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Abstract: The functional S(F ) = medX�F (medY�F jX�Y j) proposed by Rousseeuw
and Croux (1993) exists for any distribution F , because no moments are needed. It

measures spread in the general sense, without reference to a central point. A natural

estimator of S(F ) is Sn = medimedj;j 6=ijzi�zj j where z1; : : : ; zn are i.i.d: observations

from F . In this paper we prove that Sn is asymptotically normal, and verify that the

normality already holds for small samples. Moreover, one can use a constant multiple

of Sn to estimate a scale parameter in a (possibly nongaussian) parametric model.

Key words and phrases: Breakdown point, in
uence function, order statistics, scale

estimation.

1. Introduction

Suppose we want to measure the scale of a (population) distribution F on

the real line. This can be done with a functional T (F ) which is de�ned over

some large family of distributions. The standard deviation functional, although

commonly used, is restricted to distributions F with a second moment. In this

paper we will focus on more robust functionals.

There are two main classes of scale functionals. The �rst type (Bickel and

Lehmann (1976)) is for symmetric distributions (with arbitrary center of sym-

metry), where G is said to be more dispersed than F when

���G�1(v) �G�1(
1

2
)
��� �

���F�1(v)� F�1(
1

2
)
��� (1:1)

for all 0 < v < 1. They call T a dispersion functional if it has the usual invariance

properties, and if T (G) � T (F ) whenever G is more dispersed than F . A typical

dispersion functional is the median absolute deviation (MAD) given by

MAD(F ) = med
X�F

���X � F�1(
1

2
)
���: (1:2)

The MAD was proposed by Hampel (1974) who showed that this functional has

a 50% breakdown point, in the sense that it will not tend to zero or in�nity when
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up to half the mass of F is replaced. We can estimate MAD(F ) by MADn :=

MAD(Fn) where Fn is the empirical distribution of n observations. Apart from

being a data-analytic tool in its own right, the MADn has also proved very

useful in the computation of M-estimators (Andrews et al: (1972), Huber (1981,

p: 107)). Further robustness aspects of the MAD can be found in Hampel et al:

(1986, Ch: 2).

In a subsequent article, Bickel and Lehmann (1979) considered a more general

principle. For arbitrary (not necessarily symmetric) distributions G and F , they

say that G is more spread out than F when

jG�1(v)�G�1(u)j � jF�1(v)� F�1(u)j (1:3)

for all 0 < u < v < 1: They call T a spread functional if T (G) � T (F ) whenever

G is more spread out than F . For instance, the interquartile range T (F ) :=

F�1( 3
4
) � F�1( 1

4
) is a spread functional in the sense of Bickel and Lehmann.

Recently, Rousseeuw and Croux (1993) proposed the new spread functional

S(F ) = med
X�F

�
med
Y�F

jX � Y j
�
; (1:4)

where X and Y are independently drawn from F . It uses the distance between

X and Y , rather than between X and a central point. The functional S exists

for any distribution F because no moment conditions are required, and like the

MAD it has a breakdown point of 50%.

A natural estimator of S(F ) is given by

Sn = med
i

med
j;j 6=i

jzi � zj j; (1:5)

where z1; : : : ; zn are i.i.d. observations from F . This formula is explicit, hence Sn
always exists and is unique. Although (1.5) appears to require O(n2) operations,

a faster algorithm has been constructed to compute Sn in only O(n logn) time

(Croux and Rousseeuw (1992)). This also made it possible to study the behav-

ior of Sn empirically, although knowledge of its asymptotic properties remained

incomplete.

In this paper the asymptotics of Sn will be studied. This is not a trivial

matter because of the \nested" operations in (1.5), which require some additional

notation described in Section 2. In Section 3 it is proved that Sn is asymptotically

normal, and it is veri�ed empirically that the asymptotics hold already for small

samples. The special case of a parametric model with a scale parameter � is

considered in Section 4, where a constant c is computed such that cSn is a

consistent estimator of �. For the gaussian model, this yields an asymptotic

e�ciency of 58% (compared to 37% for the MAD).
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2. Notation

The functional S(F ) in (1.4) can also be written in another way, which will

be used in the remainder of the paper. First we formalize the \inner" median.

