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AN IDENTITY FOR THE NONCENTRAL MULTIVARIATE

F DISTRIBUTION WITH APPLICATION
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Abstract: Muirhead and Verathaworn (1985) and Konno (1991a,b) extended the

Wishart identity to the multivariate F distribution and used this identity to prove

dominance results for estimating the scale matrix of the multivariate F distribution.

This paper extends this F identity to the noncentral multivariate F distribution. As

an application of this noncentral F identity, we consider the problem of estimating

the noncentrality matrix of a noncentral multivariate F distribution. This identity is

used to develop a class of orthogonally invariant estimators which dominate the usual

unbiased estimator. A simulation study was carried out to compare the performance

of these estimators.
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1. Introduction

In estimating the latent roots in a two sample setting, Muirhead and Ve-

rathaworn (1985) derived an identity for the multivariate F distribution. This

F identity is similar to the Wishart identity (derived independently by C. Stein

and L. Ha�) and is very useful in �nding the risk di�erence between estimators.

Later, Konno (1991a, 1992) and Leung (1992) used this F identity in estimating

the scale matrix of the multivariate F distribution. For reference, we de�ne the

following symbols and state this F identity.

Suppose that a random m � m positive de�nite matrix F = (fij) has a

multivariate F distribution with degrees of freedom n1 and n2 and scale matrix


, denoted by Fm(n1; n2; 
). That is, F has the probability density function

�m[(n1 + n2)=2]

�m(n1=2)�m(n2=2)
(det 
)�n1=2(detF )(n1�m�1)=2[det(I +
�1F )]�n=2;

where n = n1+n2, n1 > m+1, n2 > m+1 and �m(�) is the multivariate Gamma

function. Let V (F;
) be a matrix whose elements are function of F and 
 and

let V(r) = rV + (1� r)diag(V ). De�ne

D = (dij) =
1

2
(1 + �ij)

@

@fij
(1:1)
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as a matrix of di�erential operators where �ij is the Kronecker delta. DV is the

formal matrix product of D and V . Let h(F ) be a real{valued function of F

and @h(F )=@F = (@h(F )=@fij). Write V (F;
) as V and h(F ) as h for brevity.

Under fairly general regularity conditions, we have the F identity :

E[h tr(
 + F )�1V ] =
2

n
E[h tr(DV )] +

2

n
E

h
tr(

@h

@F
V(1=2))

i
+
n1 �m� 1

n
E[h tr(F�1

V )]: (1:2)

This F identity is an extension of the Wishart identity to the multivariate F

distribution. The regularity conditions (to ensure the function hV satis�es the

conditions of the Stokes' theorem) are given in Konno (1988).

The Wishart identity was used to prove dominance results in decision-

theoretic estimation problems in a series of papers Ha� (1979a,b, 1980, 1981,

1982). It is natural to look for a similar identity for the corresponding non-

central distributions. Leung (1994a) generalized the Wishart identity to the

noncentral Wishart distribution and applied this noncentral Wishart identity to

an estimation problem. In the present paper, we generalize the F identity (1:2)

to the noncentral F distribution, and the result will be called the "noncentral F

identity". In Section 2, the noncentral F identity is stated and proved. As an

application of this identity, we consider the problem of estimating the noncen-

trality matrix � of a noncentral multivariate F distribution in Section 3. A class

of orthogonally invariant estimator of � is proposed which dominates the usual

unbiased estimator of �. A simulation study was carried out to compare the

performance of the proposed estimator. This problem has also been considered

by Leung and Muirhead (1987).

