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Abstract: We show that for a wide class of elliptic models the minimum volume

ellipsoid estimator is strongly consistent and the estimating functional is continuous

with respect to a weak metric. We also propose to compute an e�cient estimator

cross-checked by the minimum volume ellipsoid estimator. The former is taken if

both estimators stay close to each other based on an a�ne invariant discrepancy

measure. Otherwise, a high breakdown point procedure is called for. This allows

us to retain good e�ciency for uncontaminated data and at the same time protect

against gross errors.
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1. Introduction

The need for good robust estimators of multivariate location and scatter has

stimulated a great deal of interest, as they are important for identifying multi-

ple outliers, obtaining trustworthy parameter estimates, making stable inferences

and carrying out further data analyses. It is fair to say that multivariate loca-

tion and scatter are cornerstones of general multivariate statistics. For example,

Campbell (1980) and Devlin, Gnanadesikan and Kettening (1981) proposed to ro-

bustify principle component analysis based on a robust location-scatter estimate.

It is also the basis for robust canonical variate analysis, factor analysis and cluster

analysis. For bounded in
uence and high breakdown point estimation of multi-

ple regression, robust versions of location-scatter in the design space are useful

(see Simpson, Ruppert and Carroll (1992)). A prominent a�ne-equivariant high

breakdown point estimator is the minimum volume ellipsoid estimator (MVE)

introduced by Rousseeuw (1985). The MVE is usually applied as a safe starting

point for further analysis or a reliable basis on which robust distances can be

computed for diagnostics.

The �rst part of the present paper is concerned with some basic properties

of the MVE estimator. Davies (1992b) proved that the MVE functional satis�es

a local H�older condition of order 1=2 and also obtained a non-Gaussian limiting

distribution of the estimator, con�rming a long standing conjecture that the rate
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of convergence for the MVE estimator is n�1=3. We establish strong consistency

and functional continuity of the MVE estimator for a broader class of elliptically

symmetric models. These properties indicate that the estimator should perform

reasonably well if the underlying distribution is close to an elliptically symmet-

ric one. If elliptical symmetry does not hold to any reasonable extent then an

estimate of the scatter matrix would not be very meaningful after all.

A major criticism of the minimum volume ellipsoid estimator is its inef-

�ciency and large variability. It is recognized that the slow rate of conver-

gence has practical implications. A common belief is that some appropriate

follow-up can lead to estimators with good e�ciency while retaining high break-

down. Reweighting was suggested by Rousseeuw and Leroy (1987) and again by

Rousseeuw and van Zomaren (1990). However, recent work of He and Portnoy

(1992) indicates that reweighting does not necessarily improve on the rate of

convergence. Furthermore, blindly applying a high breakdown point estimator

(even if it has a good asymptotic e�ciency) could entail the risk of (�nite-sample)

e�ciency loss for uncontaminated samples. In this article, we propose a method

of cross-checking using two estimators: an e�cient one such as the classical sam-

ple mean-covariance (or an M-estimator) as well as the MVE (or any other high

breakdown point estimator). We use an a�ne invariant measure of discrepancy

for these two estimators to tell us whether the former is being badly in
uenced

by outliers. The e�cient one is taken if both estimators stay close to each other.

A high breakdown point procedure is called for when there is evidence that the

former has been distorted. With proper choices of the cut-o� values for our dis-

crepancy numbers, we are assured that the chance of false alarm is very small.

The main advantage of such a cross-checking procedure is that it allows us to

avoid much of the e�ciency loss for \good" data and at the same time protect

against gross errors. The general idea of cross-checking is given in Section 3

where it is shown that the resulting estimator is asymptotically equivalent to the

more e�cient estimator in the model and inherits the high breakdown point of

the other. A speci�c proposal is given as to how the discrepancies can be mea-

sured , along with an illustration using the sample mean-covariance and the MVE

estimator for the trivariate normal model. The same procedure is then applied

to the well-known stackloss data (see Rousseeuw and Leroy (1987)). Proofs of

all theorems of this paper are available in a more detailed technical report of He

and Wang (1992).