For a �xed z we de�ne

Lz(t) = PF (jz � Zj � t) (2:1)

and

H(z) = L�1z (0:5) = med
Z�F

jz � Zj; (2:2)

where L�1z (u) = infft; Lz(t) > ug denotes the right continuous inverse. (We use

the 0.5-quantile of the distribution function as de�nition of the median through-

out.) For the \outer median" we put

L(t) = PF (H(Z) � t) (2:3)

so that

S(F ) = L�1(0:5) = med
Z�F

H(Z): (2:4)

For proving the asymptotic normality of Sn we impose the following regular-

ity conditions on F , were we write S instead of S(F ) for simplicity, and denote

by B(z; r) = [z � r; z + r] the closed ball of radius r around z.

(i) There exist q1 < q2 such that H(q1) = H(q2) = S.

(ii) There exists � > 0 such that F has a continuous density f with 0 < f <

f(z) < f <1 on the intervals B(qj; �), B(qj�S; �) and B(qj+S; �) for j = 1; 2.

Moreover, f� = supz;y2B jf(z) � f(y)j=jz � yj� < 1 for some constant � with

0 < � < 0:5, and with B = B(qj + S; �) or B(qj � S; �) for j = 1 or 2.

(iii) H is continuous on B(q1; �) and B(q2; �), decreasing on B(q1; �), increasing

on B(q2; �); and di�erentiable at q1 and q2 with H 0(q1) < 0 and H 0(q2) > 0.

(iv) There exist constants � > 0 and �0 with 0 < �0 < � such that

sup
z2[q1+�0;q2��0[

L�1z (0:5 + �) < S < inf
z 62]q1��0;q2+�0[

L�1z (0:5� �):

These conditions seem complicated because they were weakened in order to hold

in many situations. (For instance, they hold when F is unimodal with a strictly

positive smooth density f .) Condition (ii) is a weaker version of asking that f be

Lipshitz and strictly positive, whereas (iv) is a minor regularity condition on the

functions Lz. Conditions (i) and (iii) essentially say that the equation H(z) = S

has only 2 solutions: one solution q1 where H is decreasing, and another solution

q2 where H is increasing. It may be possible to generalize this to more than 2

solutions, but this is deferred to future work.
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Figure 1. (a) Contours of Lz(t) = u for some values of u; (b) the function

H(z).

Let us verify these conditions for F equal to the standard gaussian distribu-

tion �, which clearly satis�es (ii). Figure 1(a) shows L�1z (u) for a few values of u.

The unimodality and strict positivity of the density � = �0 imply that L�1z (u) is

strictly increasing in z when z � 0, and strictly decreasing in z when z � 0. This

makes it easy to verify condition (iv). For computing the function y(z) = L�1z (u)

we could solve

�(z + y)� �(z � y) = u (2:5)
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by the Newton method. A more e�cient approach is to solve the di�erential

equation

y0 =
�(z � y)� �(z + y)

�(z � y) + �(z + y)
(2:6)

(obtained by di�erentiating (2.5) with respect to z) by means of a Runge-Kutta

method, with initial condition y(0) = ��1(u+1

2
). For z !1 the functions L�1z (u)

have asymptotes with common slope 1, whereas for z ! �1 they have slope �1.
The function H of (2.2) corresponds to u = 0:5. In Figure 1(b) we see that

its asymptotes pass through the origin, because, for large jzj, (H(z) � jzj) ! 0

due to med(�)=0. Note that H2(z) is the functional version of the least median

of squares objective function (Rousseeuw and Leroy (1987, pages 164-167)). We

see that

S = med
Z��

H(Z) = med
Z��

H(jZj) = H(q2); (2:7)

where q2 = med(jZj) = ��1(3=4) = �q1; yielding S � 0:8385: This con�rms

condition (i). For (iii), note that we can compute H 0(q1) and H 0(q2) from (2.6).

