these values we can now proceed with the numerical calcula-
tions using the reduced value δn of δ. We expected this technique to reveal slight
discontinuities in the estimates of both the Bayes risk and the stopping boundary
on moving from one phase to the next. But experience shows that the jumps are
so small that we can ignore them.

3. Solutions

Bather and Chernoff (1993) have characterized the general picture of the so-
lutions by studying the effect of changing the standardized sampling cost param-
eter c. First, the optimal continuation region C will cover the curve y = ±√

1 − s

for 0 < s < 1. This is because the discontinuity in first derivatives of the stopping
cost min{0, y2 + s − 1} implies a local advantage in sampling. The advantage is
of order

√|δs|, whereas the sampling cost is of order |δs|, for any small incre-
ments δs. Secondly C is monotone in the sampling cost c, that is, c1 ≥ c2 implies
C1 ⊂ C2. As we already noted, every point on the parabola y2 +s−1 = 0 belongs
to C, with the possible exception of (y, s) = (0, 1). In fact, there is a definite ad-
vantage in sampling if c <

√
2/πe

.= 0.484, i.e., (0, 1) ∈ C if c <
√

2/πe. Fourth,
for c ≥ 1, all points (0, s) lie in the optimal stopping set S and for 0 < c ≤ 1, all
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points (0, s) with 0 ≤ s ≤ √
c also lie in S. Furthermore,

(y, s) ∈ S, if c >
1
4

and s ≥ c

2
√

c − 1
.

From the above results, they have drawn the stopping boundaries roughly for
c ≥ 1, 1

4 < c <
√

2/πe, and sufficiently small c.
We have learned how the solutions would be related to c, but there is no

closed-form solution so far. While the above results do provide valuable insight,
they do not provide an adequate approximation to the solution. Applying the
previously discussed numerical techniques, we explored the optimal boundaries
for a large set of sampling cost parameter values. The numerical descriptions
of the solutions are summarized in Figure 1, presenting plots for the continuous
time version for c = 1.0, 0.5, 0.25, and 0.1.
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Figure 2. Two hypothetical series with µ = 5, 0.1 and σ2 = 20, σ2
0 = 5, k = 1,

c = 0.001; and the optimal boundaries.
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Given any fixed σ2
0, σ2, k, and c, we can calculate the optimal boundaries

for the original discrete time problem in which people are interested in practice.
First we implement the computer program with the standardized sampling cost
c∗ = cσ2k−2, then apply a method in Chernoff (1965) to adjust the optimal
boundaries of the continuous time version problem. As an example, suppose
σ2

0 = 5, σ2 = 20, k = 1, and c = 0.001, then c∗ equals 0.02, and the initial value
s∗0 in the normalized scale is given by s∗0 = k−1s0 = k−1σ2

0 = 5. The optimal
outer and inner boundaries are given in Figure 2. For demonstration of how
the boundaries can be used in the decision making, we simulated two series of
paired difference measurements of size 200 with means 5 and 0.1 respectively.
The two series of posterior means Yn plotted with the boundaries show that the
first simulated series cross the outer boundary at n = 7 and the second series
cross the inner boundary at n = 86. That is, the manager may stop the trial at
stage 7 and reject to claim bioequivalence quickly for the first simulated data.
For the second hypothetical data, the manager has to wait a little longer until
stage 86 to claim bioequivalence for the two treatments.

An alternative model is to consider that the cost of claiming bioequivalence
is not µ2, but |µ|. This leads to a different stopping cost.

E[|µ| | Y (s) = y] = s
1
2 [G1(α) + G1(−α)], (6)

where
α = y s−

1
2 , G1(α) = ϕ(α) + αΦ(α),

and ϕ and Φ are the density and cumulative distribution functions for the stan-
dard normal distribution.

Note that

G1(α) + G1(−α) = 2
{
ϕ(α) + α[Φ(α) − 1

2
]
}

= H1(α).

Instead of (2), we now have a standardized stopping cost

d2(y, s) =
c

s
+ min(0, s

1
2 H1(α) − 1), (7)

and we will call the optimization problem related to d2 problem 2. It seems that
the continuation regions of this problem should have shapes similar to those of
problem 1. In particular when s is small both d1(y, s) and d2(y, s) are approxi-
mated by the same term c/s, representing the sampling cost, and so we expect
similar behavior near s = 0.

