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Abstract: Two types of diagnostics are presented for the transformation of explana-

tory variables in regression. One is based on the likelihood displacement proposed

by Cook and Weisberg (1982) for assessing the in
uence of individual cases on the

maximum likelihood estimate of a transformation parameter. The other is based on

the local in
uence theory proposed by Cook (1986) for assessing the in
uence of small

perturbations on the parameter estimates. Computations are performed on two data

sets to illustrate the usefulness of these diagnostics.
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1. Introduction

Transformations are commonly used in regression analysis. When a paramet-

ric transformation family, such as the Box-Cox power transformation, is used, the

maximum likelihood estimate of the parameter is usually sensitive to perturba-

tions of the data. Many diagnostic methods have been proposed in the literature

to estimate this sensitivity (see Cook and Wang (1983), Atkinson (1983, 1986),

Carroll and Ruppert (1987), Hinkley and Wang (1988), Lawrance (1988) and

Tsai and Wu (1990)). Most authors have been concerned about transformations

of the response.

In contrast, transformation diagnostics for explanatory variables have been

studied to a lesser degree. Box and Tidwell (1962) proposed using constructed

variables and added variable plots to guide the selection of transformations of ex-

planatory variables. Their procedure is discussed by Cook and Weisberg (1982).

Cook (1987) used the local in
uence approach to derive diagnostics for partially

linear models, which include transformation of a single explanatory variable as a

special case.

This paper proposes two types of diagnostics for assessing the in
uence of

individual cases on the maximum likelihood estimates of transformation param-

eters for explanatory variables. Section 2 presents a diagnostic based on an

approximation to the likelihood displacement (Cook and Weisberg (1982)) when
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one or more observations is deleted. Section 3 gives a number of diagnostics

based on the local in
uence approach (Cook (1986, 1987)) for assessing the in
u-

ence of small perturbations of the data. Speci�cally, we consider perturbations of

case-weights, explanatory variables, and transformed explanatory variables. In

Section 4, two numerical examples are presented to illustrate the usefulness of

the diagnostics derived.

The starting point for this study is the linear model,

Y = X� + "; (1:1)

where Y = (y1; : : : ; yn)
T denotes the observed response, X is a known full rank

n � p data matrix with columns Xj (j = 1; : : : ; p), � = (�1; : : : ; �p)
T is the

unknown parameter vector, and " is the random error.

In many cases model (1.1) may be improved by transforming one or more

explanatory variables. For example, one might replace the �rst column of X by

(h(x11; �1); : : : ; h(xn1; �1))
T , where h(u; �) is a family of transformations indexed

by a real parameter �. Without loss of generality we may suppose that the �rst

q explanatory variables are transformed. The new model can be written as

Y = X(�)� + "; (1:2)

where " � N(0; �2I), � is a q� 1 vector parameter, X(�) = (X1(�1); : : : ;Xq(�q),

Xq+1; : : : ;Xp), and Xj(�j) = (h(x1j ; �j); : : : ; h(xnj ; �j))
T (j = 1; : : : ; q). We

assume that X(�) has full rank and that �(1) = (�1; : : : ; �q)
T 6= 0.

For any �xed � the maximum likelihood estimates of the regression coe�cient

and the variance of the noise are

�̂(�) = [XT (�)X(�)]�1XT (�)Y; �̂2MLE(�) =
1

n
s(�); (1:3)

respectively, where Q(�) = I � P (�), P (�) is the projection matrix for X(�),

and s(�) is the residual sum of squares,

s(�) = Y TQ(�)Y: (1:4)

The pro�le log-likelihood for � is

L(�) = �
n

2
log[s(�)]; (1:5)

omitting constant terms. So �̂, the maximum likelihood estimate of �, must

minimize the residual sum of squares. The corresponding estimates of � and �2

are �̂ = �̂(�̂) and �̂2MLE = �̂2MLE(�̂) respectively.
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2. Likelihood Displacement

To assess the in
uence of individual cases on the transformation parameter

�̂ one may consider the case-deletion model,

Y(i) = X(i)(�)� + ": (2:1)

The subscript (i) denotes the quantities with case i deleted. An alternative

formulation of (2.1), usually more convenient for calculations, is the mean-shift

outlier model,

Y = X(�)� + di
 + "; (2:2)

where di is an n-vector having 1 in the ith position and 0 elsewhere, and 
 is a

scalar parameter.

Model (2.2) is equivalent to model (2.1) in the following sense. The residual

sums of squares for (2.1) and (2.2) are s(i)(�) = Y T

(i)(I � P(i)(�))Y(i) and ~s(�) =

Y T (I� ~P (�))Y respectively, where P(i)(�) and ~P (�) are the respective projection

matrices for X(i)(�) and ~X(�) = (X(�); di). It can be shown that s(i)(�) = ~s(�)

for all �. Therefore, the maximum likelihood estimates of � for models (2.1) and

(2.2) are the same and can be denoted by �̂(i).

Note that this situation di�ers from that of transformations of the response.