3. Asymptotic Normality of Sn

The main result of the paper is the following:

Theorem 3.1. Under the regularity conditions (i){(iv) on F ,

n1=2(Sn � S) =
1

n1=2

nX
i=1

IF (zi) + op(1)
d!N

�
0;

Z +1

�1
IF (z)2dF (z)

�
; (3:1)

where S is de�ned by (1:4) and

IF (z) =
� f(q2)

H 0(q2)
�

f(q1)

H 0(q1)

��1�sgn(H(z) � S)

2
+

f(q2)sgn(jz � q2j � S)

2(f(q2 � S)� f(q2 + S))

+
f(q1)sgn(jz � q1j � S)

2(f(q1 + S)� f(q1 � S))

�
: (3:2)

From (3.1) it follows that the expression in (3.2) is the in
uence function (in

the sense of Hampel (1974)) of the functional S(F ). Theorem 3.1 will be proved

with three lemmas, in which Sn is approximated by other statistics. Let us write

IF (q; z) =
sgn(jq � zj �H(z))

2lz
�
H(z)

� ; (3:3)

where lz = L0z. Hence IF (�; zi) is the in
uence function of Ĥ(zi) = medj;j 6=ijzj�
zij, viewed as an estimator of H(zi) when zi is kept �xed. We also use the two

quantities

�j =
1

n� 1

nX
i=1

IF (zi; qj); j = 1; 2; (3:4)
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and the random variables

Vi =

�
�1; zi � q;

�2; zi > q;
i = 1; : : : ; n;

where q is chosen so that q1+ � < q < q2� � (see (ii) for the de�nition of �). We

then decompose R into the regions A1 = B(q1; �n)[B(q2; �n) and A2 = A�2 [A
+
2 =

fz; q1+ �n < z < q2� �ng [ fz; z < q1� �n or z > q2+ �ng where �n = n�
, with

0 < 
 < 0:5 a �xed number. Now de�ne the approximating statistics

~S1 = med
i
fH(zi) + Vig (3:5)

and
~S2 = med

i
fH(zi) + Vi +Wig; (3:6)

where

Wi = (Ĥ(zi)�H(zi)� Vi)I(zi 2 A1): (3:7)

We �rst prove that ~S1 has the asymptotic behaviour claimed for Sn in Theorem

3.1, and then that ~S2 and Sn are asymptotically equivalent to ~S1.

Lemma 3.1. The statistic ~S1 de�ned in (3:5) satis�es

~S1 = S +
1

n

nX
i=1

IF (zi) + op(n
�1=2): (3:8)

Proof. We make use of the \empirical distributions"

Ln0(z) =
1

n

nX
i=1

I(H(zi) � z) and Ln1(z) =
1

n

nX
i=1

I(H(zi) + Vi � z);

so that ~S1 = L�1n1 (0:5). Denote ~S0 = L�1n0 (0:5). The di�erence between Ln1 and

Ln0 may be written as

Ln1(z) � Ln0(z) =
1

n

X
zi�q

�
I(H(zi) � z � �1)� I(H(zi) � z)

�

+
1

n

X
zi>q

�
I(H(zi) � z � �2)� I(H(zi) � z)

�

=
f(q1)

H 0(q1)
�1 �

f(q2)

H 0(q2)
�2 +R1(z � �1; z) +R2(z � �2; z); (3:9)

where

R1(y; z) =
1

n

X
zi�q

�
I(H(zi) � y)� I(H(zi) � z)

�
+

f(q1)

H 0(q1)
(y � z)
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and

R2(y; z) =
1

n

X
zi>q

�
I(H(zi) � y)� I(H(zi) � z)

�
�

f(q2)

H 0(q2)
(y � z)

are regarded as remainder terms when both of their arguments are close to S.

Also put Ln1(y) � Ln1(z)
4
=l(S)(y � z) + R3(y; z), where l(S) = L0(S) and R3 is

also considered as a remainder term when both of its arguments are close to S.

Also de�ne un = Ln0( ~S0)� 0:5 and vn = Ln1( ~S1)� 0:5, so that 0 � un, vn � 1

2n
.

