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ON SYMMETRIC RANDOM WALK MODEL

M. S. Srivastava and Yanhong Wu

University of Toronto and University of Alberta

Abstract: Assuming the quality characteristic process follows a symmetric random

walk model, the on-line control procedure is studied without the assumption of nor-

mality. Simple approximation for the long run average cost rate and the optimal

control parameters are provided. In particular, the robustness of the on-line control

procedure under the mixed normal random walk model is demonstrated.
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1. Introduction

The classical statistical process control (SPC) charts are usually applied when

the quality characteristic process is assumed to be relatively stable. Thus the

main goal is to monitor the process and detect sudden disruptions (e.g: shift in

mean ) caused by malfunction of machine etc.. The Shewhart, CUSUM, EWMA

and the so-called Shiryayev-Roberts procedures have been e�ectively studied for

this purpose. However, the variation of the quality characteristic may change

or increase. For example, a wearing or deteriorating system may cause increase

of variation, and the random change of environment may increase the variation

locally or globally. Thus, on-line control procedures are necessary to keep the

quality of the products uniform by adjusting the process directly or indirectly

when the deviation from the target value is too large. A variety of models have

been considered by many authors, e.g. Barnard (1959), Bather (1963), Box and

Jenkins (1963), Taguchi (1985), Taguchi et al: (1989), Box and Kramer (1992)

and Srivastava and Wu (1994, 1995). The normal random walk plays the central

role (see Adams and Woodall (1989) and Srivastava and Wu (1991) for more

careful studies). In this paper, however, we proceed in a di�erent direction by

extending the results of Srivastava and Wu (1991) to the more general symmetric

random walk without assuming normality. The study serves two purposes. One

is to provide a more exible model than the simple normal random walk model

without losing the simplicity of the approximation for the average cost rate and
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of the formulae for the optimal control parameters. The other is to study the

robustness of the on-line control procedures under the normal random walk by

assuming that the underlying density of the random walk is a mixture of normal

densities. The latter seems more interesting from practical point of view.

The organization of the paper is as follows. In Section 2, we �rst introduce

the cost structure and some standard notation. A general formula for the long-run

average cost rate is developed. In Section 3, we give an accurate approximation

for the average cost rate under the symmetric random walk model, and simple

formulae for the control parameters are also provided. The robustness of the on-

line control procedure under the mixed normal random walk model is investigated

in Section 4 in a more analytical approach; some numerical illustrations are given.

Two examples are used for illustration in Section 5. Some concluding remarks

are given in Section 6. Technical details are provided in the appendix.

2. Average Cost Rate

Denote by fZtg the quality characteristic process. The time scale is always

taken as the length between two consecutive products. Suppose the process is

inspected periodically with inspection interval m. The measurement error is

assumed to be negligible. Every time the observed quality characteristic is found

to be out of the control region (�d; d), an adjustment without lag time will be

made which forces the process back to the target value, so a new cycle starts.

As in Taguchi (1985), the following cost structure will be considered throughout

our discussion.

(a) Cost of Inspection CI : We assume that the cost of each inspection (observa-

tion) is CI . When the inspection interval has length m, the inspection cost per

item is CI=m.

(b) Cost of Adjustment CA: We assume that each adjustment costs CA. If the

average cycle length is denoted by w, the adjustment cost per item is thus CA=w.

(c) Loss due to deviations from the target value: The target value will be assumed

to be zero. The loss due to deviation from the target value is of the form

a
0
Z

2
t I[jZtj<�] + CI[jZtj��];

where � is the tolerance limit, C is loss for a defective and a
0 = C=�2.

Although the loss function due to deviation is not quadratic, this assumption

is made in the following evaluation because the optimal control limit is usually

much smaller than the tolerance limit, so the possibility of producing defectives

is negligible. This, however, deserves extra study when the cost of an undetected

defective is considerably higher than the normal cost C.
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Denote

N = minfn � 1 : jZnmj � dg;
and thus Nm is the cycle length. Under the assumptions above, the long run

average cost rate can be obtained by using standard renewal theory as

L(d;m) =
CI

m

+
CA

mE(N)
+

a
0

mE(N)
E

�mNX
i=1

Z
2
i

�
: (2:1)

In order to obtain the optimal control parameters m and d, the problem boils

down to evaluating E(N) and E(
PmN

i=1 Z
2
i ). This will depend on speci�c model

assumptions for Zi. Taguchi (1985) provides a solution under certain assumptions

(see Srivastava and Wu (1995) for a more careful analysis). Adams and Woodall

(1989) and Srivastava and Wu (1991) improve upon under the standard normal

random walk. In the next section, we shall extend the results of Srivastava

and Wu (1991) to the general symmetric random walk model without assuming

normality for the underlying distribution.

