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AN IDENTITY FOR THE NONCENTRAL MULTIVARIATE
F DISTRIBUTION WITH APPLICATION

Pui Lam Leung and Milton Lo
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Abstract. Muirhead and Verathaworn (1985) and Konno (1991a,b) extended the
Wishart identity to the multivariate F distribution and used this identity to prove
dominance results for estimating the scale matrix of the multivariate F distribution.
This paper extends this F identity to the noncentral multivariate F distribution. As
an application of this noncentral F identity, we consider the problem of estimating
the noncentrality matrix of a noncentral multivariate F distribution. This identity is
used to develop a class of orthogonally invariant estimators which dominate the usual
unbiased estimator. A simulation study was carried out to compare the performance
of these estimators.
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1. Introduction

In estimating the latent roots in a two sample setting, Muirhead and Ve-
rathaworn (1985) derived an identity for the multivariate F distribution. This
F identity is similar to the Wishart identity (derived independently by C. Stein
and L. Haff) and is very useful in finding the risk difference between estimators.
Later, Konno (1991a, 1992) and Leung (1992) used this F identity in estimating
the scale matrix of the multivariate F distribution. For reference, we define the
following symbols and state this F identity.

Suppose that a random m x m positive definite matrix F' = (f;;) has a
multivariate F distribution with degrees of freedom n; and n, and scale matrix
Q, denoted by F,,(n,ns;). That is, F has the probability density function

Lpl(n1 4 ny) /2]
Fm(nl/Q)Fm (n2/2)
where n =n; +ny, ny >m+1,ny, >m+1and I, () is the multivariate Gamma

function. Let V(F, Q) be a matrix whose elements are function of F' and Q and
let Vi) =7V + (1 —r)diag(V). Define

(det 2)7"/2(det F)"™ ="~V 2[det(T + Q71 F)] 72,

0

5 (1.1)

D = (dy) = %(1 + dij)
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as a matrix of differential operators where §;; is the Kronecker delta. DV is the
formal matrix product of D and V. Let h(F) be a real-valued function of F
and Oh(F)/OF = (Oh(F)/0f;;). Write V(F,Q) as V and h(F) as h for brevity.
Under fairly general regularity conditions, we have the F identity :

Ehtr(Q+ F)"'V] = %E[h tr(DV)] + %E[tr(g—;W1/2))}
+ m%m_lE[h b (F-1V)]. (1.2)

This F identity is an extension of the Wishart identity to the multivariate F
distribution. The regularity conditions (to ensure the function AV satisfies the
conditions of the Stokes’ theorem) are given in Konno (1988).

The Wishart identity was used to prove dominance results in decision-
theoretic estimation problems in a series of papers Haff (1979a,b, 1980, 1981,
1982). Tt is natural to look for a similar identity for the corresponding non-
central distributions. Leung (1994a) generalized the Wishart identity to the
noncentral Wishart distribution and applied this noncentral Wishart identity to
an estimation problem. In the present paper, we generalize the F identity (1.2)
to the noncentral F distribution, and the result will be called the ”"noncentral F
identity”. In Section 2, the noncentral F identity is stated and proved. As an
application of this identity, we consider the problem of estimating the noncen-
trality matrix A of a noncentral multivariate F distribution in Section 3. A class
of orthogonally invariant estimator of A is proposed which dominates the usual
unbiased estimator of A. A simulation study was carried out to compare the
performance of the proposed estimator. This problem has also been considered
by Leung and Muirhead (1987).