By the de�nitions of R1, R2 and R3 we then have

0:5 + vn = Ln1( ~S1) = Ln1( ~S0) + l(S)( ~S1 � ~S0) +R3( ~S1; ~S0)

= 0:5 + un +
f(q1)

H 0(q1)
�1 �

f(q2)

H 0(q2)
�2 +R1( ~S0 � �1; ~S0) +R2( ~S0 � �2; ~S0)

+ l(S)( ~S1 � ~S0) +R3( ~S1; ~S0);

and hence

~S1 = ~S0 �
f(q1)

H 0(q1)l(S)
�1 +

f(q2)

H 0(q2)l(S)
�2 +

vn � un

l(S)

�
R1( ~S0 � �1; ~S0)

l(S)
�
R2( ~S0 � �2; ~S0)

l(S)
�
R3( ~S1; ~S0)

l(S)
: (3:10)

We observe that

~S0 = S +
1

2l(S)n

nX
i=1

sgn(H(zi)� S) + op(n
�1=2) (3:11)

by a standard expansion of the sample median using its in
uence function. It

then follows from (3.2), (3.3), (3.4) and (3.11) that

~S0 �
f(q1)

H 0(q1)l(S)
�1 +

f(q2)

H 0(q2)l(S)
�2 = S +

1

n

nX
i=1

IF (zi) + op(n
�1=2): (3:12)

Comparing (3.10) with (3.12), we see that it su�ces to show that the remainder

terms in (3.10) are all op(n
�1=2). To begin with, (jvn � unj)=l(S) � 1=(2l(S)n).

In order to handle R1 to R3 we �rst note that ~S0�S; �1 and �2 are all Op(n
�1=2)

in view of (3.4) and (3.11). Since j ~S1 � Sj � j ~S0 � Sj + max(j�1j; j�2j), we also

have that ~S1 � S is Op(n
�1=2). Hence, it su�ces to show that for any A > 0,

sup
z;y2B(S;A=

p
n)

jRj(z; y)j = op(n
�1=2); j = 1; 2; 3: (3:13)
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Consider �rst j = 1 in (3.13). De�ne the function H�(z) = H(z)I(z � q) + (S +

2A)I(z > q), and put L�(z) = PF (H
�(Z) � z) for the corresponding distribution

function. Then

L�n(z) =
1

n

nX
i=1

I(H�(zi) � z) =
1

n

X
zi�q

I(H(zi) � z); 8z � S +A: (3:14)

It is not hard to see that the regularity conditions on F imply that L�(z) is

di�erentiable at z = S, with l�(S) = L�0(S) = �f(q1)=H 0(q1). Consequently, by

(3.9) and (3.14),

sup
z;y2B(S;A=

p
n)

jR1(z; y)j � sup
z;y2B(S;A=

p
n)

jL�n(z)� L�n(y)� L�(z) + L�(y)j

+ sup
z;y2B(S;A=

p
n)

jL�(z)� L�(y)� l�(S)(z � y)j: (3:15)

The �rst term on the RHS of (3.15) concerns the oscillation of the empirical

distribution L�n(z) locally around z = S, and it is Op(n
�3=4(log n)1=2) by Lemma

6.3.2 in Reiss (1988). The second term on the RHS of (3.15) is o(n�1=2) since

L�(z) is di�erentiable at z = S. Hence we have proved (3.13) for j = 1, and

the case j = 2 is treated in the same way. Finally, R3(y; z) = R1(y � �1; z �
�1) + R2(y � �2; z � �2), so (3.13) also follows for j = 3, since we may pick any

(other) value of A in (3.13) for j = 1; 2, and use the fact that �1 and �2 are both

Op(n
�1=2).

Lemma 3.2. The statistics ~S1 and ~S2 de�ned in (3:5){(3:6) are asymptotically

equivalent, that is
~S2 � ~S1 = op(n

�1=2): (3:16)

Proof. In view of (3.3), we make the expansion

Ĥ(zi) = H(zi) +
1

n� 1

X
j;j 6=i

IF (zj ; zi) +Ri
4
=H(zi) + Ti +Ri:

Clearly,

j ~S2 � ~S1j � max
zi2B(q1;�n)

jTi � �1j+ max
zi2B(q2;�n)

jTi � �2j+ max
zi2A1

jRij: (3:17)

The lemma is established by verifying that each of the three terms on the RHS

of (3.17) is op(n
�1=2). Starting with the �rst term,

Ti � �1 = �
IF (zi; q1)

n� 1
+

1

n� 1

X
j;j 6=i

�
IF (zj ; zi)� IF (zj ; q1)

