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Abstract: Time-sequential testing problems are studied in the counting process

context. With a random time change of the counting process, it is shown that the

associated optimal stopping time problem gets close to that for a Poisson process

as sample size gets large. By making use of this observation, we propose a class of

time-sequential tests, which is shown to be optimal in the sense that it has minimal

asymptotic expected total time on-test with given bounds on error probabilities.
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1. Introduction

1.1. Preliminaries

In a follow-up study, arising in a clinical trial or a life testing problem, typi-
cally, the response (viz. failure) occurs sequentially over time. Further, because
of time, cost and other limitations, it is often desirable to curtail observations
at some early stage, prior to the last response, when enough statistical evidence
is accumulated. Taking this into consideration, time-sequential procedures have
been studied by many authors.

In particular, time-sequential estimation problems were studied by Sen (1980),
Gardiner, Susarla & Van Ryzin (1986) and Chang & Hsiung (1990); and time-
sequential testing problems were studied by Epstein & Sobel (1955), Sen (1981,
1985) and Liu (1995), among others. However, as pointed out by Gardiner &
Susarla (1991) in reviewing the progress in time-sequential inference of a survival
curve parameter, there still seems a need to develop the theory of time-sequential
tests on its own, taking into account the specific objectives within its frame-
work. It is the purpose of this paper to study one such time-sequential testing
problem by a counting process approach.

Let Y1, . . . , Yn denote the life times of n items drawn at random from a
population and placed on a life test. Assume that Y1 has intensity λ(t) = θα(t),
where θ is a constant and α is an unknown continuous function with α(0) = 1.
In this paper, we are interested in testing the hypothesis H0 : θ = θ0 versus the
hypothesis H1 : θ = θ1, where θ0 < θ1, and the hypothesis testing is carried out
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in such a way that one may curtail the experiment at some early stage, prior to
the last failure time, and make a terminal decision so as to reduce the total time
on test.

The preceding time-sequential hypothesis testing problem was studied by Ep-
stein & Sobel (1955), and Liu (1995). Assuming λ is a constant, or equivalently
Y1 is exponentially distributed, Epstein & Sobel (1955) proposed a continuous
analogue of the SPRT of Wald for the problem and obtained some asymptotic
properties of it. Liu (1995) continued to argue that the SPRT of Epstein &
Sobel (1955) (henceforth time-sequential probability ratio test (TSPRT)) enjoys
optimum properties similar to those of the classical SPRT of Wald (cf. Wald and
Wolfowitz (1948)).

In fact, Liu (1995) introduces a Bayes auxiliary problem and transforms it
into a classical Wald-Wolfowitz problem with finite horizon. Although the finite
horizon introduces non-stationarity into the problem, Liu (1995) still can apply
the optimal stopping theory of Chow, Robbins & Siegmund (1971) to find the
optimal generalized time-sequential probability ratio test. With this result, Liu
(1995) is able to show that TSPRT with constant boundaries is asymptotically
optimal in the sense that, asymptotically, it has minimal expected total time on
test among tests having equal or smaller error probabilities.

We remark that Liu (1995) requires that λ(t) = θα(t) with α(·) a known
function and permits curtailing the experiment only at failure times. In order
to eliminate these restrictions, we take a counting process approach to study
the problem under the condition that α(·) is an unknown continuous function,
which means we are dealing with composite hypotheses. As usual, the count-
ing process approach has the added advantages of allowing for early termination
between successive failure times and of allowing for independent censoring vari-
ables, although we do not consider independent censoring variables in this paper
in order to simplify the presentation.

1.2. Counting process formulation of the problem

Let Yn1 ≤ · · · ≤ Ynn be the order statistics of Y1, . . . , Yn. Let F (n)
k = σ{Ynj |

j ≤ k}, denote the σ-field generated by Yn1, . . . , Ynk. A time-sequential test is an
F (n)

k − stopping time τ together with an F (n)
τ − measurable test statistic δ. Let

W (n)(Ynτ ) =
∑n

i=1(Yi ∧ Ynτ ) be the total time on test of the test statistic (τ, δ).
Let

N̄ (n)(t) =
n∑

i=1

1[Yi, ∞)(t) (1.1)

be the counting process which records the number of failures at (calendar) time
t in the study. Let F̄ (n)

t = σ{N̄ (n)(s) | 0 ≤ s ≤ t} be the self-excited filtration.
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Then one can show that F̄ (n)
Ynk