The implementation of this second version is the same as the previous one
except for replacing the cost function d1(y, s) by d2(y, s). Figure 3 shows that
the shapes of the stopping boundaries are very similar for the two versions for
the chosen values of c.
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Figure 3. Stopping boundaries of problem 2.

4. Asymptotic Results

The cost functions d1(y, s) and d2(y, s) defined in (2) and (7) show that the
risk becomes infinite as s → 0. To avoid this and to simplify the calculations
for s close to zero, Bather and Chernoff (1993) modified the cost functions and
derived the asymptotic expansions of the optimal boundaries

ỹi = 1 − s

2
− s2

8
+ ais2,

ỹo = 1 − s

2
− s2

8
+ aos2, (8)

where ỹi gives the inner boundary for accepting bioequivalence, ỹo applies to
rejection and there are symmetric curves near y = −1. The values of ai and
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a0 are ai = − 1
2c and a0 = 1

2c respectively. Note that 1 − s
2 − s2

8 describes the
approximate behavior of the curve y2 + s = 1 near (y, s) = (1, 0).

For problem 2, similar arguments suggest that there are almost symmetrical
boundary curves near each critical point (y, s) = (±1, 0), at y = 1 ± O(s2) and
y = −1 ± O(s2).

From the asymptotic result (8), we would expect to see the two boundaries
close to each other for small values of s when c is large. In order to demonstrate
the numerical results for small values of s, we chose sufficiently small c values and
computed the numerical approximations for s < 1. Figure 4 shows clear pictures
of the behavior of the boundaries near the critical points (y, s) = (1, 0). We see,
for problem 2, the estimated stopping boundaries are symmetrical about y = 1.
The angles of the curves get larger and the curves move forward as c becomes
smaller. The continuous curves were calculated using a small initial step size δ =
2−18 and considerably more computer time. Even these refined calculations can
stand some improvement for s very close to zero, where asymptotic expansions
tend to be quite accurate.

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Problem 1

c=0.0001

c=0.001

Y c=0.01

c=0.05

S

Problem 2

c=0.0001

c=0.001

Y c=0.01

c=0.05

S

Figure 4. Stopping boundaries of problems 1 and 2 – small c.
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We are also interested in how small c must be for the outer boundary curve to never
return to y = 0. In general, we would like to see how the inner and outer curves behave
as the sampling cost changes. We have already noted that the inner curve and outer
curve will meet at (y, s) = (0, 1) for c ≥ 1 in problem 1. The numerical results show that
when c ≥ 1 the inner and outer curves meet at (y, s) = (0, 1.57) for problem 2. From the
numerical results, we also found that as c decreases to 0, the inner critical s value, the
s value where the inner curve reaches the s-axis, decreases to 0 and the outer critical s

value increases to ∞ . In fact, when c is smaller than 0.05, we see the outer curves never
returns to y = 0 for problems 1 and 2.

5. Remarks

We have addressed stopping rules for testing bioequivalence from a Bayes sequential
decision-theoretic point of view. It has the advantages of facing squarely the decision
problem that the U. S. FDA should state. It has the disadvantage of ignoring most of the
issues raised in the literature, for example, Anderson and Hauck (1990), Locke (1990),
Schuirmann (1990) and Hsuan (1993). It does not face the sequence and period-effects
at all. It implicitly assumes that the individual drug interaction is negligible. In addition
to normality, homoscedasticity and known variance are assumed, and it has been applied
only to the two drug case. Given the shortcomings of this formulation, it still has the
advantage of providing a solution which gives insight into how to handle the general
problem. There is no confusion about what constitutes a suitable null hypothesis that
accompanies the attempt to pose the problem in terms of some standard significance
level testing problem.

The Bather-Chernoff-Petkau formulation and the numerical results presented in
this paper provide some guidance on what constitutes a reasonable formulation and a
reasonable solution in the simplest cases. For realistic problems, these can only be rough
guides. On the other hand the elaborate solutions proposed by Hsuan and others suffer
from a certain amount of vagueness and sloppiness about what are the fundamental
decision problem costs. The most serious problems, concerning the model structure,
remain unresolved unless FDA studies have provided more information than is hinted at
in the papers presented.
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