In the latter case the maximum likelihood estimates of � for the case-deletion

model and mean-shift outlier model are not equal since the Jacobian is involved.

This was pointed out by Cook and Wang (1983) and Tsai and Wu (1990).

The maximum likelihood estimates for the parameters in the mean-shift out-

lier model (2.2) satisfy equations analogous to (1.3) and (1.5). For �xed � let

~Q(�) = I � ~P (�) = Q(�)�Q(�)di[d
T

i
Q(�)di]

�1dT
i
Q(�); (2.3a)� ~�(�)

~
(�)

�
= [ ~XT (�) ~X(�)]�1 ~XT (�)Y; ~�2MLE(�) =

1

n
Y T ~Q(�)Y; (2.3b)

~e(�) = Y �X(�) ~�(�)� di~
(�) = ~Q(�)Y: (2.3c)

Then �̂(i) must minimize the residual sum of squares ~s(�)=~eT (�)~e(�)=Y T ~Q(�)Y .

The di�erence between �̂ and �̂(i) can be measured by the likelihood dis-

placement, LD(�̂(i)), proposed by Cook and Weisberg (1982). This likelihood

displacement may be de�ned as LD(�) = 2[L(�̂) � L(�)]. A large value of

LD(�̂(i)) indicates that �̂ is highly dependent on case i, which suggests that this

case is in
uential and may be an outlier.

Computing LD(�̂(i)) exactly involves nonlinear optimization to �nd �̂(i) plus

some matrix operations involving X(�̂(i)). The computational time can be con-

siderable if there are many di�erent case deletions to consider. In practice only

a rough estimate of the size of LD(�̂(i)) is needed to determine whether case i is
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in
uential. Therefore, we derive an approximation to LD(�) for small �� �̂ and

an approximation to �̂(i) for small �̂(i)� �̂. Combining these two approximations

gives a diagnostic that can be computed more quickly than the exact value of

LD(�̂(i)).

For simplicity of presentation consider �rst the transformation of a single

explanatory variable, i.e. q = 1, � = �1. The results for transformation of

several variables are essentially the same and are given at the end of this section.

The likelihood displacement can be rewritten as LD(�) = n log[s(�)=s(�̂)], using

(1.5). Since the residual sum of squares, s(�), has a local minimum at �̂, the

�rst two nontrivial terms in its Taylor expansion are the constant and quadratic

terms:

LD(�) � n log

"
1 +

�s(�̂)(�� �̂)2

2s(�̂)

#
�

n�s(�̂)(�� �̂)2

2s(�̂)
= ��L(�̂)(�� �̂)2: (2:4)

Here and below � denotes di�erentiation with respect to �. Note that

�L(�̂) = �
n

2

�s(�̂)

s(�̂)
: (2:5)

Formulas for _s(�) and �s(�̂) are derived with the help of the Lemma in the

Appendix:
_Q = �Q _X(XTX)�1XT

�X(XTX)�1 _XTQ: (2:6)

Letting W = _X1 it follows from (1.4) and (2.6) that

_s(�) = �2�̂1(�)W
T (�)Q(�)Y; (2:7)

where �̂1(�) is the �rst element of �̂(�) de�ned in (1.3). Since �̂ is the maximum

likelihood estimate, it must satisfy _s(�̂) = 0, which implies either

W T (�̂)Q(�̂)Y = 0; (2:8)

or �̂1(�̂) = 0. In the latter case the transformed variable does not enter the regres-

sion model. More importantly, straightforward calculations show that �̂1(�̂) = 0

implies �s(�̂) = �2
_̂
�1(�̂)W

T (�̂)Q(�̂)Y � 0, i.e. �̂ does not minimize the residual

sum of squares. Thus, we may assume that �̂1(�̂) 6= 0. Di�erentiating (2.7) and

using (2.6) and (2.8) leads to a formula for �s(�̂).

�s(�̂) = 2(êT
w
êw � êT

v
ê); (2:9)

where �̂1 = �̂1(�̂), ê = Q(�̂)Y , êw = Q(�̂)W (�̂)�̂1, êv = Q(�̂)V (�̂)�̂1 and V = �X1.

The vector ê contains the residuals for the original regression problem Y =
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X(�̂)� + ". The vectors êw and êv are the residuals for the related problems of

regressing W (�̂)�̂1 and V (�̂)�̂1 on X(�̂), respectively. Finally, substituting (2.9)

into (2.4) and (2.5) yields

�L(�̂) =
�n[êT

w
êw � êT

v
ê]

êT ê
= �n

�̂2
w
� �̂ve

�̂2
; (2:10)

LD(�) � n
�̂2
w
� �̂ve

�̂2
(�� �̂)2; (2:11)

where �̂2 = kêk2=(n�p), �̂2
w
= kêwk

2=(n�p), and �̂ve = êT
v
ê=(n�p) are variance

and covariance estimates.