= F (n)
k . With this observation, the time-sequential

testing problem mentioned in Subsection 1.1 can now be formulated more satis-
factorily as follows. A time-sequential test is, by definition, an F̄ (n)

t − stopping
time τ together with an F̄ (n)

τ − measurable test statistic δ. We are interested in
finding time-sequential tests such that, asymptotically, they have minimal ex-
pected total time on test W (n)(τ) =

∑n
i=1(Yi ∧ τ) among those having equal or

smaller error probabilities.
Since the total time on test W (n)(τ) is to be minimized and is not easy

to deal with in the filtration F̄ (n)
t , we reparametrize the time dimension of the

counting process so that, in the new time scale, it is some simple quantity to be
minimized, not the complicated on-test time functional to be minimized. This
motivates the following random time-change for N̄ (n)(·). The idea is to record
the number of failures in terms of the total time on test of the experiment.

Since the total time on test W (n)(t) at calendar time t is a strictly increasing
function in t, it is legitimate to perform the following time-change for (1.1). We
define

N (n)(t) = N̄ (n)(s),

if t = W (n)(s). In fact, N (n)(t) =
∑n

k=1 1
[W

(n)
k

, ∞)
(t), where W

(n)
k =

∑n
j=1 Ynj ∧

Ynk. Let

G(n)
t = σ{N (n)(s) | 0 ≤ s ≤ t}

be the internal history of N (n)(t). Then we have the following proposition about
the relation between N̄ (n) and N (n). Although Proposition 1.1 is naturally ex-
pected, its complete justification is somewhat complicated and is given at the
end of this paper.

Proposition 1.1. S is an F̄ (n)
t − stopping time if and only if W (n)(S) is a

G(n)
t − stopping time and, in this case, F̄ (n)

S = G(n)

W (n)(S)
.

Proposition 1.1 indicates that our statistical problem can be equally well-
expressed in terms of the on-test time counting process N (n)(t), which records
the failures in the follow-up study according to the on-test time, not the calendar
time. Thus, in the rest of this paper, a time-sequential test for N (n)(t) is meant a
G(n)

t − stopping time τ together with a G(n)
τ − measurable {0, 1}− valued statistic

δ, and H0 is rejected if and only if δ = 1.
We stress that this random time-change simplifies our statistical problem in

that the problem reduces to finding a time-sequential test (τ, δ) for G(n)
t which has

minimal expected stopping time τ with given bounds on the error probabilities
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asymptotically, where the quantity of on-test time disappears. Although this
simplification is the original motivation for performing the random time-change,
the main advantage of working with N (n)(·) comes from the fact that N (n)(·)
converges weakly to a Poisson process N (0)(·).

Here are the major ideas and steps in our approach. A well-known result of
Dvoretzky, Kiefer & Wolfowitz (1953) says that, for a Poisson process, the time-
sequential probability ratio test with constant boundary is the solution of a Bayes
auxiliary decision problem and has minimal expected duration of observation
with given upper bounds of probability errors (cf. B. K. Ghosh (1970), Chap.
4). We show that the solution of the Bayes auxiliary decision problem for the
Poisson process N (0)(·) is the limit of the solution of the corresponding Bayes
decision problem for N (n)(·) on finite horizon. These imply that a time-sequential
test (τ (n), δ(n)) for N (n)(·) is asymptotically optimal if it converges to the time-
sequential probability ratio test for N (0)(·); this motivates the proposed test in
Subsection 2.1.

The plan of this paper is as follows. Subsection 2.1 proposes a time-sequential
test and states the main result of this paper concerning its optimum prop-
erty. Subsection 2.2 follows the classical approach of Wald & Wolfowitz (1948) to
introduce a Bayes auxiliary problem and indicates that the solution of the Bayes
auxiliary problem exists and converges to that for a Poisson process. Since some
of the proofs are quite complicated, all the proofs are postponed to Section 3 in
order to increase the readability of this paper.

