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Abstract: For right censored data, Efron (1981) has shown that his “simple” and
“obvious” methods of bootstrapping are equivalent. We explain why this equiv-
alence no longer holds for truncated data. Wang (1991) generalized Efron’s “ob-
vious” bootstrap method to data that are both left truncated and right censored,
under the assumption that C ≥ T and C − T is independent of T , where T and C
denote the (generic) censoring and truncation variables. We discuss how the “ob-
vious” bootstrap method can be extended when this independence assumption is
removed, and also develop an asymptotic theory of the “simple” bootstrap method
for left truncated and right censored data, showing that the “simple” bootstrap
approximations to the sampling distributions of various nonparametric statistics
from these data are accurate to the order of Op(n−1).
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1. Introduction

Let (Y1, T1, C1), (Y2, T2, C2), . . . be i.i.d. random vectors such that (Ti, Ci) is
independent of Yi. Let F denote the common distribution function of the random
variables Yi, and H denote the common bivariate distribution of the random
vectors (Ti, Ci). Here F and its functionals are quantities of interest, but they
cannot be estimated directly from the Yi which are not completely observable
because of the presence of the right censoring and left truncation variables Ci and
Ti. Letting Ỹi = min(Yi, Ci) and δi = I(Yi ≤ Ci), one only observes (Ỹi, δi) when
Ỹi ≥ Ti. Thus, the data consist of n observations (Ỹi,o, δi,o, Ti,o) with Ỹi,o ≥ Ti,o,
i = 1, . . . , n. Such left truncated and right censored (l.t.r.c.) data have wide
applications in biostatistics (cf. Hyde (1977), Tsai, Jewell and Wang (1987),
Keiding, Holst and Green (1989), Kalbfleisch and Lawless (1989), Wang (1991),
and Andersen et al. (1993)). When censoring is absent, multiplying the random
variables by −1 converts a left truncated model into a right truncated model, and
right truncated data have extensive applications in astronomy and econometrics
(cf. Lynden-Bell (1971), Nicoll and Segal (1980), Bhattacharya, Chernoff and
Yang (1983), Efron and Petrosian (1994), Tobin (1958), Goldberger (1981) and
Amemiya (1985)). Throughout the sequel we let

τ = inf{s : P (T1 ≤ s ≤ C1) > 0}, τ∗ = inf{s > τ : P (T1 ≤ s ≤ C1) = 0}. (1.1)
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Bootstrap methods for right censored data without left truncation (i.e.,
Ti ≡ −∞) were introduced by Efron (1981) and Reid (1981) and subsequently
studied by Akritas (1986), Lo and Singh (1986), Horváth and Yandell (1987),
Babu (1991), Lai and Wang (1993), among others. Let Q denote the common
distribution function of the Ci. Given the observed data (Ỹ1, δ1), . . . , (Ỹn, δn),
Efron’s “obvious” bootstrap starts by estimating the unknown F and Q from
these data by the Kaplan-Meier estimates F̂ and Q̂, and generates indepen-
dent random variables Y ∗

1 , . . . , Y ∗
n , C∗

1 , . . . , C∗
n from the distributions F̂ (for

the Y ∗
i ) and Q̂ (for the C∗

i ) to form the bootstrap sample Ỹ ∗
i = min(Y ∗

i , C∗
i ),

δ∗i = I(Y ∗
i ≤ Ci), i = 1, . . . , n. His “simple” bootstrap simply draws independent

random vectors (Ỹ ∗
i , δ∗i ), i = 1, . . . , n, from the empirical distribution that puts

weight 1/n at each of the observations (Ỹ1, δ1), . . . , (Ỹn, δn) to form the bootstrap
sample. He showed that the “obvious” and “simple” bootstrap methods are ac-
tually equivalent because of certain properties of the Kaplan-Meier estimates F̂

and Q̂, as will be discussed further in Section 3.
Wang (1991) extended Efron’s obvious bootstrap method from censored data

to l.t.r.c. data under the following assumptions on the censoring and truncation
variables:

Ci ≥ Ti and Ci − Ti is independent of Ti, (1.2)

F is continuous, τ < inf{s : F (s) > 0} and G−1(1)<F−1(1)<τ∗, (1.3)

where G denotes the common distribution function of the truncation variables
Ti, τ and τ∗ are defined in (1.1) and F−1(1) = sup{t : F (t) < 1}. Under (1.3),
S(t) := P{Y1 ≥ t} can be consistently estimated by

Ŝ(t) =
∏
s<t

{1 − ∆Nn(s)/Rn(s)}, (1.4)

where

Rn(s) =
n∑

i=1

I(Ti,o ≤ s ≤ Ỹi,o), Nn(s) =
n∑

i=1

I(Ỹi,o ≤ s, δi,o = 1), (1.5)

∆Nn(s) = Nn(s) − Nn(s−) and we use the convention 0/0 = 0. Moreover, G(t)
can be consistently estimated by

Ĝ(t) =
{ ∑

i≤n:Ti,o≤t

(Ŝ(Ti,o))−1
}
/
{ n∑

i=1

(Ŝ(Ti,o))−1
}
. (1.6)

Let F̂ (t) = 1 − Ŝ(t+). Because of (1.2), we need only estimate, besides F and
G, the common distribution function Q of Ci − Ti, which is estimated by the
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product-limit estimator

Q̂(t) = 1, if t ≥ max
i≤n

(Ỹi,o − Ti,o),

= 1 −
∏

0≤s≤t

{1 − ∆N ′
n(s)/R′

n(s)}, if 0 ≤ t < max
i≤n

(Ỹi,o − Ti,o), (1.7)

where N ′
n(s) =

∑n
i=1 I(δi,o = 0, Ỹi,o − Ti,o ≤ s), R′

n(s) =
∑n

i=1 I(Ỹi,o − Ti,o ≥ s).
Wang’s (1991) bootstrap method generates independent random variables Y ∗

j ,
T ∗

j , D∗
j such that Y ∗

j has distribution F̂ , T ∗
j has distribution Ĝ and D∗

j has
distribution Q̂. Let C∗

j = T ∗
j + D∗

j , δ∗j = I(Y ∗
j ≤ C∗

j ), Ỹ ∗
j = min(Y ∗

j , C∗
j ). Retain

(Ỹ ∗
j , δ∗j , T ∗

j ) in the bootstrap sample if and only if Ỹ ∗
j ≥ T ∗

j , so that the bootstrap
sample consists of n random vectors (Ỹ ∗

1,o, δ
∗
1,o, T

∗
1,o), . . . , (Ỹ

∗
n,o, δ

∗
n,o, T

∗
n,o), with

Ỹ ∗
i,o ≥ T ∗

i,o, generalizing Efron’s “obvious” bootstrap method to l.t.r.c. data.
On page 140 of Wang (1991), it is mentioned that for l.t.r.c. data this obvious

bootstrap method is no longer equivalent to the simple bootstrap method that
samples n times with replacement from {(Ỹ1,o, δ1,o, T1,o), . . . , (Ỹn,o, δn,o, Tn,o)},
and there is also the following comment concerning these two different bootstrap
methods: “Some preliminary theoretical results as well as a large simulation
study · · · have shown the validity of the obvious method for left-truncated and
right-censored data. The appropriateness of the simple method, however, still
remains unclear”. In Section 2 we give an asymptotic justification of the simple
bootstrap method in general l.t.r.c. models that assume neither (1.2) nor (1.3).
This asymptotic theory also generalizes the recent work of Lai and Wang (1993)
on censored data to l.t.r.c. data, showing that the simple bootstrap method pro-
vides an empirical Edgeworth expansion, with an Op(n−1) error, of the sampling
distribution of a nonparametric estimate of an estimable functional of (F,H).
Some numerical examples are presented in Section 2 to illustrate the applica-
tions of this theory.