3. Solution Under Symmetric Random Model

The basic assumption is that the underlying density function f(x) of Z1 for

the random walk fZng is symmetric with variance �2 and fourth moment c�4. In

this case, it is shown in the appendix that the average cost rate can be explicitly

obtained as

L(d;m) =
CI

m

+
CA

mE(Y 2
N)

+ a
0
�
2
h
mE(Y 4

N)

6E(Y 2
N )

+
1

2
+

1

6
m(3� c)

i
; (3:1)

where Yn = Znm=�

p
m is the normalized random walk, and N can be rewritten

as

N = min
n
n � 1 : jYnj � d

�

p
m

= (
u

m

)1=2
o
;

where u = (d=�)2. By denoting

RN = jYN j � (u=m)1=2

as the overshoot quantity and

~�r = E(Rr
N ); for r = 1; 2; : : : ;

we have

E(Y 2
N) = E(jYN j � (

u

m

)1=2 + (
u

m

)1=2)2 =
u

m

+ 2(
u

m

)1=2~�1 + ~�2;

E(Y 4
N) = (

u

m

)2 + 4(
u

m

)3=2~�1 + 6
u

m

~�2 + 4(
u

m

)1=2~�3 + ~�4:
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Using a similar argument given in Srivastava and Wu (1991), it can be shown that

under proper conditions for f(x)(e.g: strong non-arithmetic), one can show that

~�r converges to its limit, say �r exponentially fast as u=m!1. Speci�c formulae

to calculate �r's are given in Appendix (3). In the normal case, the simulation

considered by Srivastava and Wu (1991) shows that the approximation to �r is

very accurate as long as u=m > 1. This is roughly equivalent to the assumption

that CA > CI as we shall verify later from the approximation for the optimal

control parameters. Estimation methods for �2, c and �r will be suggested in the

concluding remarks when f(x) is unknown.

By substituting these approximations into (3.1), we get

L(d;m) � CI

m

+
a
0
�
2

6

u
2 + 4�1u

p
um+ 6�2um+ 4�3m

p
um+m

2
�4

u+ 2�1
p
um+ �2m

+
CA

u+ 2�1
p
um+ �2m

+ a
0
�
2
h1
2
+

1

6
m(3� c)

i
:

Some simple Taylor expansions and calculations show that the optimal control

parameters d and m are approximately equal to

d
� � �

h
(
6CA

a
0
�
2
)1=4 � �1m

�1=2
i
; (3:2)

m
� � max

�
1; (

CI

a
0
�
2[2(�2 � �

2
1)=3 + (3� c)=6]

)1=2
�
;

where we require that both d� and m� to be positive. A sketch for the derivation

will be given in Appendix (2).

It is clear from the above formulae that in order to have the method work, the

condition CA > CI is necessary. The formula for the optimal inspection interval

m
� looks complicated; however, a more detailed analysis given in Appendix (2)

shows that �2 � �
2
1 =

c

12
, so m� can be rewritten as

m
� � max

�
1; (

6CI

a
0
�
2(c=3 + (3� c))

)1=2
�
: (3:3)

In order for (3.3) to be meaningful, we assume that c=3 + 3� c > 0, i.e.

c < 9=2;

which is reasonable if only the local e�ects are considered. When the condition

is not satis�ed, i.e. the vibration is large, the control limit has to be taken as

small as possible in order to control the deviation.
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4. Robustness Under Mixture Normal Random Walk Model

In this section, we study the robustness of the control procedure under the

normal random walk in which case �1 � 0:583, and c = 3 . It turns out that we

only need to study the behavior of �1 and c. This is clear from (3.2) and (3.3) for

the approximate optimal control parameters and the approximation for L(d;m)

given in the Appendix (2) as well as the relationship �2 = �
2
1 + c=12.