The idea of the proofs is carried out by first studying the limiting behavior of
a discretized version of the Bayes auxiliary problem and then using a continuity
argument to piece together the solutions for the discretized problem. One of the
most important observations used here says that the stochastic processes X

(n)
t

associated with the Bayes auxiliary problem enjoys certain uniform continuity
and equi-continuity properties as described in Lemma 3.2, whose proof uses the
quadratic variation formula of a counting process. Another crucial step is to
create a new sequence of stochastic processes in Lemma 3.4 so that the method
of backward induction becomes tractable in the study of the limiting behavior of
the discretized auxiliary Bayes problem.

Finally, we note that this type of optimality for hypothesis testing problems
was also studied by Dvoretzky, Kiefer & Wolfowitz (1953), Kiefer & Wolfowitz
(1956) and Bhat (1988) in the context of stochastic processes. In particular,
Bhat (1988) considered stochastic processes which can be transformed exactly,
by a random time-change, into a Brownian motion or a Poisson process. In
this connection, we remark that our counting processes are transformable, also
by a random time-change, into counting processes that are only approximately
Poissonian.
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Remark. Since our methods work for a more general situation, we consider in
the rest of this paper the hypotheses Hi : λ(t) = λi(t), where λi(0) = θi and λi is
an unknown nonnegative continuous function. When λ1(t)/λ2(t) is constant in
t, this reduces to the situation discussed in Subsection 1.1. We also note that,
under Hi, the counting process N (n)(·) has the intensity

λ
(n)
i (t) =

n−1∑
k=0

λi

(t − W
(n)
k

n − k
+ Ynk

)
1
(W

(n)
k

, W
(n)
k+1

]
(t). (1.2)

2. Main Results

2.1. An asymptotically optimum test

For n = 0, 1, . . . , we define

S(n) = inf{t > 0 | L̃(n)(t) /∈ (un(t), vn(t))}, (2.1)

where un(t) = u + (1 − u)t/bn, vn(t) = v + (1 − v)t/bn for 0 ≤ t ≤ bn, 0 < u <

1 < v, bn > 0, b0 = ∞ and L̃(n)(t) satisfies

log L̃(n)(t) =
(

log
θ1

θ0

)
N (n)(t) + (θ0 − θ1)t. (2.2)

For the hypothesis testing problem introduced in Subsection 1.2, we propose
to make a decision at S(n) with the decision rule β(n) which rejects H0 if and
only if L̃(n)(S(n)) ≥ vn(S(n)). We show that the time-sequential test (S(n), β(n))
has the following asymptotically optimum property, if bn tends to infinity slowly
enough. We note that sequential tests with this kind of boundary were intro-
duced by Anderson (1960) in order to avoid the maximum expected sample size
of SPRT.

Let α0(S(n)) and α1(S(n)) denote respectively the type 1 and type 2 error
probabilities of (S(n), β(n)). Let (τ (n), δ(n)) be a time-sequential test of H0 versus
H1, based on N (n)(t), whose type 1 and type 2 error probabilities are denoted
by α

(n)
0 and α

(n)
1 respectively.

Theorem 2.1. Assume τ (n) ≤ M for some constant M > 0. Then there exists
b1, b2, . . . tending to infinity such that if

lim inf
n→∞ [αi(S(n)) − α

(n)
i ] ≥ 0 (2.3)

for i = 0 and 1, then

lim sup
n→∞

[Ei(S(n)) − Ei(τ (n))] ≤ 0 (2.4)
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for i = 0 and 1, where Ei is the expectation taken when Hi holds.

Note that, in Theorem 2.1, Ei is the expectation specified by intensity func-
tion λi with λi(0) = θi, which is the only assumption we make about λi, and we
do not need to know λi in performing the test (2.1) and Theorem 2.1 holds true
so long as λi(0) = θi.

Remark. When phrased in calendar time, (2.1) becomes

S̄(n) = inf
{
s > 0 | exp[(log

θ1

θ0
)N̄ (n)(s) + (θ0 − θ1)W (n)(s)]

/∈ (un(W (n)(s)), vn(W (n)(s)))
}
,

and our proposal is to make a decision at calendar time S̄(n) with the rule β̄(n)

of rejecting H0 if and only if exp[(log θ1
θ0

)N̄ (n)(S̄(n)) + (θ0 − θ1)W (n)(S̄(n))] ≥
vn(W (n)(S̄(n))). The exact optimum property for (S̄(n), β̄(n)) can be read off
from (2.3) and (2.4) immediately, which concerns the amount of total time on-
test.