2. The Noncentral F Identity

Suppose that m � m matrices A and B are independent with noncentral

Wishart and central Wishart distributions respectively. A has n1 degrees of

freedom, identity covariance matrix and noncentrality matrix �, denoted by

Wm(n1; I;�). B has n2 degrees of freedom and identity covariance matrix, de-

noted by Wm(n2; I). De�ne F = A
1=2
B
�1
A

1=2; then F has a noncentral mul-

tivariate F distribution, denoted by Fm(n1; n2; I;�), with probability density

function

g(F ) =
�m(n=2)etr(��=2)

�m(n1=2)�m(n2=2)

(detF )(n1�m�1)=2

[det(I + F )]n=2
1F1[

n

2
;
n1

2
;
1

2
�F (I + F )�1];

where etr(�) = exp[tr(�)], 1F1(�) is the conuent Hypergeometric function with

matrix argument and n = n1 + n2 (see Muirhead (1982) for details). Under the

same regularity conditions for the F identity given in Konno (1988), we have
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Theorem 2.1. (Noncentral F identity)

E[h tr(I+F )�1V ]=
2

n
E[h tr(DV )]+

2

n
E

h
tr(

@h

@F
V(1=2))

i
(2:1)

+
n1�m�1

n
E[h tr(F�1

V )]+
1

n
E1fh tr[F

�1�(I+F )�1V ]g;

where the expectation E is taken over a Fm(n1; n2; I;�) distribution and

E1fh tr[F
�1(I + F )�1V ]g =

Z
F>0

h tr[F�1(I + F )�1V ]g1(F )(dF )

with g1(F ) the density of a Fm(n1 +m+ 1; n2; I;�) distribution.

The identity (2.1) is same as (1.2) except for the last term where the ex-

pectation is taken over a noncentral multivariate F distribution with degrees of

freedom changed from n1 to n1 +m+ 1. Notice that when � = 0, (2.1) reduces

to (1.2) with 
 = I. Before proving (2.1), we need the following lemmas.

Lemma 2.2.

(i) E[F ] = (n1I +�)=c1,

(ii) E[tr(F 2)] = [(tr�)2 + c1 tr(�
2) + c2 tr�+ c3]=c0,

(iii) E[(trF )2] = [c4(tr�)
2 + 2 tr(�2) + c5(tr�) + c6]=c0,

where c0 = (n2 �m)(n2 �m � 1)(n2 �m � 3), c1 = n2 �m � 1, c2 = 2[(n2 �

m)(n1 + m + 1) + (m � 1)(n1 � 1)], c3 = mn1c2=2, c4 = n2 � m � 2, c5 =

2[c4(mn1 + 2) + 2(n1 +m+ 1)], c6 =mn1c5=2.

Proof. (i) can be easily proved by the conditioning on A as follows:

E[F ] = E[A1=2
B
�1
A

1=2] = E[E(A1=2
B
�1
A

1=2
jA)]

=
E(A)

n2 �m� 1
=

n1I +�

n2 �m� 1
:

The proofs of (ii) and (iii) are reasonably straightforward (but messy) using the

conditioning on A as in (i) and Theorem 4.4 of Magnus and Neudecker (1979)

(see Leung (1986) for details). Note that the result (ii) is also given in Lemma

3.3 of Leung and Muirhead (1987).

We also need formulae for the di�erential operator D (de�ned in (1.1)) on

F
2 and F 3.

Lemma 2.3.

(i) tr[DF 2] = (m+ 1) trF .

(ii) tr[DF 3] = 2m+3

2
tr(F 2) + 1

2
(trF )2.

Proof. (i) and (ii) can be easily obtained using Lemma 2.3 in Konno (1991b)

and is omitted.
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Now we turn to the proof of Theorem 2.1.

Proof of (2.1). The proof is very similar to the proof of Theorem 2.1 in Leung

(1994a). From above, the density of F is

g(F ) = C
(detF )(n1�m�1)=2

[det(I + F )]n=2
1F1

h
n

2
;
n1

2
;
1

2
�F (I + F )�1)

i
; (2:2)

where C = [�m(n=2)etr(��=2)]=[�m(n1=2)�m(n2=2)]. For the di�erential opera-

tor D de�ned in (1:1), we have D(detF )� = �(detF )�F�1. Hence, D operating

on g(F ) in (2:2) gives

Dg(F ) =
h
n1 �m� 1

2
F
�1
�
n

2
(I + F )�1

i
g(F ) +Q(F ); (2:3)

where

Q(F ) = C
(det f)(n1�m�1)=2

[det(I + F )]n=2

n
D1F1[

n

2
;
n1

2
;
1

2
�F (I + F )�1]

o
: (2:4)