2. Consistency and Continuity of MVE

Suppose that we have a sample X1; : : : ;Xn in p dimensions and want to

estimate its \center" and \scatter" by a p dimensional vector t and a p�p matrix
C. All matrices in this paper are assumed to be symmetric and positive de�nite

unless otherwise stated. The most common estimators are the sample mean
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vector and sample covariance matrix. They enjoy optimality in various senses

if the data are believed to come from a p-variate normal distribution. However,
these estimators are quite sensitive to outliers in the sample. Rousseeuw (1985)

introduced a highly robust estimator, the minimum volume ellipsoid estimator

(MVE) (tn; Cn), where tn is taken to be the center of the minimum volume

ellipsoid covering at least half of the observations, and Cn is a p by p matrix

representing the shape of the ellipsoid. In the present paper, we use jSj and
kSk to denote the determinant and the L2 norm of any square matrix S. Also,
de�ne E(a; S) = fx : (x � a)0S�1(x � a) � 1g to be the ellipsoid centered at a
with scatter matrix S and \radius" 1. Then, the pair (tn; Cn) is determined by

minimization of jCnj subject to

#fi; Xi 2 E(tn; Cn)g � [(n+ 1)=2]: (2:1)

In some recent literature, the right hand side of (2.1) is often replaced by [(n+
p + 1)=2] for a maximum breakdown point. We use (2.1) in this article, but all

our results apply equally well to the variant mentioned above.

The main merit of the MVE is that it has a high breakdown point close to

1=2 (see Rousseeuw and Leroy (1987)). The MVE is arguably one of the sim-

plest high breakdown point estimators conceptually and computationally, even

though it is not computationally easy (see Rousseeuw and van Zomeren (1990)

for approximate algorithms). To study the continuity property of the MVE, we

need to rely on the MVE functional and a topology on the space of all probability

distributions.

Given any distribution G, the MVE functional T (G) = (tG; CG) is given by

minimizing jCj among all pairs (t; C) such that PG(E(t; C)) � 1=2, where PG
is the probability measure induced by G. For unimodal and elliptic distribu-

tions, the existence and uniqueness of the MVE functional are obvious. More

important is its behavior in a metric neighborhood of such distributions. For two

distributions F1; F2, de�ne

d(F1; F2) = inf
n
� > 0 : PF1(E(a; S)) � PF2(E(a; (1 + �)S)) + �;

PF2(E(a; S)) � PF1(E(a; (1 + �)S)) + �; for all (a; S)
o
:

This metric, in an equivalent form, was �rst used in Davies (1992b). It is a�ne

invariant and coarser than the usual total variation metric.

Suppose that the distribution F = F (�;�) is elliptically symmetric with

probability density function

f(x;�;�) = j�j�1=2g((x � �)0��1(x� �)); (2:2)

where g is a univariate function. In the speci�cation of (2.2), � is identi�able

only up to a multiplicative constant. In the rest of the section, we assume that

� is so chosen that P (E(�;�)) = 1=2.
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We now introduce a technical condition for convenience. Consider any elliptic

distribution in the form of (2.2). Let D = D(
; �) denote the collection of all

pairs (a; S) such that 0 < jSj � (1+
)pj�j and either ka��k > � or kS��k > �.

Condition A. For any �>0, there exist 
>0 and ">0 such that sup
D

P (E(a; S))
< P (E(�;�)) � ".

A more directly interpretable condition is

Condition B (uniqueness). (�;�) is the unique solution of minimizing jSj
subject to P (E(a; S)) = 1=2.

It was shown by He and Wang (1992) that Conditions A and B are actually

equivalent for any F (�;�). The formulation of Condition A allows us to simplify

the proofs of theorems stated below, as it carries a more transparent geometric

interpretation. The Condition C below is also related to uniqueness, but it is

independent of Condition A or B and cannot be removed in our Theorem 2.2.

Condition C. For any c > 1, P (E(�; c�)) > 1=2.

First, we establish existence of the MVE functional in a neighborhood of the

model distribution.

Theorem 2.1. Let F be any elliptic distribution of the form (2:2). Suppose

that fF" : " > 0g is a family of distributions such that d(F; F") < ". Then there

exists "0 > 0 such that for all " < "0, there is at least one pair (t"; S") that

minimizes jSj among all pairs (a; S) with PF�
(E(a; S)) � 1=2.

Under Conditions A and C, the MVE functional changes continuously with

the amount of contamination. Let T (F�) be any MVE functional at F�.

Theorem 2.2. Under the Conditions A and C, T (F") ! T (F ) as � ! 0. In

particular, the MVE estimator (tn; Cn) ! (�;�) almost surely (with regard to

F ) as n!1.