Note that while the obvious bootstrap starts by estimating the distribution
F of the Yi and the bivariate distribution H of the (Ti, Ci), the simple bootstrap
does not involve estimation of (F,H). In Section 3 we study the problem of
estimating F and H when the independence assumption (1.2) fails and develop
an alternative consistent estimator Ĥ of H without assuming (1.2). Although
using Ĥ in the obvious bootstrap method enables us to remove the stringent
independence assumption (1.2), Ĥ requires certain smoothness assumptions on
H which may still be too restrictive in practice. The discussion in Section 3 shows
that for l.t.r.c. data the simple bootstrap method, whose theoretical justification
has been provided in Section 2, has important practical advantages over the
obvious bootstrap method.



512 SHULAMITH T. GROSS AND TZE LEUNG LAI

2. Theory and Applications of the Simple Bootstrap Method for
L.T.R.C. Data

In this section we extend the l.t.r.c. model considered in Section 1 to include
covariates and develop an asymptotic theory of the simple bootstrap method for
this extended model. Let (X1, Y1), (X2, Y2), . . . be i.i.d. random vectors which
are not completely observable due to right censoring of the Yi by Ci and left
truncation by Ti, where the (Ti, Ci) are i.i.d. random vectors that are independent
of (Xi, Yi). The observations, which are available only when Ỹi := Yi ∧ Ci ≥ Ti,
consist of (Xi,o, Ỹi,o, δi,o, Ti,o), with Ỹi,o ≥ Ti,o and δi,o = I(Yi,o ≤ Ci,o), i =
1, . . . , n. Here and in the sequel we use Y ∧ C to denote min(Y,C). A crucial
fact underlying the theory of the simple bootstrap method for these data is the
following.

Lemma 1. The (Xi,o, Ỹi,o, δi,o, Ti,o) are i.i.d. random vectors whose common
distribution is given by

P{δi,o = δ, (Xi,o, Ỹi,o, Ti,o) ∈ A}
= P{I(Y1 ≤ C1) = δ, (X1, Y1 ∧ C1, T1) ∈ A}/P{Y1 ∧ C1 ≥ T1}, (2.1)

for δ = 0 or 1 and all Borel sets A such that y ≥ t if (x, y, t) ∈ A.

Proof. As in Lai and Ying (1991), we can regard (Xi,o, Ỹi,o, δi,o, Ti,o) as (Xσ(i),
Ỹσ(i), δσ(i), Tσ(i)), where

σ(i) = inf
{
m ≥ 1 :

m∑
j=1

I(Yj ∧ Cj ≥ Tj) = i
}
. (2.2)

Note that σ(1), σ(2)−σ(1), σ(3)−σ(2), · · · are i.i.d. geometric random variables
with P{σ(1) = n} = p(1 − p)n−1, where p = P{Y1 ∧ C1 ≥ T1}. Hence the
(Xi,o, Ỹi,o, δi,o, Ti,o) are i.i.d. random vectors and (2.1) follows from Theorem II.3.2
of Devroye (1986) on the rejection method of random variate generation.

Remark. In certain contexts, such as in astronomy (cf. Woodroofe (1985))
or in retrospective studies of disease (cf. Kalbfleisch and Lawless (1989)), it
would be reasonable to suppose that the sample size n is also random with
n =

∑N
j=1 I(Yj ∧ Cj ≥ Tj), where N is nonrandom but unobservable, so that

there are N i.i.d. random vectors (X1, Y1, C1, T1), . . . , (XN , YN , CN , TN ) from
which one observes only those quadruples with Ỹi ≥ Ti, yielding the observations
(Xi,o, Ỹi,o, δi,o, Ti,o) = (Xσ(i), Ỹσ(i), δσ(i), Tσ(i)). In this case, the conditional dis-
tribution of {(Xi,o, Ỹi,o, δi,o, Ti,o), 1 ≤ i ≤ n} given n is the same as that as in
Lemma 1. Thus all the results on the simple bootstrap method given below still
hold in this case under the conditional probability measure P (·|n).
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2.1. Asymptotic U-statistics of l.t.r.c. data and Edgeworth expansions

To develop an asymptotic theory of the simple bootstrap method for l.t.r.c.
data, we make use of Lemma 1 together with the results of Lai and Wang (1993)
on asymptotic U -statistics and their Edgeworth expansions. Let Z, Z1, . . . ,Zn be
i.i.d. p-dimensional random vectors. A real-valued function Un = Un(Z1, . . . ,Zn)
of Z1, . . . ,Zn is called an asymptotic U -statistic if it has the decomposition

Un =
n∑

i=1

{α(Zi)√
n

+
α′(Zi)
n3/2

}
+

∑
1≤i<j≤n

β(Zi,Zj)
n3/2

+
∑

1≤i<j<k≤n

γ(Zi,Zj ,Zk)
n5/2

+∆n, (2.3)

wherre α,α′, β, γ are nonrandom Borel functions which are invariant under per-
mutation of the arguments and

(A1) P{|∆n| ≥ n−1−ε} = o(n−1) for some ε > 0,
(A2) Eα(Z) = Eα′(Z) = 0,
(A3) E{β(Z1,Z2)|Z1} = 0, E{γ(Z1,Z2,Z3)|Z1,Z2} = 0,
(A4) E{|α′(Z1)|3 + |γ(Z1,Z2,Z3)|4} < ∞.

For t ≥ a, the following example represents the product-limit estimator F̂a(t) of

Fa(t) := P{Y1 ≤ t|Y1 ≥ a} = F (t)/(1 − F (a−)) (2.4)

as an asymptotic U -statistic, which we then use to derive an Edgeworth expansion
for F̂a(t).

Example 1. Defining Nn(s) and Rn(s) by (1.5), the product-limit estimator of
Fa(t) is

F̂a(t) := 1 −
∏

a≤s≤t

{1 − ∆Nn(s)/Rn(s)} (2.5)

for t ≥ a. By (4.17) and (4.18) of Lai and Ying (1991), for t ≥ a,

F̂a(t) − Fa(t)
1 − Fa(t)

=
n∑

i=1

∫ t

a

1 − F̂a(s−)
1 − Fa(s)

· I(Rn(s) > 0)
Rn(s)

dMi(s), (2.6)

where letting Λ(t) =
∫ t
−∞ dF (s)/(1 − F (s−)), we define

Mi(t) = I(Ỹi,o ≤ t, δi,o = 1) −
∫ t

−∞
I(Ti,o ≤ s ≤ Ỹi,o)dΛ(s),

p(s) = P{T1,o ≤ s ≤ Ỹ1,o}, wi(s) = I(Ti,o ≤ s ≤ Ỹi,o) − p(s). (2.7)

To simplify matters, we assume that F is continuous so that 1 − Fa(s) = 1 −
Fa(s−). We also assume that τ < a < t < (τ∗ ∧ F−1(1)), where τ and τ∗ are
defined by (1.1). Therefore, infa≤s≤t p(s) > 0. By Lemma 5 of Lai and Ying
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(1991), {I(T1 ≤ Y1 ≤ t ∧ C1) −
∫ t
−∞ I(T1 ≤ s ≤ Y1 ∧ C1)dΛ(s), −∞ < t < ∞} is

a continuous-parameter martingale and therefore it follows from Lemma 1 that
the i.i.d. processes {Mi(t),−∞ < t < ∞} are martingales.