The same set of regularity conditions on hV given in Konno (1988) ensures that

Z
F>0

trD[hV g(F )](dF ) = 0:

It follows that

0 = E tr[(@h=@F )V(1=2)] +E[h tr(DV )] +

Z
F>0

hV tr[Dg(F )](dF ):

Using (2.3), we have

E[h tr(I + F )�1V ] =
2

n
E[h tr(DV )] +

2

n
E

h
tr(

@h

@F
V(1=2))

i
(2:5)

+
n1 �m� 1

n
E[h tr(F�1

V )] +
2

n

Z
F>0

h tr(QV )(dF ):

Comparing (2:5) with (2:1), the proof is complete if we can show

2

Z
F>0

h tr(QV )(dF ) =

Z
F>0

h tr[F�1�(I + F )�1V ]g1(F )(dF );

where g1(F ) is the density of a Fm(n1 +m+ 1; n2; I;�) distribution. Therefore,

it su�ces to show that

2Q g
�1
1 (F ) = F

�1�(I + F )�1 a.e. (2:6)
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Q(F ) de�ned in (2:4) involves the operation of D on 1F1(�). Although it is

possible to prove (2.6) directly by di�erentiating the series of zonal polynomials

in 1F1(�), this could be very complicated and messy. We take another approach.

By using V = (I +F )F 2 and h = 1 in (2:5) with Lemma 2.3 and simplifying, we

obtain

E[tr(F 2)] =
n1 +m+ 1

n2 �m� 2
E[trF ] +

1

n2 �m� 2
E[(trF )2]

+
2

n2 �m� 2

Z
F>0

tr[Q(I + F )F 2](dF ):

Using Lemma 2.2 and simplifying, we obtain

2

Z
F>0

tr[Q (I + F )F 2](dF ) =
(n1 +m+ 1)(tr�) + tr(�2)

n2 �m� 1
: (2:7)

Note that the right hand side of (2:7) is equal to

Z
F>0

tr(�F )g1(F )(dF );

where g1(F ) is the density of a Fm(n1 +m+ 1; n2; I;�) distribution. It follows

from (2:7) that

tr[2Q (I + F )F 2
g
�1
1 (F )��F ] = 0 a.e.

or

trf[2Q g
�1
1 (F )� F

�1�(I + F )�1][(I + F )F 2]g = 0 a.e.

for all F > 0 which implies (2:6). This completes the proof.

3. Improved Estimation of Noncentrality Matrix

The F identity (1:2) is very useful for �nding bounds for expectations which

often appeares in risk calculations (see for example Konno (1991a) and Leung

(1992)). We expect similar applications can be found for the noncentral F iden-

tity (2:1) as well. To illustrate a nontrivial application of this noncentral F

identity, we consider the problem of estimating the eigenvalues of the noncen-

trality matrix of a noncentral multivariate F distribution. This problem arises

from MANOVA and canonical correlation contexts, and is discussed in Leung

and Muirhead (1987) and Leung (1994b).

In the typical MANOVA setting, independent m�m matrices S1 and S2 are

observed, where S1 � Wm(n1;�;
) and S2 � Wm(n2;�). Assume that n1 � m

and n2 � m, so that both distributions are nonsingular. The eigenvalues of 
,

!1; : : : ; !m, are important in the problem of testing H : 
 = 0 against K : 
 6= 0.

Any invariant test depends only on l1; : : : ; lm, the eigenvalues of S1S
�1
2 and has
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a power function which depends on � and 
 only through !1; : : : ; !m. These

eigenvalues also play a major role in discriminant analysis as well. Now de�ne

m � m matrices A and B by A = ��1=2S1�
�1=2 and B = ��1=2S2�

�1=2, so

that A � Wm(n1; I;�), with � = �1=2
��1=2 and B � Wm(n2; I). Therefore

F = A
1=2
B
�1
A

1=2 has a Fm(n1; n2; I;�) distribution. Note that the eigenvalues

of 
 and � are the same and the eigenvalues of F and S1S
�1
2 are the same. We

remark that, although F is not observable unless � is known, its eigenvalues are

observable. We then treat F as if it is observable and estimate � by b�(F ) using
the invariant loss function

L(�; b�) = tr(��1 b�� Im)
2
: (3:1)

The eigenvalues of b�(F ) are observable and may be regarded as estimates of

!1; : : : ; !m.