In general, T (F") may not be unique. The result of Theorem 2.2 holds

for every MVE functional. Under a stronger condition on g, that is, if g is

nonincreasing and has non-zero derivative at 1, Davies (1992b) proved that the

MVE functional is actually H�older continuous of order exactly 1=2. By contrast,
we do not require g to be monotone and positive everywhere.

3. Using MVE for Cross-Checking

The MVE estimator is known to have poor e�ciency. Several methods of

combining e�ciency and high breakdown have been proposed and investigated

in the literature. They include reweighting, one-step M-estimator and cross-

checking. We refer to Rousseeuw and Leroy (1987), He and Portnoy (1992) and
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Davies (1992a) for more details. As usual, we restrict ourselves to estimators

that are a�ne equivariant.

For a typical user of statistics, an appealing method to obtain high break-

down point without giving up e�ciency is to compute two estimators at the same

time. The �rst is e�cient such as the classical mean-covariance or the bounded

in
uence GM-estimator. The other is a consistent high breakdown estimator like

the MVE. If the two are close to each other, the former (and actually either)

can be trusted. If the two are far apart, further investigation may be necessary.

Quite likely, the �rst estimator has been distorted by outliers. We propose au-

tomatic cross-checking procedures using an a�ne equivariant discrepancy of two

location-scatter estimators. A speci�c proposal is considered below.

Let Tn;1 = (tn;1; Cn;1) be a consistent estimator with high e�ciency, and

Tn;2 = (tn;2; Cn;2) a consistent high breakdown point estimator. For any pos-

itive de�nite matrix S, use �min(S) and �max(S) to denote its smallest and

largest eigenvalues. We de�ne the new estimator Tn = Tn;1 if D1 := (tn;1 �
tn;2)

0C�1

n;2(tn;1 � tn;2) � d1, D2 := 1 � �min(Cn;1)=�min(Cn;2) � d2; and D3 :=

j�max(Cn;1)=�max(Cn;2) � 1j � d3 for some constants d1 > 0; 0 < d2 < 1 and

d3 > 0, and Tn = Tn;2 otherwise. The relationship among their functional ver-

sions is self-evident.

Theorem 3.1. The estimator Tn de�ned above satis�es the following properties

for any elliptic distribution.

(1) It is a�ne-equivariant if both Tn;i (i = 1; 2) are.

(2) It is asymptotically equivalent to Tn;1, that is, with probability one (with

regard to F ) there exists N such that Tn = Tn;1 for n > N .

(3) It has the same in
uence function as Tn;1 does, provided that the correspond-

ing functionals Ti((1��)F+��x) (i=1; 2) are continuous in � for each x.

(4) It has the same breakdown point as Tn;2 does.

The tuning constants di in the de�nition of Tn can be determined by two

considerations: how much the two estimators di�er for a typical uncontaminated

sample and how much deviation from a high breakdown point estimator one

can tolerate. The purpose of Theorem 3.1 is to provide a sound basis for the

methodology involved. A similar idea in the linear regression setup was given in

He (1991).

The arbitrariness of those tuning constants is inconvenient in practice. For

small to modest sample sizes, we consider using di = maxfqi(n; �i); qi(N0; �i)g
where qi(n; �) is the upper �-th quantile of the corresponding discrepancy statis-

tic Di, and N0 is a �xed sample size which is taken to be 50 in our study. The

quantity qi(n; �) can be (approximately) computed for a model distribution (say

normal) and each given n by Monte Carlo. When � is a small number (say 0.05

or 0.01), this choice of cut-o� ensures that for uncontaminated data our cross-
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checking will choose the e�cient estimator most of the time. Note that qi(N0; �i)
is the amount of tolerance we have for deviation from a high breakdown point

estimator when a larger sample size is available. The tolerance is set to be larger

for small sample sizes. Also note that determining such cut-o� values may take

more than a few minutes, but they do not change with the sample. For the same

model distribution, those cut-o� values are computed once for all.