Having derived an approximation to the likelihood displacement, the next

step is to compute an approximation to �̂(i). Since �̂(i) is the maximum likelihood

estimate of � for model (2.2) it must satisfy an equation analogous to (2.8):

W T (�̂(i))~e(�̂(i)) =W T (�̂(i)) ~Q(�̂(i))Y = 0: (2:12)

By following Atkinson's (1983) approach ~e(�) is approximated by means of a

linear Taylor polynomial approximation to X(�):

~e(�) = Y �X(�) ~�(�)� di~
(�) � Y �X(�̂) ~�(�)� di~
(�)�W (�̂)�̂1(�� �̂):

Choosing ~�(�) and ~
(�) to minimize the approximation to ~eT (�)~e(�) yields an

expression similar to (2.3):

� ~�(�)

~
(�)

�
� [ ~XT (�̂) ~X(�̂)]�1 ~XT (�̂)[Y �W (�̂)�̂1(�� �̂)];

~e(�) � ~Q(�̂)[Y �W (�̂)�̂1(�� �̂)];

~e(�̂(i)) � ~Q(�̂)[Y �W (�̂)�̂1(�̂(i) � �̂)]: (2:13)

The term W (�̂(i)) in (2.12) can be approximated in two ways. An approach

analogous to Cook and Wang (1983) assumes

W (�̂(i)) �W (�̂): (2:14)

Substituting (2.13) and (2.14) into (2.12) then leads to the following approxima-

tion of �̂(i):

�̂(i) � �̂ � [W T (�̂) ~Q(�̂)W (�̂)�̂1]
�1W T (�̂) ~Q(�̂)Y

=�

�
êT
w
êw �

ê2
wi

1� pii

��1
êwiêi

1� pii
=

��̂ r̂wir̂i

�̂w[(n� p)� r̂2
wi
]
; (2:15)
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where pii is the ith diagonal element of the projection matrix P (�̂), êi is the ith

element of ê, êwi is the ith element of êw, and r̂i and r̂wi are scaled residuals:

r̂i = êi=[(1 � pii)
1=2�̂w], r̂wi = êwi=[(1� pii)

1=2�̂w].

Approximation (2.15) above neglects the O(�̂(i)� �̂) contribution to W (�̂(i))

in (2.12) while keeping the O(�̂(i)� �̂) contribution to ~e(�̂(i)). An asymptotically

more accurate approach is to assume

W (�̂(i)) �W (�̂) + V (�̂)(�̂(i) � �̂): (2:16)

Substituting (2.13) and (2.16) into (2.12) and keeping terms up to O(�̂(i) � �̂)

leads to

�̂(i) � �̂ � [W T (�̂) ~Q(�̂)W (�̂)�̂1 � V T (�̂) ~Q(�̂)Y ]�1W T (�̂) ~Q(�̂)Y

= �

�
êT
w
êw �

ê2
wi

1� pii
� êT

v
ê+

êviêi

1� pii

��1
êwiêi

1� pii

=
��̂r̂wir̂i

�̂w

h
(n� p)

�
1� �̂ve

�̂2
w

�
� r̂2wi +

�̂v �̂r̂vi r̂i

�̂2
w

i ; (2:17)

where êvi is the ith element of êv, �̂
2
v
= kêvk

2=(n�p), and r̂vi = êvi=[(1�pii)
1=2�̂v].

This formula is analogous to that derived by Hinkley and Wang (1988), and it

has an error of o(�̂(i) � �̂).

The approximation of the likelihood displacement in (2.11) can now be com-

bined with either of the two approximations for �̂(i). The following diagnostics

are based on (2.15) and (2.17) respectively.

LD(�̂(i)) � n log

�
1 +

�
1�

�̂ve

�̂2
w

� h r̂wir̂i

(n� p)� r̂2wi

i2�

� n

�
1�

�̂ve

�̂2
w

� �
r̂wir̂i

(n� p)� r̂2
wi

�2
; (2.18a)

LD(�̂(i)) � n log

8><
>:1 +

�
1�

�̂ve

�̂2
w

�24 r̂wir̂i

(n� p)
�
1� �̂ve

�̂2
w

�
� r̂2wi +

�̂v �̂r̂vi r̂i

�̂2
w

3
5
2
9>=
>;

� n
�
1�

�̂ve

�̂2
w

�24 r̂wir̂i

(n� p)
�
1� �̂ve

�̂2
w

�
� r̂2wi +

�̂v �̂r̂vi r̂i

�̂2
w

3
5
2

: (2.18b)

In Section 4 formulas (2.18) are applied two real data sets and their relative

accuracies are compared.
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The previous derivation considered the transformation of a single explanatory

variable and deletion of a single case. It is straightforward to generalize (2.18) to

the transformation of several explanatory variables and the deletion of multiple

cases. Consider model (1.2) where q, the number of transformed variables, is now

arbitrary. To allow for deletion of multiple cases the mean-shift outlier model,

(2.2), is generalized to Y = X(�)� +D
 + ", where J = fi1; : : : ; ikg is the set of

indices of deleted cases, D = (di1 ; : : : ; dik ), and 
 is a k � 1 vector.