Writing (1−F̂a(s−))/(1−Fa(s−)) = 1−{F̂a(s−)−Fa(s−)}/{1−Fa(s−)} and
Rn(s) =

∑n
j=1{p(s) + wj(s)}, and expanding (p(s) + x)−1 by Taylor’s theorem,

we obtain from (2.6)

√
n

F̂a(t) − Fa(t)
1 − Fa(t)

=
1√
n

n∑
i=1

∫ t

a

{ 1
p(s)

− n−1 ∑n
1 wj(s)

p2(s)
+

(n−1 ∑n
1 wj(s))2

p3(s)

}
dMi(s)

− 1√
n

n∑
i=1

n∑
j=1

∫ t

a

∫ s−

a

{ 1
p(s)

− n−1 ∑n
1 wk(s)

p2(s)

} 1
np(u)

dMj(u)dMi(s) (2.8)

+
1

n5/2

n∑
i=1

n∑
j=1

n∑
k=1

∫ t

a

∫ s−

a

∫ u−

a

1
p(s)p(u)p(v)

dMk(v)dMj(u)dMi(s) + ∆̃n,

where the remainder term ∆̃n can be shown to satisfy P{|∆̃n| ≥ n−1−ε} = o(n−1)
for 0 < ε < 1/2 by using exponential bounds for the empirical process

∑n
j=1 wj(s)

and exponential inequalities for continuous-parameter martingales (cf. Shorack
and Wellner (1986), page 899). Letting Zi = (Ỹi,o, δi,o, Ti,o) and making use of
the identity

∑n
j=1 w2

j (s) = np(s)(1 − p(s)) + (1 − 2p(s))
∑n

j=1 wj(s), it follows
from (2.8) that Un =

√
n(F̂a(t)− Fa(t))/(1 − Fa(t)) has the decomposition (2.3)

with P{|∆n| ≥ n−1−ε} = o(n−1) for 0 < ε < 1/2 and with

α(Zi) =
∫ t

a
(p(s))−1dMi(s),

α′(Zi) = −
∫ t

a

wi(s)
p2(s)

dMi(s) +
∫ t

a

1 − p(s)
p2(s)

dMi(s)

−
∫ t

a

∫ s−

a

1
p(s)p(u)

dMi(u)dMi(s),

β(Zi,Zj) = −
∫ t

a

wi(s)dMj(s) + wj(s)dMi(s)
p2(s)

−
∫ t

a

∫ s−

a

dMi(u)dMj(s) + dMj(u)dMi(s)
p(s)p(u)

,

γ(Zi,Zj ,Zk) =
∑
π

{ ∫ t

a

wπ(1)(s)wπ(2)(s)
p3(s)

dMπ(3)(s)

+
∫ t

a

∫ s−

a

wπ(1)(s)
p2(u)p(s)

dMπ(2)(u)dMπ(3)(s)
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+
∫ t

a

∫ s−

a

∫ u−

a

1
p(v)p(u)p(s)

dMπ(1)(v)dMπ(2)(u)dMπ(3)(s)
}
,

where
∑

π denotes summation over all six permutations of {i, j, k}.
The representation of Un =

√
n(F̂a(t) − Fa(t))/(1 − Fa(t)) as an asymptotic

U -statistic in Example 1 shows that Un has a limiting normal distribution with
mean 0 and variance

σ2 := Var (α(Z1)) = P{Ỹ1 ≥ T1}
∫ t

a

1
P{T1 ≤ s ≤ C1}

dF (s)
(1 − F (s))2

. (2.9)

We next use it in conjunction with Theorem 1 of Lai and Wang (1993) to derive
an Edgeworth expansion of the distribution of Un under Cramér’s condition

lim sup
|t|→∞

|Eeitα(Z1)| < 1. (2.10)

Note in this connection that the second equality in (2.9) follows from (4.12) of
Lai and Ying (1991) and Lemma 1, recalling that F is assumed to be continuous.
Moreover, from the definition of α(Zi), it follows that Cramér’s condition (2.10)
holds if F has a non-vanishing absolutely continuous component with respect to
Lebesgue measure.

Letting φ and Φ denote the density and distribution functions of the standard
normal distribution, Theorem 1 of Lai and Wang (1993) gives an Edgeworth
expansion of the form

P{Un/σ ≤ z} = Φ(z) − n−1/2φ(z)P1(z) − n−1φ(z)P2(z) + o(n−1), (2.11)

uniformly in −∞ < z < ∞, for asymptotic U -statistics (2.3) whose random
walk component satisfies (2.10) and whose second-degree U -statistic component
satisfies the following condition.

Condition (C). E|β(Z1,Z2)|r < ∞ for some r > 2 and there exist K Borel
functions fν : Rp → R such that K(r − 2) > 32r − 40, Ef2

ν (Z1) < ∞ and the
covariance matrix of (W1, . . . ,WK) is positive definite, where Wν = (Lfν)(Z1)
and (Lf)(z) = E{β(z,Z2)f(Z2)}.

With the same assumptions as in Example 1 and with β given there, it
can be shown by an argument similar to that of Example 1 of Lai and Wang
(1993) that Condition (C) is satisfied. Hence if (2.10) holds with α(Zi) given
in Example 1, then Un =

√
n(F̂a(t) − Fa(t))/(1 − Fa(t)) has the Edgeworth

expansion (2.11) in which σ is given by (2.9) and P1(z), P2(z) are polynomials
in z whose coefficients involve product-moments of α(Z1), α′(Z1), β(Z1,Z2) and
γ(Z1,Z2,Z3), cf. Theorem 1 of Lai and Wang (1993).
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Example 2. Under the assumptions of Example 1, a consistent estimate of (2.9)
is

σ̂2 := n
∑

a≤s≤t

∆Nn(s)/R2
n(s) =

∫ t

a

dNn(s)/n
(Rn(s)/n)2

,

where Nn(s) and Rn(s) are defined in (1.5), cf. Gross and Lai (1994). Take
any sequence of positive constants εn such that limn→∞ εn = 0. The following
representation of the Studentized statistic as an asymptotic U -statistic will be
proved in the Appendix:

Vn : =
√

n(F̂a(t) − Fa(t))/max{σ̂(1 − F̂a(t)), εn}

=
n∑

i=1

{αV (Zi)√
n

+
α′

V (Zi)
n3/2

}
+

∑
1≤i<j≤n

βV (Zi,Zj)
n3/2

+
∑

1≤i<j<k≤n

γV (Zi,Zj ,Zk)
n5/2

+ Dn, (2.12)

where, using the same notation as in Example 1, αV (Zi) = α(Zi)/σ, α′
V , βV

and γV are given in the Appendix and P{|Dn| ≥ n−1−ε} = o(n−1) for every
0 < ε < 1/2. Hence under (2.10) on α and Condition (C) on βV , we can again
apply Theorem 1 of Lai and Wang (1993) to obtain an Edgeworth expansion of
the form

P{√n(F̂a(t) − Fa(t))/max[σ̂(1 − F̂a(t)), εn] ≤ z}
= Φ(z) − n−1/2φ(z)P1(z) − n−1φ(z)P2(z) + o(n−1). (2.13)