We assume that the underlying density has the form

f(x) =
1� p

�1

�

�
x

�1

�
+

p

�2

�

�
x

�2

�
;

where �(x) is the standard normal density with �1 < �2 and

(1� p)�21 + p�
2
2 = 1;

e.g. p = (1� �
2
1)=(�

2
2 � �

2
1) such that the variance of f(x) is �2 = 1. This model

has the following simple physical interpretation: Imagine that the deviations are

caused by a shock from two di�erent sources with probability 1 � p and p re-

spectively. One of the sources can be thought of as unexpected. Suppose the

deviations are additive, with normal increments having variances �21 and �
2
2 re-

spectively. Then, unconditionally, the model has the mixture normal underlying

density.

The fourth moment of f(x) is

c = (1� p)3�41 + 3p�42 = 3(�21 + �
2
2 � �

2
1�

2
2);

where from the condition c < 9=2, �21+�
2
2��21�22 < 3=2. To study the robustness,

we �x the value of p and let �21 and �
2
2 approach one at the same rate. For this,

we write �21 = 1 � � and thus �22 = 1 + �(1 � p)=p. It is easy to see that c =

3(1+�2(1�p)=p). Thus, in order that c < 9=2 we require that � <
p
p=(2(1 � p)).

As c=3 + 3 � c = 1 � 2�2(1 � p)=p, we see that the local e�ect of nonnormality

decreases the value of m� by a factor �2(1� p)=p if CI is assumed to be large.

To study the behavior of �1, we note that the characteristic function of f(x)

is

g(�) = (1� p)e��
2�21=2 + pe

��2�22=2
:

Thus, from (A.3) given in Appendix (3), we have

�1 = � 1

�

Z 1

0

1

�
2
ln

1� (1� p)e��
2�21=2 + pe

��2�22=2

�
2
=2

d�

= � 1

�

Z 1

0

1

�
2
ln

1� e
��2=2

�
2
=2

d�

� 1

�

Z 1

0

1

�
2
ln
h
1 +

e
��2=2 � (1� p)e��

2�21=2 � pe
��2�22=2

1� e
��2=2

i
d�:
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Example 1. (Taguchi et al: (1989, p.71)). A manufacturer produces integrated

circuits for a computer. The measurements are taken by an operator and the

current system has the following parameters. Tolerance limit � = 10; loss due to

a defective piece C = $6:00; measurement cost CI = $1:50 and adjustment cost

CA = $12:00. The current control limit is d0 = 3:00 and the observed average

adjustment interval is u0 = 180 units with every piece inspected.

In order to apply the derived approximations, we have to determine the

variance �2 as well as c. The variance can be estimated by using the formula

given by Taguchi et al: (1989) or by a simple formula from standard Brownian

motion

�
2 � d

2
0=u0 � 0:05;

as the e�ect of discrete time is negligible. On the other hand, a0 = C=�2 � 0:06.

Under the normal random walk model, the optimal control parameters are

obtained as

d
�

0 � 0:051=2
h
(

6� 12

0:06 � 0:05
)1=4 � 0:583(

6� 1:5

0:06 � 0:05
)1=4

i
� 1:82;

and

m
�

0 �
� 6� 1:5

0:06 � 0:05

�1=2 � 55:

However, if the true model based on the empirical data shows that there is a

strong non-normality with p = 0:6 and � = 0:5 , say, this gives �1 = 0:607 and

c = 3:5. Then the optimal control parameters become

m
� �

� 6� 1:5 � 3

0:06 � 0:05 � 2

�1=2 � 67:4;

and

d
� � 0:051=2

h
(

6� 12

0:06 � 0:05
)1=4 � 0:607 � 67:41=2

i
� 1:67:

We see that the e�ect on both control parameters is relatively large.

The second example is slightly more complicated.