2. The Noncentral F Identity

Suppose that m x m matrices A and B are independent with noncentral
Wishart and central Wishart distributions respectively. A has n; degrees of
freedom, identity covariance matrix and noncentrality matrix A, denoted by
W(ny, I,A). B has n, degrees of freedom and identity covariance matrix, de-
noted by W,,(ns,I). Define F = A'2B~'A'/?; then F has a noncentral mul-
tivariate F distribution, denoted by F,,(n;,n.;; A), with probability density

function

[ (n/2)etr(—A/2) (det F)(m—m=1)/2 n n 1 .
Fil=; = ~AF(I+F

T, (n1/2)C e (n2/2) [det(I + F)]/2 5 AFU+ ),

g(F) =

where etr(-) = expltr(-)], 1 Fi(-) is the confluent Hypergeometric function with
matrix argument and n = n; + n, (see Muirhead (1982) for details). Under the
same regularity conditions for the F identity given in Konno (1988), we have
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Theorem 2.1. (Noncentral F identity)

Elhtr(I+F)"V]= %E[h tr(DV)]+%E [tr(g_;%m)] (2.1)
P Bl (F V)] B (bl A F) TV,

where the expectation E is taken over a F,,(ny,ny; I; A) distribution and

E{htr[F~'(I+ F)"'V]} = htr[F~'(I + F)~'V]g,(F)(dF)

F>0
with g, (F) the density of a F,,(ny +m + 1,ny; I; A) distribution.

The identity (2.1) is same as (1.2) except for the last term where the ex-
pectation is taken over a noncentral multivariate F distribution with degrees of
freedom changed from n; to n; +m + 1. Notice that when A = 0, (2.1) reduces
to (1.2) with = I. Before proving (2.1), we need the following lemmas.

Lemma 2.2.

(i) E[F] = (niI + A)/cy,

(ii) Eftr(F?)] = [(tr A)? 4 ¢1 tr(A%) + co tr A + ¢3]/co,

(iii) E[(tr F')?] = [ca(tr A)* + 2tr(A?) + ¢5(tr A) + ¢5]/ co,

where cg = (ny —m)(ny —m — 1)(ny —m —3), ¢, =ny —m — 1, cg = 2[(ny —
m)(ny +m+ 1)+ (m — 1)(ny — 1)], ez = mnic2/2, ¢4 = Ny —m —2, ¢c5 =
2[ca(mny +2) +2(ny + m 4+ 1)], g = mnics/2.

Proof. (i) can be easily proved by the conditioning on A as follows:
E[F] = E[A'*B™'A"*] = E[E(A'?B~'A'/?|A)]

E(A) i TL1I+A
No—m—1  no—m—1"

The proofs of (ii) and (iii) are reasonably straightforward (but messy) using the
conditioning on A as in (i) and Theorem 4.4 of Magnus and Neudecker (1979)
(see Leung (1986) for details). Note that the result (ii) is also given in Lemma
3.3 of Leung and Muirhead (1987).

We also need formulae for the differential operator D (defined in (1.1)) on
F? and F3.
Lemma 2.3.
(i) tr[DF?| = (m + 1) tr F.
(ii) tr[DF?] = 2858 tr(F?) 4 £ (tr F).
Proof. (i) and (ii) can be easily obtained using Lemma 2.3 in Konno (1991b)
and is omitted.
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Now we turn to the proof of Theorem 2.1.

Proof of (2.1). The proof is very similar to the proof of Theorem 2.1 in Leung
(1994a). From above, the density of F' is

o(F) _C(detF)(”I*”‘*l)/2 [n N

1
F|=;—=AF(I + F)™* 2.2
der e Py g AR+ F) )], (2.2)
where C' = [['),(n/2)etr(—A/2)]/[Tn(n1/2)T(n2/2)]. For the differential opera-
tor D defined in (1.1), we have D(det F)* = a(det F)*F~!. Hence, D operating
on g(F) in (2.2) gives

Dy(F) = [ - a4 ) o) Q) (23)
where
(det f)(ma—m=1/2 n n 1 .
Q) = C T P {DIR[Gi5AFT+F) 7} (24)

The same set of regularity conditions on hV given in Konno (1988) ensures that

/ tr DLWV ¢(F)](dF) = 0.
F>0
It follows that

0 = Etx[(0h/OF) Vi1 o)) + E[htr(DV)] + [ hV tx[Dg(F)](dF).