The next two examples apply the asymptotic U -statistic representation to a
wide class of statistics based on l.t.r.c. data. Let Ψ be the common distribution
function of (Xi,o, Ỹi,o, δi,o, Ti,o) and let µ(Ψ) be a functional of Ψ. A functional
J(K,H) of the distribution K of (X1, Y1) and the distribution H of (T1, C1) is
said to be estimable if J(K,H) can be expressed as a functional µ(Ψ) of Ψ. In
particular, for τ < a < t < (τ∗ ∧ F−1(1)),

Λa(t) : =
∫ t

a

dF (s)
1 − F (s−)

=
∫ t

a

P{T1 ≤ s ≤ C1}dF (s)
P{T1 ≤ s ≤ C1}(1 − F (s−))

=
∫ t

a

dP{T1≤Y1≤s ∧ C1}
P{T1≤s≤Y1 ∧ C1} =

∫ t

a

dP{Ỹ1,o≤s, δ1,o =1}
P{T1,o≤s≤ Ỹ1,o}

(by Lemma 1)

is a functional of Ψ and is therefore an estimable functional of F . Hence

Fa(t) = 1 − e−Λc
a(t)

∏
a≤s≤t

(1 − ∆Λa(s)) (2.14)
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is also an estimable functional. The notation Λc
a in (2.14) denotes the continuous

part of Λa. Clearly Ti,o ≥ τ and Ỹi,o ≤ τ∗ with probability 1, and therefore only
Fτ (y) with y ≤ τ∗ can be nonparametrically estimated from the observed data
(cf. Keiding and Gill (1990) and Lai and Ying (1991)).

Example 3. Gross and Lai (1994) introduced a general class of estimable
functionals of the joint distribution K of (X1, Y1) and developed asymptoti-
cally normal estimates of these functionals. Closely related to Example 1 are
the trimmed means µ(a, b) := E{h(Y1)|a ≤ Y1 ≤ b} = {∫ b

a h(y)dFa(y)}/Fa(b)
for smooth functions h, where τ < a < b < (τ∗ ∧ F−1(1)). For continuous
h, Gross and Lai (1994) showed that

√
n(µ̂n(a, b) − µ(a, b)) has a limiting nor-

mal distribution, and an argument similar to that of Examples 1 and 2 can
be used to show that

√
n(µ̂(a, b) − µ(a, b)) is an asymptotic U -statistic, where

µ̂(a, b) =
∫ b
a h(y)dF̂a(y)/F̂a(b) and F̂a is the product-limit estimator (2.5) of

Fa. Motivated by applications to regression analysis and curve fitting, they also
considered estimating the parameter β∗, defined as the minimizer of g(β) :=
E{ρ(Y1 − βTX1)I(a ≤ Y1 ≤ b)} in some region D, by the solution β̂ of the
estimating equation∑

i:a≤Ỹi,o≤b

δi,oXi,oρ
′(Ỹi,o − βTXi,o)Ŝa(Ỹi,o)/Rn(Ỹi,o) = 0,

where Ŝa(t) =
∏

a≤s<t{1 − ∆Nn(s)/Rn(s)}, in analogy with (1.4), Rn(s) and
Nn(s) are defined in (1.5), and ρ is assumed to be convex and differentiable so
that g′(β) has a unique solution β∗ in D. Under certain regularity conditions,
the arguments used to prove the asymptotic normality of β̂ in Theorem 2 of
Gross and Lai (1994) can be refined along the lines of Example 1 to show that√

n(β̂n − β) is an asymptotic U -statistic.

Example 4. While Example 3 considers estimable functionals of the joint dis-
tribution K of (X1, Y1), we now consider estimable functionals of both K and
the bivariate distribution H of (T1, C1) under the assumption that

F (τ) = 0, P{T1 ≤ C1} = 1 = P{T1 ≤ F−1(1)}, (2.15)

as assumed by Wang (1991). Let p = P{Ỹ1 ≥ T1} = P{Y1 ≥ T1} (since T1 ≤ C1).
By Lemma 1,

P{T1,o ≤ t} = p−1P{T1 ≤ Y1 ∧ t} = p−1
∫ t

τ
S(u)dG(u),

where S(u) = P{Y1 ≥ u} and G(u) = P{T1 ≤ u}. Therefore p−1S(t)dG(t) =
dP{T1,o ≤ t}. Combining this with the assumption F−1(1) ≥ G−1(1) (= τ∗ by
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(1.1)) yields

p = p

∫ G−1(1)

τ
dG(t) =

∫ τ∗∧F−1(1)

τ
(S(t))−1dP{T1,o ≤ t}. (2.16)

Since F (τ) = 0 by (2.15), S(t) is estimable for t ≤ τ∗ ∧ F−1(1) (cf. (2.14)) and
therefore p is estimable by (2.16). Using heuristic arguments involving a “work-
ing” data set that involves unobservable censoring variables, Wang (1991) pro-
posed to estimate p by p̂ = n/

∑n
i=1(Ŝ(Ti,o))−1, where Ŝ(·) is defined in (1.4), and

showed that p̂ is a consistent and asymptotically normal estimate of p under cer-
tain regularity conditions. Note that (2.16) provides an alternative justification of
Wang’s estimator p̂. Moreover, since G(t) =

∫ t
τ dG(u) = p

∫ t
τ (S(u))−1dP{T1,o ≤

u} and since p is estimable, it follows that G(t) is also estimable and can be
consistently estimated by

Ĝ(t) = p̂n−1
∑

i:Ti,o≤t

(Ŝ(Ti,o))−1 =
{ ∑

i:Ti,o≤t

(Ŝ(Ti,o))−1
}
/
{ n∑

i=1

(Ŝ(Ti,o))−1
}
,

which is the same as Wang’s estimate (1.6) derived by heuristic “working-data”
arguments. Moreover, if (2.15) is replaced by the stronger assumption that (1.3)
holds and P{T1 ≤ C1} = 1, then arguments similar to those in Example 1 can be
used to show that

√
n(Ĝ(t) − G(t)) and

√
n(p̂ − p) are asymptotic U -statistics.

2.2. Asymptotic theory of the simple bootstrap method

Let Ψn denote the empirical distribution that puts probability 1/n at each
Zi = (Xi,o, Ỹi,o, δi,o, Ti,o), i = 1, . . . , n. The simple bootstrap sample consists
of i.i.d. random vectors Z∗

1, . . . ,Z
∗
n with common distribution Ψn. Let S =

S(Z1, . . . ,Zn) be an estimate of the functional µ(Ψ) and let σ̂ = σ̂(Z1, . . . ,Zn)
be an estimate of the standard error of S. The simple bootstrap method esti-
mates the sampling distribution P{(S −µ(Ψ))/σ̂ ≤ z} by P{(S∗ −µ(Ψn))/σ̂∗ ≤
z|Z1, . . . ,Zn}, where S∗ = S(Z∗

1, . . . ,Z
∗
n) and σ̂∗ = σ̂(Z∗

1, . . . ,Z
∗
n). In most ap-

plications,
√

n(S −µ(Ψ))/σ̂ can be expressed as an asymptotic U -statistic which
has a limiting standard normal distribution. The same argument can be used to
represent

√
n(S∗ − µ(Ψn))/σ̂∗ as an asymptotic U -statistic such that

P{√n(S∗ − µ(Ψn))/σ̂∗ ≤ z|Z1, . . . ,Zn} P→Φ(z), (2.17)

from which it follows that |P{√n(S∗ − µ(Ψn))/σ̂∗ ≤ z|Z1, . . . ,Zn} −P{√n(S −
µ(Ψ))/σ̂ ≤ z}| P→0, giving an asymptotic justification of the simple bootstrap
method. Furthermore, under (2.10) and Condition (C), asymptotic U -statistics
and their simple bootstrap versions have Edgeworth expansions whose difference
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is of the order Op(n−1), establishing the second-order accuracy of the simple
bootstrap method for l.t.r.c. data. This is a consequence of the following result
of Lai and Wang (1993).