The de�nition of the likelihood displacement LD remains unchanged. Its

approximation by a quadratic Taylor polynomial is similar to (2.4), but now �L

is a q � q matrix:

�L =
@2L

@�@�T
; LD(�) � �(�� �̂)T �L(�̂)(�� �̂): (2:19)

The formula for L�(�̂) corresponding to (2.10) is derived usingW = (@X1=@�1; : : :,

@Xq=@�q), V = (@X2
1=@�

2
1; : : : ; @X

2
q
=@�2

q
), B̂ = diag(�̂1(�̂); : : : ; �̂q(�̂)), Êw =

Q(�̂)W (�̂)B̂, and Êv = Q(�̂)V (�̂)B̂. The matrices B̂, Êw and Êv are generaliza-

tions of �̂1, êw and êv, respectively. The generalization of (2.10) is

�L(�̂) =
�n

�̂2

�
�̂ww � �̂ve

�
; (2:20)

where �̂ww = ÊT

w
Êw=(n� p) and �̂ve = diag(ÊT

v
ê)=(n� p).

The approximation to �̂(J), the estimated transformation parameter when

cases J are deleted, is derived using the same argument as above. This results

in an approximation corresponding to (2.15),

�̂(J) � �̂ � �[�̂ww � �̂wJwJ ]
�1�̂wJeJ ; (2.21a)

and another corresponding to (2.17),

�̂(J) � �̂ � [(�̂ve � �̂vJeJ)� (�̂ww � �̂wJwJ)]
�1�̂wJeJ ; (2.21b)

where PJ = DTP (�̂)D, êJ = DT ê, ÊwJ = DT Êw, ÊvJ = DT Êv, �̂wJwJ =

ÊT

wJ
(I � PJ)

�1ÊwJ=(n � p), �̂wJeJ = ÊT

wJ
(I � PJ)

�1êJ=(n � p), and �̂vJeJ =

diag(ÊT

vJ
(I � PJ)

�1êJ)=(n� p).

These approximations are combined with (2.20) to give the following gener-

alizations of the diagnostics (2.18):

LD(�̂(J)) �
n

�̂2
�̂T

wJeJ
(�̂ww � �̂wJwJ)

�1(�̂ww � �̂ve)(�̂ww � �̂wJwJ)
�1�̂wJeJ ;

(2.22a)
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LD(�̂(J)) �
n

�̂2
�̂T

wJeJ
[(�̂ww � �̂wJwJ)� (�̂ve � �̂vJeJ)]

�1(�̂ww � �̂ve)

� [(�̂ww � �̂wJwJ)� (�̂ve � �̂vJeJ)]
�1�̂wJeJ : (2.22b)

Although �̂(J) is a vector, LD is a scalar. Detailed information concerning the

in
uence of one or more cases on the estimate of a single parameter �̂j is contained

in the components of �̂(J) � �̂ in (2.21). On the other hand, the likelihood

displacement, (2.22), provides a convenient overall measure of in
uence of one or

more cases.

Other diagnostic methods based on the above approach can be obtained. In

particular, the method given by Atkinson (1986) and the method given by

del Rio (1988) can be easily extended to the case of transformation of explanatory

variables.

3. Local In
uence

The local in
uence approach has been successfully applied to many statisti-

cal models (see, for example, Thomas (1990) and Weissfeld (1990)). Cook (1987)

used this approach to derive regression diagnostics for partially nonlinear mod-

els, which include transformations of a single explanatory variable as a special

case. Lawrance (1988) studied regression diagnostics for transformations of the

response using the local in
uence method. This section extends the local in
u-

ence method to transformations of several explanatory variables and also covers

more perturbations than those considered by Cook (1987).

Again we consider model (1.2) where � is the parameter of interest and

the corresponding pro�le log-likelihood L(�) is given by (1.5). Now suppose

that there are perturbations to the model (1.2) through an m-vector ! and that

the maximum likelihood estimate of � for the perturbed model is �̂(!). The

unperturbed state is denoted !0 which means that �̂ = �̂(!0).

The likelihood displacement may be used to indicate the di�erence between

the estimates �̂ and �̂(!). Note that LD(�̂(!)) = 2[L(�̂)�L(�̂(!))]. To measure

the sensitivity of the estimate �̂ to small perturbations one can compute the

second derivative of LD(�̂(!)) with respect to ! at !0.

Following Cook (1986), z = LD(�̂(!)) is an m-dimensional surface in Rm+1,

and the normal curvature along the direction d at !0 is denoted by Cd. The

direction dmax which corresponds to the maximum curvature Cmax = maxkdk=1Cd

is the main diagnostic quantity. Cook (1986) showed that Cd = jdTGT �L(�̂)Gdj

(kdk = 1), where G = [@�̂(!)=@!T ]!0 , and
�L is the second derivative of the pro�le

log-likelihood as before. It follows that Cmax is the maximum absolute eigenvalue

of the m�m matrix F = GT �L(�̂)G, and dmax is the corresponding eigenvector.
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This result can be derived in an alternative way using Taylor expansions as

in the previous section. First we approximate �̂(!)� �̂ by di�erentials and then

use the approximation for LD in (2.19):

�̂(!)� �̂ � G(! � !0);

LD(�̂(!)) � � (�̂(!)� �̂)T �L(�̂)(�̂(!)� �̂)

� � (! � !0)
T [GT �L(�̂)G](! � !0) = �(! � !0)

TF (! � !0):

From this last equation it is clear that for small perturbations the greatest in
u-

ence on LD(�̂(!)) arises when ! � !0 is parallel to dmax as de�ned above.