F>0

Using (2.3), we have

Ehtr(I + F)'V] = %E[h tr(DV)] + %E[tr(g—;;v(lm)} (2.5)
e _;” B (Fv)) + % htr(QV)(dF).

Comparing (2.5) with (2.1), the proof is complete if we can show

2 htr(QV)(dF) = htr[F7'A(I + F)~'V]g, (F)(dF),
F>0 F>0
where g, (F') is the density of a F,,,(n, +m + 1,ny;I; A) distribution. Therefore,
it suffices to show that

2Q g, '(F)=F 'A(I+F)! a.e. (2.6)
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Q(F') defined in (2.4) involves the operation of D on ;F;(-). Although it is
possible to prove (2.6) directly by differentiating the series of zonal polynomials
in | F(+), this could be very complicated and messy. We take another approach.
By using V = (I + F)F? and h = 1 in (2.5) with Lemma 2.3 and simplifying, we

obtain ) )
_mtm+l E

Eltr(F?)] [tr ] + E[(tr F)?]

Ny —m — 2

tr[Q(I + F)F?|(dF).

Ny —m — 2
2
Ny —m — 2 Jrso

Using Lemma 2.2 and simplifying, we obtain

2 [ t[Q (I + F)F?)(dF) = (1 +m+1)(trA) + tr(A%)

F>0 Ny —m — 1

(2.7)
Note that the right hand side of (2.7) is equal to

| (&P (F)@F).

where g, (F) is the density of a F,,(n, +m + 1,n,; I; A) distribution. It follows
from (2.7) that
tr[2Q (I + F)F?g;'(F) — AF]=0 a..

or

r{[2Q ¢, {(F) — F 1AL+ F) (I + F)F?]} =0 a..

for all F > 0 which implies (2.6). This completes the proof.

3. Improved Estimation of Noncentrality Matrix

The F identity (1.2) is very useful for finding bounds for expectations which
often appeares in risk calculations (see for example Konno (1991a) and Leung
(1992)). We expect similar applications can be found for the noncentral F iden-
tity (2.1) as well. To illustrate a nontrivial application of this noncentral F
identity, we consider the problem of estimating the eigenvalues of the noncen-
trality matrix of a noncentral multivariate F distribution. This problem arises
from MANOVA and canonical correlation contexts, and is discussed in Leung
and Muirhead (1987) and Leung (1994b).

In the typical MANOVA setting, independent m x m matrices S; and S, are
observed, where S; ~ W,,(n1,%,Q) and Sy ~ W,,(ny, ). Assume that n, > m
and ny > m, so that both distributions are nonsingular. The eigenvalues of €2,
Wi, ..., Wy, are important in the problem of testing H : 2 = 0 against K : Q # 0.
Any invariant test depends only on [i,...,1,,, the eigenvalues of S;S,' and has
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a power function which depends on ¥ and € only through wi,...,w,,. These
eigenvalues also play a major role in discriminant analysis as well. Now define
m x m matrices A and B by A = ¥7Y/28,2"/2 and B = £71/28,%"2 50
that A ~ W,,(ny,I,A), with A = /20572 and B ~ W,,(ns,I). Therefore
F = AY2B7'A'Y? has a F,,(n,,ns; I; A) distribution. Note that the eigenvalues

1

of 2 and A are the same and the eigenvalues of F and 5155 are the same. We

remark that, although F' is not observable unless Y. is known, its eigenvalues are
observable. We then treat F' as if it is observable and estimate A by A(F’) using
the invariant loss function

L(A,A) = tr(AT'A — 1,,)% (3.1)

The eigenvalues of A(F) are observable and may be regarded as estimates of
Wiyeooy W

From (i) of Lemma 2.2, the unbiased estimator of A is
Ay = (ny —m —1)F —ny1,,. (3.2)

The corresponding estimate of w; derived from Ay is thus (ny —m — 1)l; —ny.
Now consider two classes of orthogonally invariant estimators,

A, =aly (3.3)

and

- B
A, 3 = a —1,. 4
a,B oAy + trE ™ (3 )

It is shown in Theorems 3.3 and 3.5 below that Aa dominates AU for suitable
choices of o and A, 3 dominates A, for suitable choices of o and 3. Before
stating and proving the dominance results, we need the following lemmas.