Lemma 2. Let Z1,Z2, . . ., be i.i.d. p-dimensional random vectors with common
distribution Ψ and let Un = Un(Z1, . . . ,Zn) be an asymptotic U -statistic defined
by (2.3) and (A1)-(A4). Suppose that α satisfies (2.10) and β satisfies Condition
(C). Let Ψn(B) = n−1 ∑n

i=1 I(Zi ∈ B) denote the empirical distribution, and
let (Z∗

1, . . . ,Z
∗
n) be i.i.d. with common distribution Ψn. Suppose that there exist

functions α̂n, Ân, β̂n, γ̂n, ∆n, depending on Ψn and invariant under permutation
of arguments, such that

n−1
n∑

i=1

|Ân(Zi)|3 + n−3
∑

1≤i<j<k≤n

|γ̂n(Zi,Zj ,Zk)|4 = Op(1),

n∑
i=1

α̂n(Zi) =
n∑

i=1

Ân(Zi) = 0 =
n∑

i=1

β̂n(z1,Zi)

=
n∑

i=1

γ̂n(z1, z2,Zi), for any z1, z2 ∈ S(Ψ),

n−1
n∑

i=1

α̂2
n(Zi) = 1 = Eα2(Z1),

sup
z∈S(Ψ)

|α̂n(z) − α(z)|
1 + |α(z)| + sup

z,z′∈S(Ψ)
|β̂n(z, z′) − β(z, z′)| = Op(n−1/2),

where S(Ψ) denotes the support of Ψ. Let

U∗
n =

n∑
i=1

{ α̂n(Z∗
i )√

n
+

Ân(Z∗
i )

n3/2

}
+

∑
1≤i<j≤n

β̂n(Z∗
i ,Z

∗
j)

n3/2

+n−5/2
∑

1≤i<j<k≤n

γ̂n(Z∗
i ,Z

∗
j ,Z

∗
k) + ∆n(Z∗

1, . . . ,Z
∗
n), (2.18)

where nP{|∆n(Z∗
1, . . . ,Z

∗
n)| ≥ n−1−ε|Ψn} P→0 for some ε > 0. Then P{Un ≤ z}

has the Edgeworth expansion (2.11) and

P{U∗
n ≤ u|Ψn} = Φ(u)−n−1/2φ(u)P1(u)+Op(n−1) uniformly in −∞ < u < ∞.

Consequently, supu |P{Un ≤ u} − P{U∗
n ≤ u|Ψn}| = Op(n−1).

As an illustration of the applications of Lemma 2, we now show that P{√n

(F̂a(t) − Fa(t))/max[σ̂(1 − F̂a(t)), εn] ≤ u} in Example 2 can be approximated
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by the simple bootstrap estimate with an error of the order Op(n−1). Let
Zi = (Xi,o, Ỹi,o, δi,o, Ti,o) and let Ψ denote the common distribution of the Zi.
As pointed out in (2.14), Fa(t) can be expressed as a functional µ(Ψ) of Ψ since
Λa(s) can be expressed as a functional of Ψ. Comparison of (2.5) with such repre-
sentations of Λa and Fa shows that F̂a(t) = µ(Ψn). Moreover, the same argument
as in the Appendix shows that U∗

n =
√

n(F̂ ∗
a (t)− F̂a(t))/max{σ̂∗(1− F̂ ∗

a (t)), εn}
has the representation (2.18) with α̂n, Ân, β̂n, γ̂n satisfying the assumptions of
Lemma 2, as can be shown by an argument similar to that on page 528 of Lai
and Wang (1993).

2.3. Numerical examples of applications of the simple bootstrap to
l.t.r.c. data

In the following two examples, we apply the simple bootstrap method to
construct confidence intervals for survival probabilities in a real data set and to
estimate the bias and standard error of a regression estimator in several simulated
data sets.

Example 5. Table 1 of Hyde (1977) shows ages in months at death of 97 men
in Channing House in Palo Alto, California. The truncation times are ages in
months at entry into the community in 1965. Censoring times are ages in months
at the end of the study on July 1, 1975, or the age at withdrawal from the com-
munity. Confidence intervals for survival probabilities have been computed from
these data by Tsai, Jewell and Wang (1987) using normal approximations and
by Wang (1991) using the obvious bootstrap method that assumes independence
between C −T and T , where T and C are the truncation and censoring variables
respectively. This independence assumption may not be justified in the present
case because there were 5 censored cases of unknown cause, although censoring
due to termination of the study, with left truncation caused by death prior to
study initiation, does not violate the independence assumption. We therefore
applied, instead, the simple bootstrap method to these data. Estimation was
performed conditionally given that Y ≥ 867 months. This conditioning was also
used by Tsai, Jewell and Wang (1987) and Wang (1991), and the choice of 867
months yields risk set sizes Rn(s) that are not too small for s ≥ 867. As ex-
plained in Gross and Lai (1994), it is not possible to estimate the entire survival
distribution when left truncation and right censoring are present.

In Table 1 we display three types of (pointwise) 95% confidence intervals
for the conditional survival probabilities P{Y ≥ y|Y ≥ 867} at several ages
y between 909 and 1012 months. The first two types are (simple-)bootstrap
confidence intervals using the percentile-t and the percentile methods (cf. Hall
(1988)), while the third type of confidence intervals is based on the normal ap-
proximation to

√
n(F̂a(y−) − Fa(y−))/max{σ̂(1 − F̂a(y−)), εn} (see Example
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2). Here a = 867 and we take εn = 0.01. Each bootstrap estimate reported
in the table is based on 1000 bootstrap samples. The percentile-t bootstrap
confidence intervals for 1 − Fa(y−) tend to be asymmetric about the estimate
1− F̂a(y−) and to be narrower than the other two types of confidence intervals.
For example, at y = 998, the 95% percentile-t bootstrap confidence interval for
P{Y ≥ 998|Y ≥ 867} (which is estimated to be 0.502) is [0.332, 0.621], while the
95% bootstrap confidence interval using the percentile method is [0.358, 0.644]
which, like the normal confidence interval, is almost symmetric about 0.502.

Table 1. Estimates p̂ of conditional survival probabilities P{Y ≥ y|Y ≥ 867}
from Hyde’s data, and the associated confidence intervals [pL, pU ] obtained by
the bootstrap percentile-t and the percentile methods, and by using normal
approximations.