�
;
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and hence

max
zi2B(q1;�n)

jTi � �1j �
1

2lq1(S)(n� 1)
+ max

zi2B(q1;�n)
j�(zi)j;

where �(zi) = I(jzi�q1j � �n)
P

j;j 6=i Yij=(n�1), and Yij = IF (zi; zj)�IF (q1; zj).
In order to apply a large deviation inequality on �(zi) (and maxzi2B(q1;�n) j�(zi)j)
we need some preparations. First P (jYij j �M) = 1, where

M =
1

2lq1(S)
+ sup

z2B(q1;�n)

1

2lz(H(z))
:

In order to show that M <1, we need to establish that

inf
z2B(q1;�n)

lz(H(z)) � l > 0; (3:18)

for some positive constant l. Since

lz(H(z)) = f(z +H(z)) � f(z �H(z)); (3:19)

H is continuous at q1 by (iii), and f is lower bounded away from 0 in neighbor-

hoods of q1 � S according to (ii), it follows that (3.18) holds for large enough n

(i.e., small enough �n). We �nd that

E(Y 2
ij jzi) �

2

lq1(S)
PF

�
Z 2 Bzi4Bq1

�
+

1

2l4

�
lzi(H(zi))� lq1(S)

�2
;

where Bz = fz0; jz0 � zj > H(z)g and l is de�ned in (3.18). Hence,

Bz4Bq1 = [q1 � S; q1 + S]4[z �H(z); z +H(z)]

� [q1 � S � (jz � q1j+ jH(z)� Sj)] [ [q1 + S � (jz � q1j+ jH(z)� Sj)]

� [q1 � S � Cjz � q1j] [ [q1 + S � Cjz � q1j]; (3:20)

where the last inequality holds for jz � q1j small enough, using the fact that H

is di�erentiable at q1 (and hence we may choose C = 1+ 2jH 0(q1)j for instance).
Assume now that n is so large that (3.20) holds for all z 2 B(q1; �n) and moreover

that Cjz � q1j � � (cf. (ii)). Then

PF

�
Z 2 Bz4Bq1

�
� 4Cf jz � q1j; 8z 2 B(q1; �n): (3:21)

Next, because of (3.19),

jlz(H(z))� lq1(S)j � jf(z +H(z))� f(q1 + S)j+ jf(z �H(z))� f(q1 � S)j

� 2f�

�
jz � q1j+ jH(z) � Sj

��
� 2f�C

�jz � q1j�; (3:22)
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with C the same constant as in (3.20) and f� as de�ned in (ii). It follows from

(3.21){(3.22) that

max
zi2B(q1;�n)

max
j;j 6=i

E(Y 2
ij jzi) � C 0�2�n (3:23)

for some constant C 0. Because of (3.23) and the uniform boundedness of Yij ,

we may apply an exponential inequality due to Bernstein (cf: Pollard (1984,

Appendix B)) to estimate tail probabilities of each Ti � �1, zi 2 B(q1; �n). This

gives

max
zi2B(q1;�n)

jTi � �1j = Op

���n log n
n1=2

�
= Op(n

�
��1=2 logn) = op(n
�1=2):

The second term on the RHS of (3.17) is treated in the same way as the �rst.

It remains to consider the last term, containing the Bahadur representation re-

mainder terms. Let U" = [0:5 � "; 0:5 + "]. Provided we �nd an " > 0 such that

for n � n0("),

l" = inf
(z;u)2A1�U"

jlz(L�1z (u))j > 0;

and

L" = sup
(z;u)2A1�U"

u6=0:5

jlz(L�1z (u))� lz(H(z))j
jL�1z (u)�H(z)j�

<1;

it follows that the Bahadur remainder terms are uniformly small in the sense

that

max
zi2A1

jRij = Op

�
(n�1 log n)(1+�)=2

�
= op(n

�1=2): (3:24)

We observe that lz(L
�1
z (u)) = f(z+L�1z (u))+f(z�L�1z (u)), and since f is lower

bounded away from 0 on B(qj � S; �) and B(qj + S; �) for j = 1; 2 (cf: (ii)), we

may choose " so small and n0(") so large that

z � L�1z (u) 2 B(q1 � S; �) [B(q1 + S; �) [B(q2 � S; �) [B(q2 + S; �) (3:25)

whenever (z; u) 2 A1�U". But (3.25) implies that l" � 2f > 0 with f as de�ned

in (ii), and L" � 2f� <1, which proves (3.24).