Lemma 3.1.

Etr(AT'FAT'F) = a,(tr A7) + ay tr(A72) + ag tr(A™1) + ay,
where a; = ny(ny + ¢1)/(cocres), azs = ny[(ny + 1)ey + 2]/ (coere3), az = 2[(ng +
m+ 1)e; +mny + 2]/(coere3), ag = m(m + ¢)/(cocic3) and ¢; =ny —m —i.

Proof. The proof is similar to the proof of Lemma 2.1 in Leung (1994b) and is
omitted.

Lemma 3.2. Assume that ny, > m + 3. The risk of the unbiased estimator AU
in (3.2) using loss function (3.1) is

R(A,Ap) = by (tr A2 + by tr(A2) 4 by tr(A™Y) + by,
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where by = nycy(ny + ¢1)/(cocz), by = ny(er + 2)(ny + ¢1)/(cocs), by = 2(ny +

c1)[(m + 1)ey +2]/(cocs), by = m[(m + 1)e; +2]/(cocs) and ¢; =ny —m — .
Proof. The risk of AU is
R(A,Ay) = Etr[A™ Ay — I,
= Etr[(ng —m—1)AT'F —n A" — I,]7
= (ny —m — 1)’Etr(A'FA™'F)
—2ni(ny —m — D)Etr(A7?F) + n] tr(A™%) — m.

Using Lemma 3.1 and the fact that Etr(A2F) = [ny tr(A~2) +tr(A Y] /ey, the
result follows after simplification.

Theorem 3.3. Assume that ny > m+3. Applying the loss function (3.1), N
dominates Ay provided that

CoCs —mey — 1

max{(), }<a<1.

Cy (m + Cl)

Proof. The risk of aﬁU is
R(A,aAy) = Eltr(aA Ay — 1,,)%] = > R(A, Ay) + m(1 — o).
Therefore the difference between the risks of AU and aAU is
H(A) = R(A,Ap) — R(A, aAy) = (1 — o®)R(A, Ay) — m(1 — a)?.
Using Lemma 3.2,
H(A) = b, (1 —a®)(tr A1) 4+ by(1 — a?)tr(A?) + b3(1 — o®) tr(A™1)
+b4(1 — &®) —m(1 — ). (3.5)

oAy has a smaller risk than Ay if H(A) > 0. However, H(A) depends on the
unknown parameter matrix A. We need to find a lower bound of H(A) which
is independent of A. First assume that 0 < « < 1; then the first three terms in
(3.5) are greater than or equal to zero. Therefore

H(A) > by(1 —a?) —m(l — a)’. (3.6)
A sufficient condition for H(A) > 0 is (m — by)/(m + by) < a < 1. Note that
(m—by)/(m+by) is always less than 1. The proof is completed after simplification.

An optimal value of o which maximizes the lower bound in (3.6) is

m _ CoC3
m-+by  ci(m+c)

*

(3.7)
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and the corresponding estimate is A L= a*ﬁU. Note that a* always lies between
0 and 1 and satifies the condition in Theorem 3.3.

We now turn to nonlinear estimates A, 5 defined in (3.4). It is shown in
Theorem 3.5 that ﬁaﬂ dominates A, for suitable choices of a and (. Before
stating and proving this dominance result, we need the following lemma.

Lemma 3.4. Let F have a F,,(ny,nq; I; A) distribution with ny > 4. Then

—2 —2 . —2
E{tr(A F)}S ny E[trA ]_ 2(n,—4) E{trA }
tr F ny—m—1 tr F (no—m+3)(ny —m —1)  [(tr F)?