Percentile-t Percentile Normal Approx

Age y p̂ pL pU pL pU pL pU

909 0.784 0.674 0.957 0.652 0.938 0.624 0.944
911 0.761 0.640 0.938 0.631 0.921 0.592 0.930
927 0.715 0.609 0.903 0.593 0.895 0.547 0.884
932 0.696 0.571 0.878 0.567 0.878 0.504 0.887
945 0.676 0.557 0.845 0.545 0.855 0.487 0.866
948 0.657 0.519 0.813 0.529 0.828 0.454 0.861
957 0.638 0.488 0.798 0.505 0.809 0.427 0.850
966 0.620 0.468 0.779 0.479 0.793 0.411 0.828
969 0.603 0.448 0.745 0.469 0.767 0.395 0.810
971 0.588 0.420 0.734 0.442 0.746 0.377 0.799
983 0.573 0.403 0.712 0.424 0.723 0.363 0.782
985 0.558 0.383 0.687 0.410 0.701 0.352 0.764
989 0.544 0.371 0.670 0.397 0.684 0.341 0.746
993 0.530 0.359 0.647 0.382 0.667 0.332 0.727
998 0.502 0.332 0.621 0.358 0.644 0.299 0.705
1009 0.488 0.319 0.610 0.352 0.631 0.289 0.687
1012 0.472 0.298 0.587 0.332 0.612 0.275 0.668

Example 6. In this example we apply the simple bootstrap method to estimate,
from each of six sets of simulated data, the bias and variance of the estimator
β̂, defined by the estimating equation (2.24), with ρ(u) = u2, of the minimizer β

of E{(Y − βTX)2I(a ≤ Y ≤ b)}. These data sets have been generated from the
following simulation experiment. Let X be uniformly distributed on [0, 4] and
let W be uniform on [0, 1] and independent of X. Let Y = 1 + X + γX2 + 2W k.
A pair (X,Y ) generated in this way is retained if Y ≥ T , where T + 0.5 has
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the exponential distribution with mean λ and is independent of (X,Y ). Triplets
(X,Y, T ) are generated until n = 50 such triplets are obtained. For each such
triplet, generate C = T +1+15U , where U is uniformly distributed on [0, 1] and
is independent of (X,Y, T ), and let Ỹ = Y ∧C, δ = I(Y ≤ C). Note that C ≥ T

and that τ = −0.5, τ∗ = ∞ (cf. (1.1)) while (τ <)1 ≤ Y ≤ 7 + 16γ(< τ∗). Thus,
the support of Y is inside (τ, τ∗) and we can, therefore, take a = −∞ and b = ∞
in the definitions of β and β̂ (cf. Gross and Lai (1994)). With a = −∞ and
b = ∞, the minimizer β = (β1, β2)T of E(Y − β1 − β2X)2 is given by

β2 = {E(XY ) − (EX)(EY )}/Var (X), β1 = E(Y ) − β2E(X), (2.19)

which are the slope and intercept terms, respectively, of the best linear approxi-
mation to the regression function. Note that when the support of Y is not inside
[τ, τ∗], this best linear approximations is not estimable and one has to consider
as in Example 3 the minimizer of E[(Y − β1 − β2X)2I(a ≤ Y ≤ b)] instead. The
use of a > τ and b < τ∗ also avoids the difficulties caused by small risk set sizes
near τ and τ∗, as in the treatment of the Channing House data in Example 5.

Table 2 considers six such simulated data sets (Xi,o, Ỹi,o, δi,o, Ti,o), i = 1, . . .,
50. Data sets I and II are generated using the following values of the parameters
γ, k and λ : γ = 0.2, k = 3 and λ = 4, which give the truncation probability
P{T > Y } = 0.298 and the censoring probability P{C > Y |Y ≥ T} = 0.144.
Data sets III and IV are generated using γ = 0.2, k = 3 and λ = 6, which give
P{T > Y } = 0.435 and P{C > Y |Y ≥ T} = 0.133. Data sets V and VI are
generated using γ = 0, k = 3 and λ = 4, which give P{T > Y } = 0.365 and
P{C > Y |Y ≥ T} = 0.081. These truncation and censoring probabilities and
the corresponding values of β1 and β2 in (2.19), together with the means and
standard deviations (also reported in Table 2) of the sampling distributions of
β̂1 and β̂2, were computed by the Monte Carlo method involving 500 simulations
for each result. From each of the six data sets, we computed the estimates β̂1

and β̂2 and their estimated standard errors using the asymptotic formulas (3.6)
and (3.7) of Gross and Lai (1994). We also used the simple bootstrap method
to estimate the bias (= E(β̂j − βj)) and the standard deviation SD(β̂j) of β̂j

(j = 1, 2). The results are given in Table 2, where each bootstrap estimate is
based on 500 (simple-)bootstrap samples. Particularly noteworthy is data set III,
in which the estimate β̂1 differs substantially from β1 but the bootstrap estimate
of the bias is still quite close to the population value of the bias. When the
standard deviations of β̂j estimated from the asymptotic theory are reasonably
close to the population values, they are also close to the bootstrap estimates.
However, when SD(β̂j) is not well estimated by the asymptotic theory (as in β̂2

for data sets II, III and V and β̂1 for data set III), the bootstrap method seems
to provide substantial improvement.
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Table 2. Estimates β̂j of βj , bias and standard deviation (SD) of β̂j , boot-
strap estimates Bias∗(β̂j) and SD∗(β̂j) of Bias(β̂j) and SD(β̂j), and estimate
ŜD(β̂j) of SD(βj) using asymptotic normality of β̂j, for j = 1, 2, from six sets
of simulated l.t.r.c. data with n = 50.

Data Set I II III IV V VI

β1 0.969 0.969 0.969 0.969 1.491 1.491
β̂1 0.841 1.200 0.227 0.812 1.573 1.380

Bias(β̂1) −0.013 −0.013 −0.006 −0.006 0.001 0.001
Bias∗(β̂1) −0.012 −0.005 −0.017 −0.020 0.004 −0.007
SD(β̂1) 0.205 0.205 0.228 0.228 0.185 0.185
SD∗(β̂1) 0.196 0.180 0.140 0.206 0.168 0.142
ŜD(β̂1) 0.185 0.178 0.121 0.210 0.194 0.148

β2 1.798 1.798 1.798 1.798 1 1
β̂2 1.919 1.713 2.101 1.882 1.006 1.051

Bias(β̂2) 0.104 0.104 −0.001 −0.001 0.004 0.004
Bias∗(β̂2) 0.002 0.005 −0.007 −0.003 −0.001 0.003
SD(β̂2) 0.088 0.088 0.094 0.094 0.077 0.077
SD∗(β̂2) 0.077 0.081 0.056 0.088 0.073 0.068
ŜD(β̂2) 0.079 0.102 0.042 0.100 0.108 0.083

3. Estimation of F,H and the Obvious Bootstrap
It will be assumed throughout this section that Ci ≥ Ti, as in Wang (1991).

First consider the problem of estimating the common distribution function F
of the Yi and the common bivariate distribution H of (Ti, Ci) without assuming
independence between Ti and Ci−Ti as in (1.2). This estimation problem is basic
to the obvious bootstrap method for l.t.r.c. data, and we shall explain why the
simple and obvious bootstrap methods are no longer equivalent even when the
data are only subject to truncation but not to censoring. It will be shown that
consistent estimation of (F,H) requires complicated smoothing and restrictive
assumptions, leading us to the conclusion that the simple bootstrap method for
l.t.r.c. data is preferable to the obvious bootstrap method in practice.