2.2. A Bayes auxiliary decision problem

In this subsection, we assume further that the intensity function λ(t) of Yi

is either λ0(t) or λ1(t), both of which are completely known.
Let a > 0, b > 0, c > 0 and 0 < π < 1 be given. Define

γn(π, τ (n), δ(n), a, b, c)

= π[aα0(τ (n), δ(n)) + cE0(τ (n))] + (1 − π)[bα1(τ (n), δ(n)) + cE1(τ (n))], (2.5)

where α0(τ (n), δ(n)) and α1(τ (n), δ(n)) are respectively the type 1 and type 2
error probabilities of the time-sequential test (τ (n), δ(n)) based on N (n)(t). In
this subsection, our main interest is in the asymptotic properties of solution of
the Bayes decision problem (2.5), which is a time-sequential test (τ (n)

∗ , δ
(n)
∗ ) that

minimizes (2.5). We show, in Lemma 2.1, that the Bayes decision problem (2.5)
is, as usual, an optimal stopping time problem.

Let P(n),t
i be the probability measure on G(n)

t specified by the hypothesis Hi,

for i = 0, 1. We note that both Hi are simple in this subsection. Then the
likelihood ratio process is

L(n)(t) ≡ dP(n),t
1

dP(n),t
0

,

which satisfies

logL(n)(t) =
∫ t

0
log µ(n)(s)dN (n)(s) +

∫ t

0
(1 − µ(n)(s))λ(n)

0 (s)ds, (2.6)
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where

µ(n)(t) =
λ

(n)
1 (t)

λ
(n)
0 (t)

and λ
(n)
i (t) is given in (1.2). We note that λ

(0)
i (t) = θi and λ

(n)
i (t) is the intensity

of N (n)(t) relative to G(n)
t , under P(n),t

i ; and (2.6) is derived from the theory of
point processes. (see, for example, p.59-61, p.187, Brémaud (1981)). Let

π
(n)
t =

π

π + (1 − π)L(n)(t)
,

δ
(n)
∗ (t) = 1

[π
(n)
t a ≤ (1−π

(n)
t )b]

. (2.7)

Then we have

Lemma 2.1. Assume that both λ0 and λ1 are bounded and bounded away from
0, then

γn(π, τ (n), δ(n), a, b, c) ≥ γn(π, τ (n), δ
(n)
∗ (τ (n)), a, b, c)

for every time-sequential test (τ (n), δ(n)).

Proof. Making use of the fact that L(n)(t) is a martingale relative to P(n),∞
0 , we

obtain

aπα0(τ (n), δ(n)) + b(1 − π)α1(τ (n), δ(n))

= aπE0(1[δ(n)=1]) + b(1 − π)E1(1[δ(n)=0])

= E0(aπ1[δ(n)=1] + b(1 − π)1[δ(n)=0]L(n)(τ (n)))

= E0(aπ
(n)

τ (n)1[δ(n)=1] + b(1 − π
(n)

τ (n))1[δ(n)=0])(π + (1 − π)L(n)(τ (n))) (2.8)

≥ aπα0(τ (n), δ
(n)
∗ (τ (n))) + b(1 − π)α1(τ (n), δ

(n)
∗ (τ (n))).

This completes the proof.

It follows from Lemma 2.1, or more precisely, from (2.7) and (2.8), that the
Bayes decision problem (2.5) reduces to the following optimal stopping prob-
lem. Let

h(z) = min [az, b(1 − z)], 0 ≤ z ≤ 1,

X
(n)
t = −h(π(n)

t ) − ct, t ≥ 0. (2.9)

We are interested in a G(n)
t − stopping time τ

(n)
∗ such that E(X(n)

τ
(n)
∗

) ≥ E(X(n)

τ (n))

for every G(n)
t − stopping time τ (n), where E(·) = E0(π+(1−π)L(n)(∞))(·). τ

(n)
∗
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is called an optimal stopping time. The main theorem of this subsection concerns
this optimal stopping time problem on a finite horizon [0,M ].

Theorem 2.2. Let M be a positive number. Then
(i) for every n = 0, 1, . . . , there exists an optimal stopping time τ

(n)
∗ for the

optimal stopping time problem (2.9) on [0,M ],
(ii) limn→∞ E(X(n)

τ
(n)
∗

) = E(X(0)

τ
(0)
∗

). (2.10)

The proof for Theorem 2.2 is given in Section 3, which includes some prepara-
tory lemmas.