Since formulas for �L(�̂) have been derived in the previous section, the only

missing information is G, which depends on the form of the perturbation. We

consider perturbations of case-weights, explanatory variables and transformed

explanatory variables. The perturbed models all take the form Y = X(�; !)� +

", " � N(0; �2
�1(!)), where X(�; !) = (X1(�; !); : : : ;Xq(�; !);Xq+1(!); : : :,

Xp(!)). Therefore, the pro�le log-likelihood for � takes the form analogous to

(1.5): L(�; !) = �(n=2) log(s(�; !)), where s(�; !) = Y TQ(�; !)Y is the residual

sum of squares, and

Q(�; !) = 
(!)� 
(!)X(�; !)[XT (�; !)
(!)X(�; !)]�1XT (�; !)
(!):

Since the unperturbed state is ! = !0, it follows that X(�; !0) = X(�), 
(!0) =

I, Q(�; !0) = Q(�) and s(�; !0) = s(�).

The maximum likelihood estimate �̂(!) satis�es the equation [@s(�; !)=

@�](�̂(!);!) = 0. The argument leading to Equation (2.8) implies that �̂(!) satis�es

the equationW T (�̂(!); !)Q(�̂(!); !)Y =0, whereW (�; !)=(@X1=@�1; : : : ; @Xq=

@�q). Di�erentiating this equation with respect to ! yields G = [@�̂(!)=@!T ]!0 =

�f[@(W TQY )=@�)]�1[@(W TQY )=@!T )]g(�̂;!0). The �rst term in the right-hand

product is independent of the form of the perturbation and can be computed

using the arguments leading to (2.9): [@(W TQY )=@�T ](�̂;!0) = �B̂�1(�ww��ve).

Therefore G = (�ww � �ve)
�1A, where A = B̂[@(W TQY )=@!T ](�̂;!0).

To compute the diagnostic dmax one must compute the q �m matrix A for

the perturbation of interest. Then dmax is the eigenvector corresponding to the

largest eigenvalue of the matrix �GT �L(�̂)G = (n=�̂2)AT (�ww � �ve)
�1A. For

transformations of a single explanatory variable (q = 1) (�ww��ve)
�1 is a scalar,

and dmax is proportional to A
T .

In the subsections below W (�; !) and Q(�; !) are identi�ed for several in-

teresting types of perturbations, and formulas are derived for A. Some of these

perturbations were considered by Cook (1987), and we recover his results for

q = 1. Note that for all the perturbations considered below ! is an n-vector.
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3.1. Case-weights perturbations

Consider a model where the case-weights are perturbed:


 = diag(!); X(�; !) = X(�): (3:1)

The unperturbed state is !0 = (1; : : : ; 1)T , for which 
 = I. The Lemma in the

Appendix implies that [@Q(�; !)=@!i](�̂;!0) = Q(�̂)dT
i
diQ(�̂). Since W (�; !) =

W (�), it follows that A is

Ac = B̂[@(W TQY )=@!T ](�̂;!0) = B̂W T (�̂)[@(Q(�; !)Y )=@!T ](�̂;!0)

= ÊT

w
diag(ê): (3.2a)

For transformations of a single explanatory variable

dTmax / Ac = êT
w
diag(ê); (3.2b)

which is equivalent to Equation (39) of Cook (1987).

3.2. Perturbations of explanatory variables

Without loss of generality, suppose that the (q + 1)st column of the data

matrix X is modi�ed by adding a vector ! of perturbations. In this case


 = I; X(�; !) = (X1(�1); : : : ;Xq(�q); Xq+1(!);Xq+2; : : : ;Xp); (3.3a)

Xq+1(!) = (x1;q+1 + !1; : : : ; xn;q+1 + !n)
T ; (3.3b)

and !0 = (0; : : : ; 0)T represents the unperturbed state.