From (i) of Lemma 2.2, the unbiased estimator of � is

b�U = (n2 �m� 1)F � n1Im: (3:2)

The corresponding estimate of !i derived from b�U is thus (n2 �m � 1)li � n1.

Now consider two classes of orthogonally invariant estimators,

b�� = � b�U (3:3)

and b��;� = � b�U +
�

trF
Im: (3:4)

It is shown in Theorems 3.3 and 3.5 below that b�� dominates b�U for suitable

choices of � and b��;� dominates b�� for suitable choices of � and �. Before

stating and proving the dominance results, we need the following lemmas.

Lemma 3.1.

E tr(��1
F��1

F ) = a1(tr�
�1)2 + a2 tr(�

�2) + a3 tr(�
�1) + a4;

where a1 = n1(n1 + c1)=(c0c1c3), a2 = n1[(n1 + 1)c1 + 2]=(c0c1c3), a3 = 2[(n1 +

m+ 1)c1 +mn1 + 2]=(c0c1c3), a4 = m(m+ c1)=(c0c1c3) and ci = n2 �m� i.

Proof. The proof is similar to the proof of Lemma 2.1 in Leung (1994b) and is

omitted.

Lemma 3.2. Assume that n2 > m+ 3. The risk of the unbiased estimator b�U

in (3:2) using loss function (3:1) is

R(�; b�U ) = b1(tr�
�1)2 + b2 tr(�

�2) + b3 tr(�
�1) + b4;
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where b1 = n1c1(n1 + c1)=(c0c3), b2 = n1(c1 + 2)(n1 + c1)=(c0c3), b3 = 2(n1 +

c1)[(m+ 1)c1 + 2]=(c0c3), b4 = m[(m+ 1)c1 + 2]=(c0c3) and ci = n2 �m� i.

Proof. The risk of b�U is

R(�; b�U ) = E tr[��1 b�U � Im]
2

= E tr[(n2 �m� 1)��1
F � n1�

�1
� Im]

2

= (n2 �m� 1)2E tr(��1
F��1

F )

� 2n1(n2 �m� 1)E tr(��2
F ) + n

2
1 tr(�

�2)�m:

Using Lemma 3.1 and the fact that E tr(��2
F ) = [n1 tr(�

�2)+ tr(��1)]=c1, the

result follows after simpli�cation.

Theorem 3.3. Assume that n2 > m+3. Applying the loss function (3:1), � b�U

dominates b�U provided that

max

�
0;
c0c4 �mc1 � 1

c1(m+ c1)

�
< � < 1:

Proof. The risk of � b�U is

R(�; � b�U ) = E[tr(���1 b�U � Im)
2] = �

2
R(�; b�U) +m(1� �)2:

Therefore the di�erence between the risks of b�U and � b�U is

H(�) = R(�; b�U )�R(�; � b�U ) = (1� �
2)R(�; b�U)�m(1� �)2:

Using Lemma 3.2,

H(�) = b1(1� �
2)(tr��1)2 + b2(1� �

2)tr(��2) + b3(1� �
2) tr(��1)

+ b4(1� �
2)�m(1� �)2: (3:5)

� b�U has a smaller risk than b�U if H(�) > 0. However, H(�) depends on the

unknown parameter matrix �. We need to �nd a lower bound of H(�) which

is independent of �. First assume that 0 < � < 1; then the �rst three terms in

(3.5) are greater than or equal to zero. Therefore

H(�) � b4(1 � �
2)�m(1� �)2: (3:6)

A su�cient condition for H(�) > 0 is (m � b4)=(m + b4) < � < 1: Note that

(m�b4)=(m+b4) is always less than 1. The proof is completed after simpli�cation.