We now consider an example where Tn;1 is the sample mean and covari-

ance matrix and Tn;2 the minimum volume ellipsoid estimator for trivariate nor-

mal models. We used an approximate algorithm for the MVE as described in

Rousseeuw and Leroy (1986, p: 259) without using �nite-sample correction fac-

tors. In this case (as in most other cases), there is no need to use the discrepancy

number based on the smallest eigenvalues, because the scatter matrix estimate

from Tn;1 does not break down to singularity even with 50% contamination. For

a given n, we generated 200 trivariate normal samples of size n and computed

both estimators. 1000 subsamples were used in the MVE computation. Two

discrepancy numbers D1 and D3 were then computed at each sample. The 95

and 99 percentiles of these distance measures are taken as d1 and d3 respectively.
If the 99 percentiles are used for both discrepancies, we get (d�

1
; d3) in place of

(d1; d3).

Table 1. Cut-o� constants for trivariate normal model

n 15 18 20 30 40 50+

d1 13.65 6.92 4.39 1.74 0.98 0.67

d3 1.26 0.90 0.71 0.70 0.70 0.67

d
�

1
28.27 12.05 8.77 3.27 2.19 0.96

Because the discrepancy numbersD1 and D3 are highly correlated, our simu-

lation study shows that with these choices of di's, the mean-covariance estimator

will be chosen over 90% of the time for an uncontaminated normal sample. If d�
1

is taken, this percentage is higher. The error rate decreases with n � 50. With

presence of outliers, we expect one or both Di's to become large, forcing the

high breakdown point estimator to be used. Our experiments indicate that the

discrepancy based on the largest eigenvalues of the scatter matrix estimators is

often most sensitive to outliers. We computed this discrepancy number for 200

standard trivariate normal samples of size n = 30 with the �rst component of

two observations �xed at 10.0. It turned out that the cut-o� value of d3 = 0:70

was broken 95% of the time.

A replication of 200 times in any Monte Carlo calculation would be deemed

very small. A larger number can be used for a more accurate determination of

the tuning constants here. On the other hand, we �nd that the value of d3, the

most useful one for watching outliers, is surprisingly stable at uncontaminated
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samples. Presence of serious outliers normally drive this discrepancy number to

exceed 1.0, a value that is rarely observed in our experiment for uncontaminated

data for n as small as 20 in the case of p = 3. This gives us reassurance that

even a small number of Monte Carlo replications is useful.

For the well-studied stackloss data (see Rousseeuw and Leroy (1987, p: 76)),

we computed the two discrepancy numbers when all 21 points are included.

They turned out to be 0.94 and 1.64, clearly indicating that the classical mean-

covariance estimate is being driven by outliers. If the �rst three points (outliers)

are removed, these numbers become 9.78 and 0.36, suggesting that the mean

estimate may have been shifted too much by outlier(s). In this case, the e�ect of

the remaining outlier (point no. 21) is less serious. If we used d�
1
instead of d1,

our �nal estimate would pick the classical mean and covariance matrix.

By Theorem 3.1, the resulting estimator in this example is asymptotically

(100%) e�cient at the normal model and has a breakdown point nearly 1/2. If

the mean-covariance estimator is replaced by a GM-estimator, one would get a

bounded in
uence function at the cost of slight e�ciency loss.

4. Concluding Remarks

The minimum volume ellipsoid estimator of multivariate location-scatter is

not only consistent but also continuous with respect to an a�ne invariant weak

metric for a large class of elliptically symmetric model distributions. These results

are obtained independently of Davies (1992b) under weaker conditions. Our

approach is largely based on a geometric characterization for the uniqueness of

the MVE estimator. These properties are su�cient for the estimate to be used

in the cross-checking method discussed in Section 3. It is worth noting that

the method of cross-checking and our Theorem 3.1 to ensure robustness without

giving up high e�ciency is not limited to the minimum volume ellipsoid estimator.

Our work does not imply in any way that the MVE is the only or the best high

breakdown point estimator available today. S-estimators or reweighted versions

of the MVE may be used to reduce the �nite sample variability of the high

breakdown estimator. In the latter case, the cross-checking has some similarity to

the classical delete-k diagnostics. The targeted subset of k outliers is determined

by the MVE estimator.

The cross-checking method is designed to provide information as to whether

a classical procedure can be trusted. Each estimator captures some feature of

the data better than others. The general idea here is to utilize information from

di�erent estimators. The speci�c strategy that we considered in this paper is

merely one implementation that we have found quite successful. Our experi-

ment is limited in scale, and further studies may give rise to better discrepancy

statistics for the same purpose.
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