Again the Lemma in the Appendix plus the fact that W (�; !) = W (�) are

used. Straightforward calculations yield A:

Ae1 = B̂[@(W TQY )=@!T ](�̂;!0) = B̂W T (�̂)[@(Q(�; !)Y )=@!T ](�̂;!0)

= � (ÊT

w
�̂q+1 + B̂w;q+1ê

T ); (3.4a)

where �̂i is the ith element of �̂. The vector B̂T

wi
is the ith row of B̂w =

[XT (�̂)X(�̂)]�1XT (�̂)W (�̂)B̂, the coe�cient obtained in regressing W (�̂)B̂ on

X(�̂). For q = 1 the diagnostic is

dTmax / Ae1 = �(êT
w
�̂2 + �̂w2ê

T ); (3.4b)

where �̂wi is the ith element of �̂w = [XT (�̂)X(�̂)]�1XT (�̂)W (�̂)�̂.
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Perturbation (3.3b) is additive. It also possible to consider proportional

perturbations,

Xq+1(!) = (x1;q+1!1; : : : ; xn;q+1!n)
T ; (3:5)

where !0 = (1; : : : ; 1)T represents the unperturbed problem. The e�ect of this

modi�cation is to right-multiply the value of A in (3.4) by diag(Xq+1).

Ae2 =� (ÊT

w
�̂q+1 + B̂w;q+1ê

T )diag(Xq+1); (3.6a)

dTmax / Ae2 =� (êT
w
�̂2 + �̂w2ê

T )diag(X2) (q = 1): (3.6b)

3.3. Perturbations of transformed variables

Now suppose that one of the transformed explanatory variables is perturbed

by adding a vector ! of perturbations, and !0 = (0; : : : ; 0)T represents the un-

perturbed state. Without loss of generality the �rst variable is perturbed. Then


 = I; X(�; !) = (X1(�1; !);X2(�2); : : : ; Xq(�q); Xq+1; : : : ;Xp); (3.7a)

X1(�1; !) = (h(x11 + !1; �1); : : : ; h(xn1 + !n; �1))
T : (3.7b)

De�ne the vectors t̂1=(h0(x11; �)); : : : ; h
0(xn1; �))

T j
�=�̂1

and û1=(@h0(x11; �)=

@�; : : : ; h0(xn1; �)=@�)
T j

�=�̂1
, where 0 denotes di�erentiation of h with respect to

its �rst argument. Calculations similar to the case of perturbed explanatory

variables yield the following value for A:

At1 = �̂1(1; 0; : : : ; 0)
T êT diag(û1)� (ÊT

w
�̂1 + B̂w1ê

T )diag(t̂1); (3.8a)

dTmax / At1 = �̂1ê
T diag(û1)� (êT

w
�̂1 + �̂w1ê

T )diag(t̂1) (q = 1): (3.8b)

Equation (3.8b) is equivalent to equation (42) of Cook (1987).

A proportional perturbation is given by

X1(�1; !) = (h(x11!1; �1); : : : ; h(xn1!n; �1))
T ; (3:9)

where !0 = (1; : : : ; 1)T represents the unperturbed problem. The corresponding

value of A is then

At2 = [�̂1(1; 0; : : : ; 0)
T êT diag(û1)� (�̂1Ê

T

w
+ B̂w1ê

T )diag(t̂1)]diag(X1); (3.10a)

dTmax / At2 = [�̂1ê
T diag(û1)�(e

T

w
�̂1+�̂w1ê

T )diag(t̂1)]diag(X1) (q = 1): (3.10b)

For the �rst data set considered in the next section the proportional perturbation

is found to give a more appropriate diagnostic than the additive perturbation

(3.7b).
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4. Numerical Examples

4.1. Snow geese data

These data were given by Weisberg (1980) and discussed by Cook (1986).

The response, y, is the true 
ock size, and the explanatory variable, x, is the

visually estimated 
ock size for a sample of n = 45 
ocks of snow geese. The

proposed model is

yi = �1 + h(xi; �)�2 + "i; (i = 1; : : : ; n); (4:1)

using the power transformation

h(x; �) =

(
x
�

�1

�
; � 6= 0,

log(x); � = 0.
(4:2)

The parameter estimates for this data are given in Table 1. The regression

diagnostics discussed below indicate that case 29 is an outlier. Therefore, the

parameters are also estimated for the data with case 29 deleted. The �tted curves

with and without case 29 are plotted in Figure 1.
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Figure 1. Snow geese data and �tted regression curves.
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Table 1. Regression parameter estimates for snow geese data.

All data Case 29 deleted

�̂ 0.53761 1.3772

�̂1 �35:759 27.405

�̂2 8.6038 0.22591

�̂ 38:546 32.099
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Figure 2. Index plot of likelihood displacement for snow geese data.

Figure 2 shows the likelihood displacement computed exactly and by (2.18).

The exact value and both approximate values of LD(�̂(29)) are far above the cor-

responding values for the other cases. Therefore, case 29 is the most in
uential,

which is consistent with the scatter plot in Figure 1.