Example 2. (Taguchi et al: (1989, p.73)). Lot Type Production: An injection

molding process produces 12 pieces at a time (12 pieces per \shot" ). The average

value of the width of one piece is checked once every half hour at a cost of

$2:00. The checking process involves the immersion of the piece in ice water and

then measurement of its width. The tolerance limit is � = 15. The loss for

each defective piece is $0:16, but if the piece measured in a shot of 12 is out of

speci�cation, all 12 pieces of the shot are discarded. The current control limit

for the width is d0 = 5, and the average adjustment interval is 8 hours.
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Suppose the adjustment cost is $15:00. Assume that there is an hourly

production rate of 120 shots, 2000 working hours per year and that one shot is

the basic unit of production.

Clearly, the number of shots produced in a cycle is equal to 120� 8 = 960 =

u0. Thus, the estimated variance is approximately

�
2 � d

2
0=u0 = 52=960 � 0:026;

and a
0 = 0:16 � 12=152 � 0:0085. Also, we know CA = 15 and CI = 2.

Under the normal random walk model, the control parameters are

m
�

0 � 233; and d
�

0 � 2:64;

and the cost per shot is about

L(d�0;m
�

0) � 0:071:

However, if the mixed normal walk model is true with the same parameters as

in the �rst example, then the optimal control parameters become

m
� � 285; and d

� � 2:42;

and the cost per shot is about

L(d�;m�) � 0:064:

Again, the e�ect is signi�cant. Further, the yearly savings of total costs by using

the optimal control parameters under the mixed normal random walk model

instead of the normal random walk model are about

(0:071 � 0:064) � 120� 200 � 1751:00:

6. Concluding Remarks

In this paper, we extended the results of Srivastava and Wu (1991) to the

general symmetric random walk model and provided simple formulae for the

inspection interval and control limit. In particular, the robustness of the optimal

control procedure under the random walk model is investigated. Several remarks

are made as follows:

(1) In the formulae for the optimal control parameters m� and d
� as well as

the average cost rate, the parameters �2, c and �r's are assumed to be known.

When f(x) is unknown, they can be estimated adaptively. For example, we can
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record the consecutive di�erences of the observations Zmn�Z(n�1)m for an initial

value of m and estimate �
2 and c adaptively. These estimators are used for

determining the optimal m and d. The procedure continues until appropriate

parameters are chosen. The value of the �r's can be estimated by recording the

consecutive overshoot beyond the boundaries at each adjustment or calculated

by using the empirically estimated characteristic function for g(�) based on the

results given in the Appendix. The theoretical study is a much more di�cult

project than simply developing algorithms.

(2) When the measurement error exists or where the IMA(1,1) model holds,

similar studies seem intractable as the de-noising procedure is more complicated

(see Srivastava and Wu (1994) for a discussion under the normal random walk

model).

(3) The main reason we study the symmetric random walk model is to assure

that the symmetric control limits are still reasonable. Under the general random

walk model, the symmetric control limits become questionable, at least from a

theoretical point of view, as the skewness of the underlying density function will

have signi�cant e�ects on the selection of optimal lower and upper control limits

as well as the inspection interval. How to evaluate the average cost rate when

the control limits are unsymmetric is a challenging problem. A related natural

question is: how large will the increment of the average cost rate be if we still

use the symmetric control limit?

For other related problems, we refer interested readers to Srivastava and Wu

(1994).

Appendix

(1) Derivation of (3.1)

We �rst give some elementary results associated with a randomly stopped

random walk, and their proofs appear in Chow, Robbins and Teicher (1965).

Lemma 1. Let Yn be a random walk with E(Y1) = 0, E(Y 2
1 ) = 1, E(Y 3

1 ) = 0

and E(Y 4
1 ) = c. Then, the following processes are martingales:

(a) Un = Y
2
n � n;

(b) Vn =
Pn

k=1(Yk�1(Yk � Yk�1));

(c) Wn =
Pn

j=2(Y
2
j�1)� nY

2
n + n(n+ 1)=2;

(d) Bn = Y
4
n � 6nY 2

n + 3n2 + n(3� c);

(e) Cn =
Pn

k=1((Yk � Yk�1)
2)� n.