3. Proofs

We need Theorem 2.2 to prove Theorem 2.1 and Theorem 2.2 itself is estab-
lished by the following lemmas.

Lemma 3.1. N (n)(·) converges weakly to N (0)(·).
Lemma 3.2. Let M be a positive number. There exists a constant B∗ > 0 such
that for any two stopping times τ

(n)
1 , τ

(n)
2 ≤ M satisfying |τ (n)

1 − τ
(n)
2 | ≤ η, the

inequality
∣∣∣E(X(n)

τ
(n)
1

) − E(X(n)

τ
(n)
2

)
∣∣∣ ≤ B∗η (3.1)

holds for every n = 1, 2, . . . .

Lemma 3.3. For every n = 0, 1, . . . , there exists an optimal stopping time τ
(n)
∗

for (X(n)
t ,G(n)

t ) on [0,M ].

Lemma 3.4. Assume M is an integer. For every n = 0, 1, . . . , and l =
1, 2, . . . , there exists an optimal stopping time τ

(n,l)
∗ for the stochastic sequence

{(X(n)

k/2l ,G(n)

k/2l) | k = 0, 1, . . . , 2lM} such that limn→∞ E(X(n)

τ
(n,l)
∗

) = E(X(0)

τ
(0,l)
∗

).

Lemma 3.5. If limn→∞ bn = ∞, then S(n) converges in distribution to S(0)

as n goes to infinity.

If the sequence bn goes to infinity slowly enough, it follows from Lemma 3.5,
Fatou’s lemma and a little reasoning that

Lemma 3.6. limn→∞ E(S(n)) = E(S(0)).

Proof of Lemma 3.1. Let Z
(n)
k = W

(n)
k −W

(n)
k−1, for k = 1, . . . , n. Then, one can

show that for every fixed k, (Z(n)
1 , . . . , Z

(n)
k ) converges weakly to (Z1, . . . , Zk) as

n goes to infinity, where Z1, Z2, . . . is a sequence of i.i.d. exponential random
variables with mean 1/λ(0). This together with Theorem 1.21 on p.15 of Karr
(1991), concerning weak convergence of point processes, yields the lemma.
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Proof of Lemma 3.2. For s < t, we have

| X
(n)
t − X(n)

s |
≤ | h(π(n)

t ) − h(π(n)
s ) | + c | t − s |

≤ B1 | π
(n)
t − π(n)

s | + c | t − s |
≤ B1B2 | L(n)(t) − L(n)(s) | + c | t − s |
≤ B1B2e

t∗ | logL(n)(t) − logL(n)(s) | +c | t − s |
≤ B1B2e

B3N(n)(t)+B4t[B3(N (n)(t) − N (n)(s)) + B4(t − s)] + c | t − s | . (3.2)

Here B1 = max{a, b}, B2 = (1−π)/π, t∗ lies between logL(n)(t) and logL(n)(s),
B3 is a bound for | log µ(n)(·) |, and B4 is a bound for | (1 − µ(n)(·))λ(n)

0 (·) | .

Since (N (n)(t)− ∫ t
0 λ(n)(u)du)2 − ∫ t

0 λ(n)(u)du is a martingale (cf. Jacobsen
(1982, p.39)), we know

E(N (n)(t) − N (n)(s))2

=E
(∫ t

s
λ(n)(u)du

)
−E

(∫ t

s
λ(n)(u)du

)2
+2E

[
(N (n)(t)−N (n)(s))

∫ t

s
λ(n)(u)du

]
. (3.3)

It follows from (3.3) that, there is a B5 such that

E(N (n)(t) − N (n)(s))2 ≤ B5 | t − s | . (3.4)

Putting (3.2) and (3.4) together, we get (3.1) by making use of Lemma
3.1. This completes the proof.

Proof of Lemma 3.3. Let l be a positive integer. Let T l be an optimal stopping
time problem for the stochastic sequence {(X(n)

k/2l ,G(n)
k/2l) | k = 0, 1, . . . , 2lM}. It

follows from Lemma 4.2 on p.64 of Chow, Robbins & Siegmund (1971) that we
can assume T l admissible. Let

T l
∗ = max {T 1, . . . , T l}, τ

(n)
∗ = lim

l→∞
T l
∗.