For the local in
uence approach q = 1 so dmax is scalar multiple of A
T . The

three kinds of perturbations that can be considered are models (3.1), (3.7) and

(3.9). Figure 3 gives the index plots of the vectors dmax for case-weights per-

turbations (3.1) and proportional perturbations of the transformed explanatory

variable (3.9). dmax has been normalized so that kdmaxk
2 = n. For both kinds of

perturbations case 29 is the most in
uential. This is consistent with the strong

evidence of heteroscedasticity for these data as pointed out by Cook (1986).
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Figure 3. Index plot of dmax from (3.2) and (3.10) for snow geese data.
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Figure 4. Index plot of dmax from (3.8) for snow geese data.
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Figure 4 gives the index plot of dmax normalized as above for additive pertur-

bations of the transformed explanatory variables according to model (3.7b). In

contrast to the previous diagnostics case 29 is not the most in
uential. However,

note that the four most in
uential cases (19, 10, 12 and 7 respectively) have small

x values (9, 10, 10 and 12 respectively). The ith component of the vector t̂1 that

appears in formula (3.8) is t̂1i = h0(xi; �̂) = x�̂�1
i

= x�0:46
i

. Since t̂1i is large when

xi is small, the diagnostic based on the additive perturbation (3.7) accentuates

the in
uence of observations with small x in contrast to the diagnostic based on

proportional perturbation (3.9). On the other hand the diagnostic for the pro-

portional perturbation, (3.10), depends on t̂1ixi = x�̂
i
= x0:54

i
, which gives more

weight to observations with large x.

Box and Tidwell (1962) and Cook and Weisberg (1982) suggest using added

variable plots to determine the need for transforming explanatory variables and

whether one or more observations are in
uential. Using the notation introduced

in (2.9) and (2.19) this corresponds to plotting ê versus êw (or the columns of Êw

for q � 1). As Cook (1987) pointed out, a particular case i with êi and êwi large

simultaneously may be identi�ed as in
uential both from the added variable plot

and from the case-weights perturbations diagnostic (3.2). The added variable

plot for the geese data is shown in Figure 5 with case 29 labeled. Although case

29 is clearly the most in
uential point from the index plots in Figures 2 and 3, it

is not so obviously the most in
uential from the added variable plot because ê29
is moderate. Therefore, the new diagnostics proposed here have some advantages

over added variable plots in identifying in
uential points.
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Figure 5. Added variable plot for snow geese data.
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4.2. Tree data

These data were given by Ryan, Joiner and Ryan (1976) and discussed by

Cook and Weisberg (1982), Cook and Wang (1983) and Tsai and Wu (1990).

The response, y, is tree volume and the explanatory variables, x2 and x3, are

tree diameter and tree height respectively. Two models are considered. In the

�rst model only the tree diameter is transformed.

yi = �1 + h(xi2; �2)�2 + xi3�3 + "i; (i = 1; : : : ; n): (4:3)

In the second model both tree diameter and tree height are transformed.

yi = �1 + h(xi2; �2)�2 + h(xi3; �3)�3 + "i; (i = 1; : : : ; n): (4:4)

Again, h is the power transformation given by (4.2). Table 2. lists the parameter

estimates for this data.

Table 2. Regression parameter estimates for tree data.

Model (4.3) Model (4.4)

�̂2 2:6039 2:5831

�̂3 |{ 1:7375

�̂1 �21:249 �9:9487

�̂2 0:066366 0:070142

�̂3 0:36424 0:015134

�̂ 2:5943 2:5929
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Figure 6. Index plot of likelihood displacement for tree data model (4.3).
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First consider model (4.3). Figure 6 shows the likelihood displacement com-

puted exactly and computed approximately by (2.18). This plot shows that cases

23 and 31 are in
uential. The local in
uence under all �ve perturbed models con-

sidered in Section 3 is shown by the index plots of the vectors dmax in Figure 7.

Case 23 is in
uential for case-weights perturbations, while case 31 is in
uential for

perturbations of either the explanatory variable or the transformed explanatory

variable.
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Figure 7. Index plot of dmax for tree data model (4.3).

A somewhat di�erent situation arises for model (4.4). Figure 8 shows the

likelihood displacement. While cases 23 and 31 are in
uential as before, cases 17

and 18 are now also in
uential. The index plots of the vectors dmax computed

using (3.11) are shown in Figure 9. This plot is similar to that of Figure 7.

Case 23 is still in
uential for case-weights perturbations, whereas case 31 is still

in
uential for perturbations of the transformed explanatory variable.

The similar values of �̂ for models (4.3) and (4.4) in Table 2 suggest that

the transformation of the tree height gives negligible improvement of the model.

For model (4.4)

�L(�̂) = �

�
13:420 0:38321

0:38321 0:073043

�
;

which means that changes in the transformation parameter for tree height have

very little in
uence on the likelihood compared to changes in the transformation

parameter for tree diameter. Consequently, �3 is estimated with much less ac-

curacy than �2. Indeed, it was observed that the deletion of one case can make

a great change in the estimate of �3. For the tree data �̂(17)3 = �1:1370 and
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�̂(18)3 = 6:2497.
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Figure 8. Index plot of likelihood displacement for tree data model (4.4).
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Figure 9. Index plot of dmax for tree data model (4.4).
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Cook and Weisberg (1982, Section 2.4.4) discuss transformations of explana-

tory variables for the tree data using the method of Box and Tidwell (1962).