An optimal value of � which maximizes the lower bound in (3.6) is

�
� =

m

m+ b4
=

c0c3

c1(m+ c1)
(3:7)
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and the corresponding estimate is b�L = �
� b�U . Note that �

� always lies between

0 and 1 and sati�es the condition in Theorem 3.3.

We now turn to nonlinear estimates b��;� de�ned in (3:4). It is shown in

Theorem 3.5 that b��;� dominates b�� for suitable choices of � and �. Before

stating and proving this dominance result, we need the following lemma.

Lemma 3.4. Let F have a Fm(n1; n2; I;�) distribution with n1 > 4. Then

E

�
tr(��2

F )

trF

�
�

n1

n2�m�1
E

�
tr��2

trF

�
�

2(n1�4)

(n2�m+3)(n2 �m� 1)
E

�
tr��2

(trF )2

�

�
2

(n2 �m� 3)(n2 �m+ 1)
E1

�
tr��1

(trF )2

�

+
1

n2 �m� 1
E1

�
tr��1

trF

�
;

where E is taken over a Fm(n1; n2; I;�) distribution and E1 is taken over a

Fm(n1 +m+ 1; n2; I;�) distribution.

Proof. We apply the noncentral F identity given in (2:1) with V = (I+F )��2
F

and h = 1= trF . Since tr(DV ) = [(m + 1)=2](tr��2) + (m + 1) tr(��2
F ) and

@h=@F = [�1=(trF )2]Im (see Konno (1991a)), we have

n2 �m� 1

n
E

�
tr(��2

F )

trF

�
=

n1

n
E

�
tr��2

trF

�
�

2

n
E

�
tr(��2

F )

(trF )2

�

�
2

n
E

�
tr(��2

F
2)

(trF )2

�
+

1

n
E1

�
tr��1

trF

�
: (3:8)

Using the fact that the third term of the right hand side of (3:8) is nonnegative,

hence

E

�
tr(��2

F )

trF

�
�

n1

n2 �m� 1
E

�
tr��2

trF

�
�

2

n2 �m� 1
E

�
tr(��2

F )

(trF )2

�

+
1

n2 �m� 1
E1

�
tr��1

trF

�
: (3:9)

To compute the second term of (3:9), apply the noncentral F identity (2:1) again

with V = (I + F )��2
F and h = 1=(trF )2. Since @h=@F = [�2=(trF )3]Im (see

Konno (1991a)),

n2 �m� 1

n
E

�
tr(��2

F )

(trF )2

�
=

n1

n
E

�
tr�

(trF )2

�
�

4

n
E

�
tr(��2

F )

(trF )3

�

�
4

n
E

�
tr(��2

F
2)

(trF )3

�
+

1

n
E1

�
tr��1

(trF )2

�
: (3:10)
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Using the fact that tr(��2
F ) � (tr��2)(trF ) and tr(��2

F
2) � (tr��2

F )(trF )

in the second and third term of the right hand side of (3:10) respectively, we

obtain

E

�
tr(��2

F )

(trF )2

�
�

n1 � 4

n2 �m+ 3
E

�
tr��2

(trF )2

�
+

1

n2 �m+ 3
E1

�
tr��1

(trF )2

�
:

Substituting into (3:9) completes the proof.

Theorem 3.5. Assume that n1 > 4 and n2 > m � 1. Then b��;� de�ned in

(3:4) dominates b�� de�ned in (3:3) if

0 < � < 1 +
2

m(n2 �m+ 1)
and 0 < � <

4�(n1 � 4)

(n2 �m+ 3)
:

Proof. For the loss function de�ned in (3:1), it is straight forward to show that

the risk di�erence between b�� and b��;� is

G(�) = E[L(�; b��)� L(�; b��;�)]

= 2�E

�
tr��1

trF

�
� 2(n2 �m� 1)��E

�
tr(��2

F )

trF

�
+ 2n1��E

�
tr��2

trF

�

� �
2
E

�
tr��2

(trF )2

�
:

Using Lemma 3.4 and simplifying, we obtain

G(�) � 2�

�
E

�
tr��1

trF

�
� �E1

�
tr��1

trF

��
+

4��

(n2 �m+ 3)
E1

�
tr��1

(trF )2

�

+ �

�
4�(n1 � 4)

(n2 �m+ 3)
� �

�
E

�
tr��2

(trF )2

�
: (3:11)

First, assume that � and � are positive. Then the second and the third terms

on the right hand side of (3:11) are always positive. The �rst term involves

E[1= trF ]. An upper and lower bound for E[1= trF ] is given in Lemma 3.4 in

Leung and Muirhead (1987) (derived using the Wishart identity) as follow :

1

m
E

�
2 +m(n2 �m� 1)

mn1 + 2K � 2

�
� E

�
1

trF

�
� E

�
n2 �m+ 1

mn1 + 2K � 2

�
;

where K is a Poisson random variable with mean (tr�)=2. Using the lower

bound for E[1= trF ] and the upper bound for E1[1= trF ] and simplifying, the

�rst term on the right hand side of (3:11) is apparently equal to

2� tr(��1)E

�
(mn1 + 2K � 2)[(1 � �)m(n2 �m+ 1) + 2] + 2m(m+ 1)

m(mn1 + 2K � 2)[m(n1 +m+ 1) + 2K � 2]

�
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which is greater than zero if the square bracket in the numerator is greater than

zero. This is exactly the condition of � stated in the Theorem. Therefore

G(�) � �

�
4�(n1 � 4)

(n2 �m+ 3)
� �

�
E

�
tr��2

(trF )2

�
(3:12)

and a su�cient condition for G(�) � 0 is to ensure the curly bracket of (3:12) is

nonnegative. This completes the proof.

Table 1. | PRIAL : � = diag(1; 1; 1; 1)

n1 n2
b�+
U

b�L
b�+
L

b�NL
b�+
NL

10 10.341 83.889 86.077 83.935 86.038

25 28.146 37.946 56.494 38.292 55.546

10 50 29.876 19.550 44.251 19.894 42.657

75 33.009 13.135 42.312 13.461 40.316

100 32.357 9.893 39.429 10.222 37.325

10 21.418 83.901 87.878 83.962 87.816

25 27.021 38.017 55.360 38.152 54.615

25 50 34.625 19.534 47.842 19.718 46.336

75 37.588 13.128 46.124 13.320 44.224

100 39.479 9.871 45.725 10.198 43.670

10 15.064 83.988 86.704 84.010 86.675

25 28.060 37.993 55.753 38.077 55.268

50 50 37.412 19.523 49.933 19.668 48.841

75 39.712 13.119 47.848 13.303 46.516

100 40.851 9.875 46.879 10.103 45.361

10 13.830 83.992 86.339 84.005 86.321

25 26.659 37.992 56.655 38.046 56.277

75 50 34.971 19.517 47.886 15.595 47.095

75 38.437 13.133 46.691 13.200 45.651

100 41.215 9.886 47.171 9.983 45.944

10 16.599 83.997 86.775 84.007 86.758

25 29.435 37.993 56.456 38.031 56.158

100 50 36.832 19.532 49.344 19.582 48.684

75 36.791 13.136 45.228 13.163 44.384

100 41.314 9.882 47.229 10.000 46.254

A reasonable way of choosing � is by maximizing the lower bound for G(�)

in (3:12). The maximizing value is �� = 2��(n1 � 4)=(n2 �m + 3) where �� is

de�ned in (3:7) and the corresponding estimator is b�NL = b���;�� :b�U , b�L and b�NL are not necessarily positive de�nite; they are dominated by

their truncated versions b�+
U ,

b�+
L and b�+

NL respectively: matrices with the same
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eigenvectors and eigenvalues except that any negative eigenvalues are replaced

by zero. This result is proved in Theorem 3.3 in Leung (1994a).