Using the arguments in the proof of Lemma 3.2, we obtain

lim
l→∞

E(X(n)

T l∗
) = E(X(n)

τ
(n)
∗

), (3.5)

by the Lebesgue dominated convergence theorem applied to τ
(n)
∗ − T l∗. Note that

E(X(n)

T l∗
) ≤ E(X(n)

T l+1∗
) for every l = 1, 2, . . . .

Let τ (n) be an arbitrary G(n)
t − stopping time with τ (n) ≤ M. Let

τ (n),l = inf
{ k

2l
∈ [0,M ] | k is an integer,

k

2l
> τ (n)

}
.
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Then, using (3.1) and (3.5), we get

E(X(n)

τ (n)) = lim
l→∞

E(X(n)

τ (n),l) ≤ lim
l→∞

E(X(n)

T l∗
) = E(X(n)

τ
(n)
∗

).

This completes the proof.

Proof of Lemma 3.4. The idea of the proof is to create a new sequence
{X̃(n)

1/2l , X̃
(n)
2/2l , . . .} which is close to the sequence {X(n)

1/2l , X
(n)
2/2l , . . .} and has a

discrete distribution as {X(0)
1/2l , X

(0)
2/2l , . . .} does. Applying backward induction

to this new sequence, we conclude the proof.
For k = 0, 1, . . . , we let

X̃
(n)
k

2l

= −h(π̃(n)
k/2l) − c

k

2l
,

where π̃
(n)
t = π/[π + (1 − π)L̃(n)(t)] and L̃(n)(t) is given in (2.2).

Let τ (n),l be any G(n)
k/2l− stopping time satisfying τ (n),l ≤ M. Then

∣∣∣E(X(n)

τ (n),l) − E(X̃(n)

τ (n),l)
∣∣∣ ≤

2lM∑
k=0

E
∣∣∣X(n)

k

2l

− X̃
(n)
k

2l

∣∣∣. (3.6)

It follows from (2.2), (2.6), and Lemma 3.1 that both X
(n)
k/2l and X̃

(n)
k/2l con-

verge weakly to X
(0)
k/2l . Since these are bounded random variables, we know (3.6)

converges to 0.
Let τ

(n,l)
1 be an optimal stopping time for {X̃(n)

k/2l}. Then (3.6) implies that

lim
n→∞

∣∣∣E(X(n)

τ
(n,l)
∗

) − E(X̃(n)

τ
(n,l)
1

)
∣∣∣ = 0. (3.7)

Consider now U (n) ≡ (X̃(n)
0/2l , X̃

(n)
1/2l , . . . , X̃

(n)
2lM/2l), which converges weakly

to U (0) ≡ (X(0)

0/2l , X
(0)

1/2l , . . . , X
(0)

2lM/2l) as n goes to infinity. With a change of

probability space, we may assume without loss of generality that U (n) converges
almost surely to U (0) as n goes to infinity (See, for example, Pollard (1984,
p.71)). Since both U (n) and U (0) are discrete random vectors, it follows from
backward induction (cf. Chow, Robbins & Siegmund (1971, p.50)) that there
exists an optimal stopping time τ̃

(n,l)
∗ for the sequence {X̃(n)

k/2l} which converges

almost surely to τ
(0,l)
∗ , an optimal stopping time for U (0). This together with

(3.7) completes the proof.

Proof of Lemma 3.5. With Lemma 3.1, it follows from the strong representa-
tion theorem (cf. Pollard (1984, p.71)) that there exist counting processes N

(n)
∗ (·)
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and N
(0)
∗ (·) identically distributed as N (n)(·) and N (0)(·) respectively such that

N
(n)
∗ (·) converges to N

(0)
∗ (·) almost surely. The conclusion of this lemma follows

easily from this observation. This completes the proof.