Their estimate of the transformation parameter for the tree diameter, �̂2 � 2:53,

is nearly identical to maximum likelihood estimate. However, since this esti-

mate, using the constructed variable x2 log(x2) is based on the assumption that

�̂2 � 1 = 1:53 is small, it is possible that this agreement is fortuitous. It is not

apparent how the slopes and intercepts found by Cook and Weisberg correspond

to those in Table 2. Cook and Weisberg conclude that the tree height should not

be transformed, which is consistent with our analysis. From the added variable

plots given by Cook and Weisberg (Figure 2.4.11) one might conclude that case

31 is in
uential because ê31 and êw31 are simultaneously large for the constructed

variable of x2 log(x2). However, an alternative conclusion is that ê31 and êw31 are

part of a trend suggesting that the tree diameter variable should be transformed.

The added variable plot for model (4.3) is given in Figure 10 with cases 23 and

31 labeled. Here it is much less clear that cases 23 and 31 are in
uential than in

the index plots in Figures 6 and 7. Moreover, the diagnostics proposed here are

also able to identify cases 17, 18 as in
uential for model (4.4).
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Figure 10. Added variable plot for tree diameter variable for model (4.3).

Figures 2, 6 and 8 compare the two approximations to the likelihood dis-

placement derived in Section 2 with the exact values. Approximation (2.18b)

and its generalization (2.22b) are more accurate for small �̂(i) � �̂ in the above
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examples. (This cannot be seen in the �gures since LD(�̂(i)) is plotted on a linear,

rather than logarithmic, scale.) However, the in
uential points which we wish to

identify have relatively large �̂(i) � �̂. From the above examples it is seen that

both approximations may overestimate or underestimate LD(�̂(i)), depending on

the data and the model. However, the �rst approximation, (2.18a) and (2.22a),

appears to give a somewhat better indication of the true value of LD(�̂(i)) when

it is large.

5. Discussion and Conclusion

The diagnostics proposed in this paper provide two approaches to identifying

in
uential cases for the linear model with transformed explanatory variables (1.2).

The �rst approach is through an approximation to the likelihood displacement

for one or more case deletions. The second approach is by determining which

cases have the greatest local in
uence under a variety of perturbations. The

diagnostics derived using the local in
uence approach are related to those of

Cook (1987); however, we consider a greater variety of perturbations than those

he studied.

The diagnostic quantities derived are relatively simple to calculate since they

do not require further time-consuming numerical optimizations once the original

model has been �tted. At most, they involve straightforward matrix calculations.

It is true that formulas for LD(�̂(i)) and dmax are more complicated than those

for ê and êw used in the added variable plots of Box and Tidwell (1962). However,

the advantage of the diagnostics proposed here is that it is much easier to identify

in
uential points from the index plots of LD(�̂(i)) or dmax than from added

variable plots.

The numerical results for the two data sets analyzed demonstrate that the

diagnostics are useful in identifying in
uential cases and potential outliers. How-

ever, these two examples also demonstrate that the diagnostics need to be in-

terpreted carefully. For some data sets a case may be in
uential according to

virtually all diagnostics. On the other hand, one may discover that some cases

are in
uential according to some diagnostics but not in
uential according to oth-

ers. This would suggest that several di�erent diagnostics should be computed,

so that all potential outliers and in
uential points can be identi�ed.

The local in
uence of a case depends strongly on the form of the perturba-

tion. This was demonstrated by the snow geese data where a suspected outlier

is not in
uential under additive perturbations of the transformed variable but

was in
uential under proportional perturbations. For this data set proportional

perturbations seem more appropriate because the errors in 
ock size appear to

be proportional rather than additive. However, for other data sets an additive

perturbation may be more appropriate.
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Appendix

In this appendix a lemma is derived that is used in Sections 2 and 3.

Lemma. Suppose that Q = 
�
X(XT
X)�1XT
 and Q0=I�X(XTX)�1XT .

If the n� p matrix X is a function of a single variable u and _X = dX=du, then

@Q

@u
= �Q _X(XT
X)�1XT
� 
X(XT
X)�1 _XTQ; (A.1)

@Q0

@u
= �Q0

_X(XTX)�1XT
�X(XTX)�1 _XTQ0: (A.2)

If the n � n matrix 
 is a function of a single variable v and 
(v0) = I,

(@
=@v)v0 = E, then
@Q

@v

���
v0

= Q0EQ0: (A.3)

Proof. Using the formula for the derivatives of a matrix inverse,

@Q

@u
= � 
 _X(XT
X)�1XT
� 
X(XT
X)�1 _XT


+
X

"
(XT
X)�1

@(XT
X)

@u
(XT
X)�1

#
X


= � 
 _X(XT
X)�1XT
+
X(XT
X)�1(XT
 _X)(XT
X)�1X


� 
X(XT
X)�1 _XT
+
X(XT
X)�1( _XT
X)(XT
X)�1X


= �Q _X(XT
X)�1XT
� 
X(XT
X)�1 _XTQ

which gives (A.1). If 
 = I, then (A.1) reduces to (A.2). A similar derivation

yields (A.3) (see also Lawrance (1988)).
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