2 {trAl]

(ng —m —3)(ny —m +1) (tr F)?

1 tr A™1
E
+n2—m—1 1[ tr F' }’

where E is taken over a F,,(ny,nq; I;A) distribution and E, is taken over a
Fo.(ny +m + 1,ny; I; A) distribution.

Proof. We apply the noncentral F identity given in (2.1) with V = (I4+ F)A?F
and h = 1/tr F. Since tr(DV) = [(m + 1)/2](tr A™?) + (m + 1) tr(A~?F) and
Oh/OF = [—1/(tr F)?]1,, (see Konno (1991a)), we have

Ny —:Ln — 1E' {tr(A”F)} _Mmg {tr A‘2] B % {tr(A”F)]

tr F' n tr F' ! (tr F)? i
a5 e

Using the fact that the third term of the right hand side of (3.8) is nonnegative,
hence

g {tr(A‘QF)} < . _n1 z [trA_?} - = _2 z {tr(A”F)}

tr F' m—1 tr F’ m—1 (tr F')?
1 tr A™!
E . 3.9
+n2—m—1 l{trF} (3.9)

To compute the second term of (3.9), apply the noncentral F identity (2.1) again
with V.= (I + F)A?F and h = 1/(tr F)?. Since 0h/OF = [-2/(tr F)?]1,, (see
Konno (1991a)),

oM e ] - 2 )
Lp[HATEY) | 1y na

(tx F)? ) #10

n n

n n
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Using the fact that tr(A™2F) < (tr A™?)(tr F') and tr(A™2F?) < (tr A72F) (tr F)
in the second and third term of the right hand side of (3.10) respectively, we
obtain

[E]s cnot s [E) hn ]

Substituting into (3.9) completes the proof.

Theorem 3.5. Assume that n;, > 4 and ny, > m — 1. Then Aaﬂ defined in
(3.4) dominates A, defined in (3.3) if

2 da(ny — 4)
0I<a<l+ ——m d 0<p< —m.
“ +m(n2—m+1) an h (ne —m+3)

Proof. For the loss function defined in (3.1), it is straight forward to show that
the risk difference between A, and A, 5 is

G(A) = E[L(A,A,) — L(A, A, )]

= 2BE {terFl] —2(ny —m —1)afE {%} +2mafl [terFz}
]

Using Lemma, 3.4 and simplifying, we obtain

oo 225 - (327} 2 )

tr F tr F —m+3) (tr F)?
ey 2 7 [Gry] )

First, assume that a and ( are positive. Then the second and the third terms
on the right hand side of (3.11) are always positive. The first term involves
E[1/tr F]. An upper and lower bound for E[1/tr F] is given in Lemma 3.4 in
Leung and Muirhead (1987) (derived using the Wishart identity) as follow :

<p[L]ep[momel ]
- tr F'] — mn, + 2K — 2

1E{2+m(n2—m—1)
mn, + 2K — 2

m

where K is a Poisson random variable with mean (tr A)/2. Using the lower
bound for E[1/tr F] and the upper bound for E;[1/tr F] and simplifying, the
first term on the right hand side of (3.11) is apparently equal to

Q,Btr(A’l)E { (mm + 2K — 2)[(1 — a)m(n2 —m + 1) + 2] + 2m(m + 1)}

m(mny + 2K —2)[m(n; + m+1) + 2K — 2]
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which is greater than zero if the square bracket in the numerator is greater than
zero. This is exactly the condition of « stated in the Theorem. Therefore

G(A)Zﬁ{% ff} H;AF_)Z} (3.12)

and a sufficient condition for G(A) > 0 is to ensure the curly bracket of (3.12) is
nonnegative. This completes the proof.