Now we evaluate E(
PmN

n=1 Z
2
n). Write Zn = a1 + � � � + an with Ea1 = 0,

Ea
2
1 = �

2, Ea31 = 0 and Ea
4
1 = c�

4. As the techniques are similar to the ones

used in Srivastava and Wu (1991), only the main steps will be given here. First,
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we write

E

�mNX
n=1

Z
2
n

�
= E

h
E(

NX
n=1

mX
i=1

Z
2
m(n�1)+i j Zm; : : : ; ZmN)

i

= E

h NX
n=1

mX
i=1

E(Z2
m(n�1)+i j Zm(n�1); Zmn)

i

= E

h NX
n=1

mX
i=1

E(Z2
m(n�1)+i j Zm(n�1); Zmn � Zm(n�1))

i
;

since Zm(n�1)+i is a random walk and its conditional distribution given Zm; : : :,

ZmN depends only on Zm(n�1) and Zmn. Note that conditioning on Zm(n�1); Zmn�
Zm(n�1), am(n�1)+1; : : : ; am(n�1)+m are identically distributed variables, so

E(am(n�1)+i j Zm(n�1); Zmn � Zm(n�1)) =
1

m

(Zmn � Zm(n�1)):

Thus,

E(Zm(n�1)+i j Zm(n�1); Zmn � Zm(n�1)) = Zm(n�1) +
i

m

(Zmn � Zm(n�1)):

Thus,

E

NX
n=1

� mX
i=1

E[Z2
m(n�1)+i j Zm(n�1); Zmn � Zm(n�1)]

�

= E

NX
n=1

� mX
i=1

E[(Zm(n�1)+i�Zm(n�1)� i

m

(Zmn�Zm(n�1)))
2 j Zm(n�1); Zmn�Zm(n�1)]

�

+E

n NX
n=1

mX
i=1

E[fZm(n�1) +
i

m

(Zmn � Zm(n�1))g2]
o

= A+B ; say:

To evaluate A, note that, for n = 1; 2; : : :, the terms inside the �rst bracket are

iid. So by Wald's identity, we have

A = E(N)E
h mX
i=1

E[(Zm(n�1)+i�Zm(n�1)� i

m

(Zmn�Zm(n�1)))
2 jZmn�Zm(n�1)]

i

= E(N)

mX
i=1

E

h
(Zm(n�1)+i � Zm(n�1) � i

m

(Zmn � Zm(n�1)))
2
i
:

A simple calculation yields A = �
2(m2 � 1)E(N)=6. To evaluate B, we get, by

expansion,

B = m
2
�
2
E

� NX
n=1

Y
2
n�1

�
+ �

2 (m+ 1)(2m + 1)

6
E

� NX
n=1

(Yn � Yn�1)
2
�

+ �
2
m(m+ 1)E

� NX
n=1

Yn�1(Yn � Yn�1)
�
:
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A simple application of Lemma 1 �nally yields

E

�mNX
n=1

Z
2
n

�
=
m

2
�
2

6
E(Y 4

N ) +
m�

2

2
E(Y 2

N ) +
m

2
�
2

6
E(N)(3 � c):

In the normal case, c = 3, we get the results of Srivastava and Wu (1991).

(2) Derivation of (3.2) and (3.3)

The derivation is based on direct calculations, so we only give the main ideas.

By deleting higher order terms of (m=u) in (2) for EY 4
N , we have approximately

L(d;m) � a
0
�
2

2
+
CI

m

+
CA

u+ 2�1
p
um+ �2m

+
a
0
�
2

6
[u+ 2�1

p
um+ �2m]

+ma
0
�
2
h2
3
(�2 � �

2
1) +

1

6
(3� c)

i
+
a
0
�
2

2
:

By considering u+2�1
p
um+ �2 as a new variable, we know that the optimal u�

and m
� satisfy

u+ 2�1
p
um+ �2m =

�6CA

a
0
�
2

� 1
2

and

m
� = max

n
1; (

CI

a
0
�
2f 2

3
(�2 � �

2
1) +

1

6
(3� c)g )

1
2

o
;

which gives

d
� � �

h
(
6CA

a
0
�
2
)
1
4 � �1(m

�)
1
2

i
:

(3) Calculation of �i's

Let Yn be a symmetric random walk where Y1 has variance 1 and fourth

moment c. Denote f(x) as its underlying density function which is assumed to

be strongly non-arithmetic (e.g: Siegmund (1985, Appendix 4)) and characteristic

function

g(�) = E(ei�Y1 ) =

Z 1

�1

e
i�x
f(x)dx:

Let

�+ = minfn > 0 : Yn > 0g;
denote the ladder time and Y�+ the ladder height and

�d = minfn > 0 : jYnj > dg
the crossing time at the boundary d. Then from the strong renewal theorem, we

can show that as d!1,

lim
d!1

P (jY�d j�d > y) = lim
d!1

P (Y�d�d > yjY�d > d) =
1

E(Y�+)

Z 1

0

P (Y�+ > x)dx;
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and the convergence is exponentially fast in terms of d. From this, it is easy to

see that

�r =
E(Y r+1

�+
)

(r + 1)E(Y�+)
:

Thus, the problem reduces to evaluating the moments for the ladder height Y�+.

From Siegmund (1985, (10.60)), it is known that the Laplace transform of Y�+
has the form

h(�) = E[e��Y�+ ] = 1� exp
h 1
�

Z 1

0

�

�
2 + �

2
ln(1� g(�))d�

i

= 1� �p
2
exp

h 1
�

Z 1

0

�

�
2 + �

2
ln

1� g(�)

�
2
=2

d�

i
(A.1)

as
1

�

Z 1

0

�

�
2 + �

2
ln(�2=2)d� = ln(�=

p
2):

From (A.1), by letting �! 0, we obtain

(1� h(�))=� ! E(Y�+) = 1=
p
2;

which is the average ladder height no matter what the underlying density function

is. To obtain the values of the �i's, we �rst write

� ln
1� h(�)

�E(Y�+)
= � ln

�
1� �1�+

�2

2
�
2 � �3

6
�
3 +

�4

24
�
4 + o(�4)

�

= �1�� �2�
2 + �3�

3 � �4�
4 + o(�4); say;

where �2 =
1

2
(�2 � �

2
1), �3 =

1

6
(�3 � 3�1�2 + 2�31), and �4 =

1

24
(�4 � 3�22 � 4�1�3 +

12�21�2 � 6�41). By rewriting (A.1) as

�1 � �2�+ �3�
2 � �4�

3 + o(�3) = � 1

�

Z 1

0

1

�
2 + �

2
ln

1� g(�)

�
2
=2

d�; (A.2)

we get

�1 = � 1

�

Z 1

0

1

�
2
ln

1� g(�)

�
2
=2

d�; (A.3)

as given by Theorem 10.55 of Siegmund (1985) in the symmetric case.

By using (A.3), we rewrite (A.2) as

�2 � �3�+ �4�
2 + o(�2) = � 1

�

Z 1

0

�

�
2(�2 + �

2)
ln

1� g(�)

�
2
=2

d�; (A.4)
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which gives

�2 = lim
�!0

� 1

�

Z 1

0

1

1 + �
2

ln
1�g(��)

(��)2=2

(��)2
d�

=
c

12�

Z 1

0

1

1 + �
2
d� =

c

24
: (A.5)

This means that the variance of the overshoot is about c=12, depending only on

the fourth moment c of Y1. In the normal case, it becomes 1=4.

Similarly, by using (A.4), we obtain �3 and �4 as

a�3 = lim
�!0

1

�

Z 1

0

1

�
2

�
2 � �

2

(�2 + �
2)2

ln
1� g(�)

�
2
=2

d�

= lim
�!0

1

�

Z 1

0

�
2 � �

2

(�2 + �
2)2

� ln 1�g(�)

�2=2

�
2

+
c

12

�
d�

=
1

�

Z 1

0

ln 1�g(�)

�2=2
+ c�2

12

�
4

d�;

�4 = lim
�!0

1

�

Z 1

0

�(3�2 � �
2)

(�2 + �
2)3

� ln 1�g(�)

�2=2

�
2

+
c

12

�
d�

= lim
�!0

1

�

Z 1

0

(3�2 � 1)

(1 + �
2)3

1

�
2

� ln 1�g(��)

(��)2=2

(��)2
+

c

12

�
d�

=
1

�

Z 1

0

(3�2 � 1)�2

(1 + �
2)3

d�

�
�g

(6)(0)

360
� c

2

288

�

=
1

2

�
�g

(6)(0)

360
� c

2

288

�
:

The values of �3 and �4 can thus be evaluated numerically.
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