3.1. Nonparametric maximum likelihood estimate of (F,H)
Let Ψ(c|t) = P{C1 ≤ c|T1 = t}. Note that H(t, c) =

∫ t
−∞ Ψ(c|s)dG(s),

where G is the distribution function of T1. The likelihood function L of (F,G,Ψ)
is given by

L =
n∏

i=1

{
∆F (Ỹi,o)∆G(Ti,o)(1 − Ψ(Ỹi,o − |Ti,o))/p

}δi,o

×
{
∆Ψ(Ỹi,o|Ti,o)∆G(Ti,o)(1 − F (Ỹi,o))/p

}1−δi,o
,
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where ∆Ψ(c|t) = Ψ(c|t) − Ψ(c − |t) and

p = P{Ỹ1 ≥ T1} = P{Y1 ≥ T1} =
∫ ∞

−∞
(1 − F (t−))dG(t), (3.1)

since C1 ≥ T1. Let t1 < · · · < tm denote the distinct values of the Ti,o, and let
kj =

∑n
i=1 I(Ti,o = tj). As in Wang (1991), we decompose L into three factors,

yielding

L = L1L2L3, where L1 =
n∏

i=1

{(∆F (Ỹi,o))δi,o(1−F (Yi,o))1−δi,o/(1 − F (Ti,o−))},

L2 =
m∏

j=1

{∆G(tj)(1 − F (tj−))/p}kj ,

L3 =
m∏

j=1

{ ∏
i:Ti,o=tj

(1 − Ψ(Ỹi,o − |tj))δi,o(∆Ψ(Ỹi,o|tj))1−δi,o

}
,

from which it follows that the maximizer (F̂ , Ĝ, Ψ̂; p̂) of L can be characterized
as follows:
(i) 1 − F̂ (t−) = Ŝ(t), where Ŝ is given by (1.4), in view of L1.
(ii) Ĝ is a step function with jumps at tj(j = 1, . . . ,m), so p̂ =

∑n
i=1(1 −

F̂ (Ti,o−))∆G(Ti,o) in view of (3.1).
(iii) ∆Ĝ(tj)Ŝ(tj) is proportional to kj in view of L2, and therefore Ĝ is given by
(1.6).
(iv) Ψ̂(·|tj) is the product-limit estimator of the censoring distribution Ψ(·|tj)
based on {(Ỹi,o, 1 − δi,o) : Ti,o = tj}, in view of L3.

Under (1.3), F̂ and Ĝ are consistent estimates of F and G, as shown by Wang
(1991). However, when the bivariate distribution H of (T1, C1) is continuous, no
more than one censored Ỹi,o can be associated with each tj and therefore Ψ̂(·|tj)
fails to give a consistent estimate of Ψ(·|tj). To circumvent this difficulty, one way
is to impose certain independence assumptions as in (1.2) so that one can replace
the conditional distribution Ψ(·|tj) by some marginal distribution that can be
estimated. Another approach is to impose suitable smoothness assumptions on H

so that Ψ(c|t) is well approximated by P{C1 ≤ c|G(t)−∆n ≤ G(T1) ≤ G(t)+∆n}
which can be consistently estimated when ∆n approaches 0 at a certain rate
depending on the sample size n as n → ∞.

To begin with, note that the nonparametric maximum likelihood estimator
Ψ̂(·|tj) can be expressed as

Ψ̂(c|t) = 1 −
∏
s≤c

{
1 −

∑n
j=1 I(Ỹj,o = s, δj,o = 0)I(Tj,o = t)∑n
j=1 I(Ỹj,o ≥ s ≥ Tj,o)I(Tj,o = t)

}
. (3.2)
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If G is continuous, the denominator in (3.2) has at most one nonzero summand,
causing the inconsistency of Ψ̂(c|t). To increase the number of nonzero sum-
mands, we shall replace I(Tj,o = t) in (3.2) by a−1

n K({Ĝ(t)−Ĝ(Tj,o)}/an), where
K is a smooth probability density, {an} is a sequence of positive constants con-
verging to 0 and Ĝ is the estimate (1.6) of G. Thus, instead of estimating Ψ(c|t)
by (3.2), we use the estimate

Ψ̄(c|t) = 1 −
∏
s≤c

{
1 −

∑n
j=1 I(Ỹj,o = s, δj,o = 0)K({Ĝ(t) − Ĝ(Tj,o)}/an)∑n
j=1 I(Ỹj,o ≥ s ≥ Tj,o)K({Ĝ(t) − Ĝ(Tj,o)}/an)

}
. (3.3)

Noting that H(t, c) =
∫ t
−∞ Ψ(c|s)dG(s), we estimate H by

Ĥ(t, c) =
n∑

i=1

I(Ti,o ≤ t)Ψ̄(c|Ti,o)∆Ĝ(Ti,o). (3.4)

This estimator is similar to that of Akritas (1994) for the problem of estimating
the bivariate distribution of (X,Y ) when Y is subject only to right censoring
(and no left truncation) and X is a completely observable covariate. Under (1.3)
and quite strong smoothness assumptions on H similar to those of Akritas on
the bivariate distribution of (X,Y ), it can be shown that if the an in (3.3) satisfy
na4

n → 0 but na3
n| log an|7/2 → ∞ then

sup
t≤c≤F−1(1)(<τ∗)

|Ĥ(t, c) − H(t, c)| = Op(n−1/2).

The arguments are similar to those of Akritas (1994) and the details are omitted
here.

3.2. The obvious bootstrap method for censored and truncated data

We begin with a brief review of why the simple and obvious bootstrap meth-
ods are equivalent for censored data. Suppose that Yi are subject only to right
censoring and let Q denote the common distribution function of the censoring
variables Ci. Assume that Q and the distribution function F of the Yi have no
common discontinuities. The Kaplan-Meier estimates F̂ , Q̂ of F , Q satisfy

{1 − F̂ (t−)}{1 − Q̂(t−)} = R̂(t), (3.5)

where R̂(t) = n−1 ∑n
i=1 I(Ỹi ≥ t). Moreover, since F and Q have no common

discontinuities, the set of discontinuities of F̂ (= set of uncensored Ỹi) is disjoint
from the set of discontinuities of Ĝ (= set of censored Ỹi). Therefore if Y ∗

1 , . . . , Y ∗
n ,

C∗
1 , . . . , C∗

n are independent random variables with Y ∗
i ∼ F̂ and C∗

i ∼ Q̂, then
(3.5) implies that Ỹ ∗

i (= Y ∗
i ∧ C∗

i ) ∼ R̂ (= empirical distribution of Ỹ1, . . . , Ỹn).
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Moreover, I(Ỹ ∗
i = Y ∗

i ) = I(Ỹj = Yj) on the event {Ỹ ∗
i = Ỹj} since F̂ and Q̂ have

no common discontinuities. Thus, even though the obvious bootstrap method
samples independently Y ∗

i from F̂ and C∗
i from Q̂, no new pairings between Ỹ ∗

i

and δ∗i are added to the set of pairings {(Ỹi, δi), 1 ≤ i ≤ n} in the original data,
and by symmetry every member of this set of pairings is equally likely to be
drawn by the obvious bootstrap. Hence the obvious and the simple bootstrap
methods are equivalent.

We next consider the case of left truncated data in the absence of right
censoring. Suppose that the Yi(∼ F ) are subject only to left truncation by
truncation variables Ti(∼ G). Let F̂ , Ĝ be the product-limit estimators of F , G

based on the observed data {(Yi,o, Ti,o), 1 ≤ i ≤ n} with Yi,o ≥ Ti,o. The obvious
bootstrap method generates Y ∗

i , T ∗
i independently from F̂ and Ĝ, respectively. If

T ∗
i ≤ Y ∗

i , the pair is retained in the bootstrap sample, and (Y ∗
i , T ∗

i ) is discarded if
T ∗

i > Y ∗
i . This procedure is repeated until n such pairs (Y ∗

i,o, T
∗
i,o) with Y ∗

i,o ≥ T ∗
i,o

are generated to form the bootstrap sample. Since Ĝ assigns positive probability
to every element of {T1,o, . . . , Tn,o} while F̂ assigns positive probability to every
element of {Y1,o, . . . , Yn,o}, it follows that any pair (Yi,o, Tj,o) with Tj,o ≤ Yi,o has
positive probability of being included in the bootstrap sample. Hence, unlike
the simple bootstrap sample which assigns probability 1/n to n observed pairs
(Yi,o, Ti,o), 1 ≤ i ≤ n, the obvious bootstrap puts positive weights to the larger
set of pairings {(Yi,o, Tj,o) : 1 ≤ i, j ≤ n, Yi,o ≥ Tj,o}.