Table 1. — PRIAL : A = diag(1,1,1,1)

ny N9 Ag AL At ANL A;L

10 | 10.341 | 83.889 | 86.077 | 83.935 | 86.038
25 | 28.146 | 37.946 | 56.494 | 38.292 | 55.546
10 50 | 29.876 | 19.550 | 44.251 | 19.894 | 42.657
75 | 33.009 | 13.135 | 42.312 | 13.461 | 40.316
100 | 32.357 9.893 | 39.429 | 10.222 | 37.325

10 | 21.418 | 83.901 | 87.878 | 83.962 | 87.816
25 | 27.021 | 38.017 | 55.360 | 38.152 | 54.615
25 o0 | 34.625 | 19.534 | 47.842 | 19.718 | 46.336

75 | 37.588 | 13.128 | 46.124 | 13.320 | 44.224
100 | 39.479 9.871 | 45.725 | 10.198 | 43.670

10 | 15.064 | 83.988 | 86.704 | 84.010 | 86.675
25 | 28.060 | 37.993 | 55.753 | 38.077 | 55.268
50 o0 | 37.412 | 19.523 | 49.933 | 19.668 | 48.841
75 | 39.712 | 13.119 | 47.848 | 13.303 | 46.516
100 | 40.851 9.875 | 46.879 | 10.103 | 45.361

10 | 13.830 | 83.992 | 86.339 | 84.005 | 86.321
25 | 26.659 | 37.992 | 56.655 | 38.046 | 56.277
75 o0 | 34.971 | 19.517 | 47.886 | 15.595 | 47.095
75 | 38437 | 13.133 | 46.691 | 13.200 | 45.651
100 | 41.215 9.886 | 47.171 9.983 | 45.944

10 | 16.599 | 83.997 | 86.775 | 84.007 | 86.758
25 | 29.435 | 37.993 | 56.456 | 38.031 | 56.158
100 o0 | 36.832 | 19.532 | 49.344 | 19.582 | 48.684

75 | 36.791 | 13.136 | 45.228 | 13.163 | 44.384
100 | 41.314 9.882 | 47.229 | 10.000 | 46.254

A reasonable way of choosing (3 is by maximizing the lower bound for G(A)

n (3.12). The maximizing value is * = 2a*(n; —4)/(n. — m + 3) where o” is
deﬁned in (3.7) and the corresponding estimator is Ay = A,- FI

AU, A and Ay, are not necessarlly positive definite; they are dominated by

their truncated versions A, A} and A}, respectively: matrices with the same
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eigenvectors and eigenvalues except that any negative eigenvalues are replaced
by zero. This result is proved in Theorem 3.3 in Leung (1994a).

Table 2. — PRIAL : A = diag(4,3,2,1)

n1 D) A$ AL AI ANL A—ij\_fL
10 | 12.405 | 83.647 | 86.698 | 83.732 | 86.653
25 | 20.339 | 37.959 | 51.959 | 38.226 | 51.245
10 50 | 26.470 | 19.494 | 41.785 | 19.971 | 40.476
75 | 28.797 | 13.094 | 38.858 | 13.556 | 37.193
100 | 27.272 9.894 | 35.028 | 10.205 | 33.178
10 | 16.212 | 83.858 | 87.264 | 83.921 | 87.211
25 | 26.276 | 22.766 | 55.267 | 38.171 | 54.521
25 50 | 30.539 | 19.544 | 44.850 | 19.703 | 43.290
75 | 31.960 | 13.144 | 41.434 | 13.335 | 39.592
100 | 32.475 9.894 | 39.583 | 10.035 | 37.531
10 | 17.503 | 83.932 | 87.212 | 83.966 | 87.177
25 | 27.831 | 37.942 | 55.876 | 38.125 | 55.365
50 50 | 31.348 | 19.532 | 45.239 | 19.651 | 44.162
75 | 23.991 | 13.133 | 42.648 | 13.252 | 41.273
100 | 37.314 | 18.077 | 43.810 | 10.152 | 42.275
10 9.660 | 84.002 | 85.740 | 84.015 | 85.725
25 | 25.063 | 37.996 | 54.016 | 38.053 | 53.608
75 50 | 33.872 | 19.514 | 47.150 | 19.670 | 46.314
75 | 35.330 | 13.122 | 44.119 | 13.261 | 42.996
100 | 37.480 9.881 | 43.903 | 10.025 | 42.625
10 | 15.157 | 83.982 | 86.629 | 83.997 | 86.611
25 | 31.606 | 37.929 | 57.748 | 38.059 | 57.639
100 50 | 27.441 | 19.555 | 41.907 | 19.551 | 41.227
75 | 35.746 | 13.129 | 44.433 | 13.226 | 43.498
100 | 37.200 9.883 | 43.606 | 10.006 | 42.569