Proof of Theorem 2.2. Part (i) is just Lemma 3.3. We need only prove (2.10).
It follows from (3.1) that, for every l,

E(X(n)

τ
(n,l)
∗

) ≤ E(X(n)

τ
(n)
∗

) ≤ E(X(n)

τ
(n),l
∗

) + B∗ 1
2l

≤ E(X(n)

τ
(n,l)
∗

) + B∗ 1
2l

. (3.8)

Letting n go to infinity in (3.8), we get

E(X(0)

τ
(0,l)
∗

) ≤ lim inf
n→∞ E(X(n)

τ
(n)
∗

) ≤ lim sup
n→∞

E(X(n)

τ
(n)
∗

) ≤ E(X(0)

τ
(0,l)
∗

) + B∗ 1
2l

. (3.9)

Since (3.9) is valid for every l, and liml→∞ E(X(0)

τ
(0,l)
∗

) = E(X(0)
τ∗ ), we get (2.10).

This completes the proof.

Proof of Theorem 2.1. Let ξ > 0 be given. It follows from the Bayesian
property of S(0) that there exists c∗ > 0, w∗ ∈ (0, 1) such that S(0) is the optimal
stopping time for the stochastic process X̌

(0)
t . Here X̌

(0)
t and, more generally,

X̌
(n)
t are defined by X̌

(n)
t = −ȟ(π̌(n)

t )− c∗t, π̌
(n)
t = ξ/(ξ + (1 − ξ)L(n)(t)), ȟ(z) =

min [(1 − w∗)z,w∗(1 − z)].
Assume τ (n) ≤ M.

Let τ̌
(n)
∗ be the optimal stopping time for the stochastic process X̌

(n)
t on

[0,M ]. Then it follows from Theorem 2.2 that

lim
n→∞ Ě(X̌(n)

τ̌
(n)
∗

) = Ě(X̌(0)

τ̌
(0)
∗

), (3.10)

where Ě(·) = E0(ξ + (1 − ξ)L(n)(∞))(·).
Hence, using Lemma 3.5, Lemma 3.6 and (3.10), we have

lim
n→∞{ξ[(1 − w∗)α0(S(n)) + c∗E0(S(n))] + (1 − ξ)[w∗α1(S(n)) + c∗E1(S(n))]}

= −Ě(X̌(0)

S(0)) ≤ −Ě(X̌(0)

τ̌
(0)
∗

)

= lim
n→∞[−Ě(X̌(n)

τ̌
(n)
∗

)] ≤ lim inf
n→∞ [−Ě(X̌(n)

τ (n))]

= lim inf
n→∞ {ξ[(1 − w∗)α(n)

0 + c∗E0(τ (n))] + (1 − ξ)[w∗α(n)
1 + c∗E1(τ (n))]}. (3.11)

Since (3.11) is true for every ξ ∈ (0, 1), (2.4) is a consequence of (2.3) and
(3.11). This completes the proof.

Proof of Proposition 1.1. Using the arguments in p.13-15, Jacobsen (1982),
we can show that F̄ (n)

S = G(n)

W (n)(S)
if S is a random time, i.e., S is a non-negative
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F̄ (n)
∞ − measurable random variable. We note that F̄ (n)

S (G(n)

W (n)(S)
) is, in fact, the

pre-algebra defined in 2.11, Jacobsen (1982), and is equal to the σ-field associated
with a stopping time when S (W (n)(S)) is a stopping time. With this, we first
establish the proposition when S or W (n)(S) is constant, and then establish it
for general stopping times.

Let a > 0 be a constant. Then, for t ≥ 0,

[(W (n))−1(a) ≤ t] = [a ≤ W (n)(t)] ∈ G(n)

W (n)(t)
= F̄ (n)

t .

Here we used the fact that a random time W (n)(t) is G(n)

W (n)(t)
− measurable, which

can be proved by making use of the definition of the pre-W (n)(t) algebra G(n)

W (n)(t)
.

This shows that (W (n))−1(a) is a F̄ (n)
t − stopping time.

Next, let S be a F̄ (n)
t − stopping time. Then

[W (n)(S) ≤ t] = [S ≤ (W (n))−1(t)] ∈ F̄ (n)

(W (n))−1(t)
= G(n)

t ,

which shows that W (n)(S) is a G(n)
t − stopping time.

Assume W (n)(S) is a G(n)
t − stopping time. Then

[S ≤ t] = [W (n)(S) ≤ W (n)(t)] ∈ G(n)

W (n)(t)
= F̄ (n)

t ,

which shows that S is a F̄ (n)
t − stopping time. This completes the proof.
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