Lemma 3.3. The statistics ~S2 and Sn de�ned in (3:6) and (1:5) are asymptot-

ically equivalent, that is

Sn � ~S2 = op(n
�1=2): (3:26)

Proof. LetHn = min(H(q1��n)�S; S�H(q1+�n); S�H(q2��n);H(q2+�n)�S):
The fact that H is strictly monotone on B(qj ; �) for j = 1; 2 and (iv) imply that
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for large enough n, H(z) � S � Hn when z 2 A�2 and H(z) � S + Hn when

z 2 A+
2 . Hence

P (Sn 6= ~S2) � P (j ~S2 � Sj � (1� �)Hn) + P (max
zi2A2

jVij � �Hn) (3:27)

+ P (max
zi2A�2

Ĥ(zi)�S�(1��)Hn)+P ( min
zi2A+

2

Ĥ(zi)�S+(1��)Hn);

with 0 < � < 1 an arbitrary number. It remains to show that the RHS of

(3.27) tends to 0 as n!1. Since H is di�erentiable at q1 and q2 with nonzero

derivatives, it is clear that

C1�n � Hn � C2�n (3:28)

for some positive constants C1 and C2. We also know from Lemma 3.1{3.2 that
~S2 � S = Op(n

�1=2) and maxzi2A2
jVij � max(j�1j; j�2j) = Op(n

�1=2). Therefore,

the �rst two terms on the RHS of (3.27) tend to zero as n! 1. Since the last

two terms are treated in the same way, we con�ne ourselves to a study of the

third. Let f be as in (ii) and pick �0 so that 0 < �0 < 2f�. Then we will prove

sup
z2A�

2

L�1z (0:5 + �0Hn) � S � (1� �)Hn: (3:29)

In view of (iv) and (3.28), it is clear that (3.29) must hold for all z 2 [q1+�
0; q2��0]

simultaneously, provided n is large enough (how large n must be chosen depends

on � and �0). Suppose now that z 2 [q1 + �n; q1 + �0] [ [q2 � �0; q2 � �n]. Then

PF (jZ � zj � S � (1� �)Hn)

= PF (jZ � zj � S �Hn) + PF (S �Hn < jZ � zj � S � (1� �)Hn)

� 0:5 + 2f�Hn � 0:5 + �0Hn;

since for large enough n the set fz0; S � Hn < jz0 � zj � S � (1 � �)Hng is

contained in the union of the four closed balls B(qj � S; �), j = 1; 2 on which f

is lower bounded by f . For ease of notation, put H(z) = L�1z (0:5 + �0Hn), and

let Ln�1;zi(y) =
P

j;j 6=i I(jzj � zij � y)=(n � 1) denote the empirical distribution

corresponding to Lzi . Our next objective is to show that

max
zi2A�2

���Ln�1;zi(H(zi))� Lzi(H(zi))
��� = Op

�
(log n)1=2n�1=2

�
: (3:30)

However, (3.30) is a consequence of Hoe�ding's exponential inequality (see Pol-

lard (1984, Appendix B)), which in our case implies (after �rst conditioning on

zi) that

P
�
jLn�1;zi(H(zi))� Lzi(H(zi))j � t(n� 1)�1=2

�
� 2 exp(�2t2):



386 OLA H�OSSJER, PETER J. ROUSSEEUW AND CHRISTOPHE CROUX

Since Lzi(H(zi)) � 0:5 + �0Hn by our de�nition of inverse distribution func-

tions, it follows from (3.28) and (3.29) that with probability tending to one,

minzi2A�2 Ln�1;zi(H(zi)) > 0:5, and hence because of (3.29), maxzi2A�2 Ĥ(zi) �
maxzi2A�2 H(zi) � S � (1 � �)Hn with probability tending to one. This shows

that the third term on the RHS of (3.27) also goes to 0 as n!1.

Proof of Theorem 3.1. Writing Sn as a telescoping sum, Sn = ~S1 + ( ~S2 �
~S1) + (Sn � ~S2), Theorem 3.1 now follows by applying Lemmas 3.1{3.3 to the

three terms in this sum, using the Central Limit Theorem and Slutsky's Lemma.