A simulation study was carried out to compare the risks of AU, A, and
Axz and their truncated versions Af,, A} and A%,. For m = 4 and ny,n, =
10,25, 50, 75,100, and three different choices of a diagonal noncentrality matrix
A, a sample of 500 A’s and B’s were generated, where A ~ Wy(n,,I,A), B ~
Wi(ns,I), A and B are independent. Then 500 values of F = AY?B~'A~1/2 were
formed and used to construct AU, AL, ANL and their truncated versions Aﬁ,
A“LL and A}L, and from these average losses were obtained. Tables 1 to 3 give the
percentage reduction in average loss (PRIAL) for Af, Ay, AT, Ay, and Af,,
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compared with AU, i.e., they are the estimates of

R(A,Ap) — R(A,A)
(Aa AU)

x 100

=

obtained by replacing risk with average loss and A with various estimators.

PRIAL in Tables 1 to 3 are all positive, which confirms the dominance results.
The risk reduction of A;} is small when n, is small. A{ and AEL are uniformly
better than A§ A 1 and A ~r and their truncated version are substantially better
than A when n, is small.

Table 3. — PRIAL : A = diag(100, 75, 50, 25)
i Mo A—g AL Az ANL AEL

10 0.482 | 71.656 | 71.862 | 71.666 | 71.870
25 0.314 | 30.089 | 30.197 | 30.138 | 30.243
10 50 0.223 | 17.224 | 17.426 | 17.267 | 17.462

75 0.064 | 11.682 | 11.741 | 11.722 | 11.780
100 0.113 8.831 8.938 8.869 8.974

10 3.298 | 74.664 | 76.002 | 74.687 | 76.013
25 2.464 | 33.207 | 35.159 | 33.303 | 35.206
25 50 1.267 | 17.832 | 18.978 | 17.928 | 19.035
75 0.755 | 11.701 | 12.407 | 11.812 | 12.484
100 0.992 8.945 9.886 9.046 9.949

10 7.023 | 78.491 | 81.160 | 78.516 | 81.165
25 7.728 | 34.499 | 40.532 | 34.611 | 40.525
50 50 7.116 | 17.983 | 24.341 | 18.121 | 24.311

75 4.568 | 12.690 | 16.946 | 12.764 | 16.884
100 4.456 9.349 | 13.580 9.461 | 13.535

10 | 10.018 | 80.139 | 83.688 | 80.162 | 83.688
25 | 13.150 | 35.926 | 46.024 | 36.019 | 45.967
75 o0 | 11.065 | 18.615 | 28.448 | 18.735 | 28.345

75 | 10.077 | 12.260 | 21.600 | 12.394 | 21.447
100 8.517 9.551 | 17.610 9.650 | 17.459

10 | 12.468 | 80.731 | 84.843 | 80.763 | 84.842
25 | 18.052 | 35.858 | 49.501 | 35.966 | 49.431
100 o0 | 12.779 | 19.433 | 30.755 | 19.477 | 30.577

75 | 13.181 | 12.670 | 24.855 | 12.767 | 24.662
100 | 12.887 9.537 | 21.705 9.643 | 21.492
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