Since we assume no censoring (i.e., Ci ≡ ∞), (1.1) reduces to τ = inf{s :
G(s) > 0} and τ∗ = ∞. If (1.3) holds, then F̂ and Ĝ are consistent estimates
of F and G, respectively. However, without (1.3), F̂ (t) converges in probability
to F (t)/(1 − F (τ)) while Ĝ(t) converges in probability to G(t)/G(F−1(1)) (cf.
Woodroofe (1985)), and it is not possible to estimate F and G consistently.
Moreover, even when F (τ) = 0 and G(F−1(1)) = 1, F̂ may still be a very poor
estimator of F for moderate sample sizes because of the small risk set sizes Rn(s)
for s near τ and because of the non-monotonic oscillations in Rn(s), as shown in a
simulation study of Lai and Ying (1991), pages 440-441; and a similar comment
also applies to Ĝ. Lai and Ying (1991) proposed to modify the product-limit
estimator F̂ to circumvent this difficulty caused by small risk set sizes near τ

and the simulation study suggests substantial improvement in using this modified
version of the product-limit estimator. These results suggest that perhaps one
should use instead of the product-limit estimators F̂ , Ĝ their modified versions
in the obvious bootstrap method described above.

When the Yi are subject to right censoring in addition to left truncation,
difficulties in estimating the joint censoring-truncation distribution H increase
substantially, although F can still be consistently estimated by the product-limit
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estimator F̂ under (1.3). The discussion in Subsection 3.1 highlights the addi-
tional smoothness or independence assumptions that are needed for consistent
estimation of H, and these assumptions seem to be too restrictive in practice.
Therefore, for l.t.r.c. data, the simple bootstrap method is preferable to the obvi-
ous bootstrap method not only because it is substantially simpler to implement
but also because it completely dispenses with the stringent assumptions that
are needed for consistent estimation of (F,H) in the obvious bootstrap method.
These advantages of the simple bootstrap method become even more pronounced
if there are also covariates so that the observed data consist of (Xi,o, Ỹi,o, δi,o, Ti,o),
i = 1, . . . , n, as in Section 2. Here the obvious bootstrap method would entail
estimation of the joint distribution K of (X, Y ) in addition to the bivariate dis-
tribution H of (T,C). Estimation of K is much harder than that of F (and even
H). It involves further refinements and extensions of the ideas of Akritas (1994)
and requires even more stringent smoothness assumptions. On the contrary, the
simple bootstrap method can be directly applied to l.t.r.c. data with covariates,
with no additional effort and no additional requirements in comparison with the
well understood case of right censored data.
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Appendix: Proof of (2.12)

By Lemma 1, E(Rn(s)/n) = p(s) = (1−F (s))P{T1 ≤ s ≤ C1}/P{Y1 ∧C1 ≥
T1}, since F is assumed to be continuous. From (2.7) and (2.9), it follows that

σ̂2 − σ2 = n−1
n∑

i=1

∫ t

a
(Rn(s)/n)−2dMi(s) +

∫ t

a
{(Rn(s)/n)−1 − (p(s))−1}dΛ(s).

(A.1)
Since Rn(s)/n = p(s) + n−1 ∑n

j=1 wj(s), it follows from (A.1) and Taylor’s ex-
pansions that

σ/σ̂ = {1 + (σ̂2 − σ2)/σ2}−1/2

= 1 − 1
2σ2

{ 1
n

n∑
i=1

∫ t

a
[

1
p2(s)

− 2
np3(s)

n∑
j=1

wj(s)]dMi(s)

+
∫ t

a
[−

∑n
1 wj(s)

np2(s)
+

(
∑n

1 wi(s))2

n2p3(s)
]dΛ(s)

}

+
3

8σ4n2

{ n∑
i=1

n∑
j=1

∫ t

a

∫ t

a

1
p2(s)p2(u)

dMi(s)dMj(u)
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+
∫ t

a

∫ t

a
(
∑n

1 wi(s)
p2(s)

)(
∑n

1 wj(u)
p2(u)

)dΛ(s)dΛ(u)

−2[
n∑

i=1

∫ t

a
dMi(s)/p2(s)][

n∑
j=1

∫ t

a
(wj(u)/p2(u))dΛ(u)]

}
+ · · · (A.2)

Letting Un =
√

n(F̂a(t) − Fa(t))/(1 − Fa(t)), note that

(1 − Fa(t))/(1 − F̂a(t)) = (1 − Un/
√

n)−1 = 1 + Un/
√

n + U2
n/2n + · · · (A.3)

By the exponential inequalities for continuous-parameter martingales, P{σ̂(1 −
F̂a(t)) < εn} = o(ρn) for some 0 < ρ < 1. From the representation of Un in
Example 1 and (A.2) and (A.3), (2.12) follows with αV (Zi) = α(Zi)/σ (using
the same notation as in Example 1) and

α′
V (Zi) = α′(Zi)/σ − α(Zi)

{ ∫ t

a
(p(s))−2dMi(s) −

∫ t

a
(wi(s)/p2(s))dΛ(s)

+
∫ t

a
[(1 − p(s))/p2(s)]dΛ(s)

}
/(2σ3) + α2(Zi)/σ,

βV (Zi,Zj)

= β(Zi,Zj)/σ −
{
α(Zi)

∫ t

a
(p(s))−2dMj(s) + α(Zj)

∫ t

a
(p(s))−2dMi(s)

}
/2σ3

+
{
α(Zi)

∫ t

a

wj(s)
p2(s)

dΛ(s)+α(Zj)
∫ t

a

wi(s)
p2(s)

dΛ(s)
}
/2σ3+

2α(Zi)α(Zj)
σ

,

γV (Zi,Zj ,Zk)

= γ(Zi,Zj ,Zk)/σ +
∑
π

α(Zπ(i)))
{ ∫ t

a
(wπ(j)(s)/p

3(s))dMπ(k)(s)/σ
3

−
∫ t

a

wπ(j)(s)wπ(k)(s)
2σ3p3(s)

dΛ(s) +
3
8

∫ t

a

∫ t

a

dMπ(j)(s)dMπ(k)(u)
σ4p2(s)p2(u)

+
3
8

∫ t

a

∫ t

a

wπ(j)(s)wπ(k)(u)
σ4p2(s)p2(u)

dΛ(s)dΛ(u)

− 3
4σ3

( ∫ t

a

dMπ(j)(s)
p2(s)

)( ∫ t

a

wπ(k)(u)
p2(u)

dΛ(u)
)

+
α(Zπ(j))α(Zπ(k))

2σ
+

β(Zπ(j),Zπ(k))
σ

}

− 1
2σ3

∑
π

{ ∫ t

a

dMπ(i)(s)
p2(s)

−
∫ t

a

wπ(i)(s)
p2(s)

dΛ(s)
}

×
{1

2
β(Zπ(j),Zπ(k)) + α(Zπ(j))α(Zπ(k))

}
,

where
∑

π denotes summation over all six permutations of {i, j, k}.
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