Table 1. Finite-sample behavior of Sn

n average(Sn) n(var(Sn))

10 .832 .78

20 .838 .69

40 .838 .62

60 .839 .63

80 .840 .62

100 .836 .61

200 .839 .61

1 .839 .60

In order to verify how well the asymptotic result in Theorem 3.1 applies to

the �nite-sample behavior of Sn we carried out some numerical experiments. By

means of Q-Q plots we checked that the sampling distribution of Sn is approxi-

mately gaussian. Moreover, it is important to know how large n has to be before

the asymptotic variance re
ects the �nite-sample situation. For each value of n

in Table 1 we generated 10,000 gaussian samples of that size. The �rst column

lists the average estimated value, which is very close to the limit S(�) = 0:8385

obtained in Section 2. The other column of Table 1 contains n times the empir-

ical variance of Sn. The asymptotic variance was computed from (3.1), yieldingR
IF 2(z)d�(z) = 0:6028: We see that the �nite-sample variance of Sn converges

rapidly to its limit, the di�erence being small already at n = 40.

4. Estimation in a Parametric Model

In the preceding sections we have considered the functional S as a nonpara-

metric measure of spread (in the sense of Bickel and Lehmann (1979)) which can

be computed for any distribution. However, let us now suppose that we are in

the particular case of a parametric model with a scale parameter �, which may

be a pure scale model F�(z) = F (z=�) for 0 < � <1; or a location-scale model
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F�;�(z) = F ((z � �)=�) for �1 < � <1; 0 < � <1: In either model we can

use the functional S to estimate �, because S is equivariant under multiplication

by a scalar and invariant under translation. In practice we will use the functional

T (G) = cS(G) where c is a positive constant such that T is Fisher consistent for

�, meaning that T (F�) = � (or T (F�;�) = � in the location-scale model). For

this it su�ces to set c := 1=S(F ). By Theorem 3.1 the estimator cSn(z1; : : : ; zn)

is then consistent for � in the usual sense.

For the gaussian model we �nd c = 1=S(�) = 1=0:8385 = 1:1926 according

to Section 2. For other distributions F we can compute S(F ) in an analogous

way. Table 2 gives the formula of H and the corresponding value S(F ) for

the triangular, Laplace, logistic and Cauchy distributions. In the latter case

H(z) =
p
z2 + 1 is a hyperbola, which looks similar to Figure 1(b). Table 2 also

contains an asymmetric distribution (the negative exponential) and a bimodal

mixture of two Cauchy distributions. For distributions for which H cannot be

written down analytically (such as the gaussian distribution), we solve (2.5) or

(2.6) numerically to obtain S(F ).

In a parametric model one can compare the variability of an estimator

with the Cram�er-Rao bound. For the gaussian model, Theorem 3.1 implies

that 1.1926 Sn has an asymptotic e�ciency of 58% (whereas the equally robust

estimator 1:4826 MADn yields 37%). Similar computations are possible in a scale

model based on an asymmetric model distribution. In the negative exponential

model, the estimator cSn (where c = 1=0:5888 from Table 2) has 55% e�ciency.

For heavy tailed models the e�ciency of robust estimators is higher, and in fact

for the Cauchy model (where c = 1=
p
2) we obtain 95%.

Table 2. The value S(F ) for several distributions F

F f(z) H(z) S(F )

Triangular max(1� jzj; 0)
�
1�

p
1=2 � z2 jzj � 1=2

jzj jzj � 1=2
1�

pp
2� 1

Laplace 1

2
exp(�jzj) ln(2 cosh(z)) ln( 5

2
)

Logistic ez

(1+ez)2
2 arctanh( 1+cosh z

2+

p
3+cosh2 z

) 2 arctanh(
p
13� 3)

Cauchy 1

�
1

1+z2

p
z2 + 1

p
2

Negative
exp(�z)1[0;1[(z)

�
ln(2)� z z � ln(2)=2

arcsinh(ez=4) z � ln(2)=2
0.5888

exponential

Bimodal 1

2�
f(1 + (z �m)2)�1+

p
z2 +m2 + 1

p
2(1 +m2)

Cauchy (1 + (z +m)2)�1g
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