Table 2. | PRIAL : � = diag(4; 3; 2; 1)

n1 n2
b�+
U

b�L
b�+
L

b�NL
b�+
NL

10 12.405 83.647 86.698 83.732 86.653

25 20.339 37.959 51.959 38.226 51.245

10 50 26.470 19.494 41.785 19.971 40.476

75 28.797 13.094 38.858 13.556 37.193

100 27.272 9.894 35.028 10.205 33.178

10 16.212 83.858 87.264 83.921 87.211

25 26.276 22.766 55.267 38.171 54.521

25 50 30.539 19.544 44.850 19.703 43.290

75 31.960 13.144 41.434 13.335 39.592

100 32.475 9.894 39.583 10.035 37.531

10 17.503 83.932 87.212 83.966 87.177

25 27.831 37.942 55.876 38.125 55.365

50 50 31.348 19.532 45.239 19.651 44.162

75 23.991 13.133 42.648 13.252 41.273

100 37.314 18.077 43.810 10.152 42.275

10 9.660 84.002 85.740 84.015 85.725

25 25.063 37.996 54.016 38.053 53.608

75 50 33.872 19.514 47.150 19.670 46.314

75 35.330 13.122 44.119 13.261 42.996

100 37.480 9.881 43.903 10.025 42.625

10 15.157 83.982 86.629 83.997 86.611

25 31.606 37.929 57.748 38.059 57.639

100 50 27.441 19.555 41.907 19.551 41.227

75 35.746 13.129 44.433 13.226 43.498

100 37.200 9.883 43.606 10.006 42.569

A simulation study was carried out to compare the risks of b�U , b�L andb�NL and their truncated versions b�+
U ,

b�+
L and b�+

NL. For m = 4 and n1; n2 =

10; 25; 50; 75; 100, and three di�erent choices of a diagonal noncentrality matrix

�, a sample of 500 A's and B's were generated, where A � W4(n1; I;�), B �

W4(n2; I), A and B are independent. Then 500 values of F =A1=2
B
�1
A
�1=2 were

formed and used to construct b�U , b�L, b�NL and their truncated versions b�+
U ,b�+

L and b�+
NL, and from these average losses were obtained. Tables 1 to 3 give the

percentage reduction in average loss (PRIAL) for b�+
U ,

b�L, b�+
L ,

b�NL and b�+
NL
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compared with b�U , i.e., they are the estimates of

R(�; b�U)�R(�; b�)
R(�; b�U)

� 100

obtained by replacing risk with average loss and b� with various estimators.

PRIAL in Tables 1 to 3 are all positive, which con�rms the dominance results.

The risk reduction of b�+
U is small when n2 is small. b�+

L and b�+
NL are uniformly

better than b�+
U .

b�L and b�NL and their truncated version are substantially better

than b�+
U when n2 is small.

Table 3. | PRIAL : � = diag(100; 75; 50; 25)

n1 n2
b�+
U

b�L
b�+
L

b�NL
b�+
NL

10 0.482 71.656 71.862 71.666 71.870

25 0.314 30.089 30.197 30.138 30.243

10 50 0.223 17.224 17.426 17.267 17.462

75 0.064 11.682 11.741 11.722 11.780

100 0.113 8.831 8.938 8.869 8.974

10 3.298 74.664 76.002 74.687 76.013

25 2.464 33.207 35.159 33.303 35.206

25 50 1.267 17.832 18.978 17.928 19.035

75 0.755 11.701 12.407 11.812 12.484

100 0.992 8.945 9.886 9.046 9.949

10 7.023 78.491 81.160 78.516 81.165

25 7.728 34.499 40.532 34.611 40.525

50 50 7.116 17.983 24.341 18.121 24.311

75 4.568 12.690 16.946 12.764 16.884

100 4.456 9.349 13.580 9.461 13.535

10 10.018 80.139 83.688 80.162 83.688

25 13.150 35.926 46.024 36.019 45.967

75 50 11.065 18.615 28.448 18.735 28.345

75 10.077 12.260 21.600 12.394 21.447

100 8.517 9.551 17.610 9.650 17.459

10 12.468 80.731 84.843 80.753 84.842

25 18.052 35.858 49.501 35.966 49.431

100 50 12.779 19.433 30.755 19.477 30.577

75 13.181 12.670 24.855 12.767 24.662

100 12.887 9.537 21.705 9.643 21.492
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