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Abstract: We consider the application of kernel weighted local polynomial regres-

sion methods to estimate regression and spread functions and their derivatives. In

particular, we consider both an extension of the regression quantile methodology in-

troduced by Koenker and Bassett (1978) and an approach based on M-estimation for

heteroscedastic regression models. The present work is partly motivated by the paper

of Ruppert and Wand (1994) who show that, by analysing local polynomial �tting di-

rectly as a weighted regression method rather than as an approximate kernel smooth,

asymptotic results for estimating the regression function can be obtained for complex

problems including vector covariates, general polynomials, derivative estimation and

boundary problems. We extend their results to allow for robust �tting, for modelling

general heteroscedasticity and for derivative estimation in the multivariate case. Our

results con�rm that local polynomial �tting procedures produce robust estimators of

the regression and spread functions and their derivatives. Moreover, it is shown that

we can reduce the bias of the estimators by increasing the order of the polynomials

being �tted. The excellent edge-e�ect behaviour of local polynomial methods extends

to derivative estimation and the multivariate case. We apply the methodology to two

data sets to illustrate its practical utility.

Key words and phrases: Boundary e�ects, kernel function, local regression, M-esti-

mation, nonparametric regression, regression quantiles, weighted regression.

1. Introduction

A common problem in data analysis is to describe the conditional distribution

of Y given X on the basis of n independent observations (Y1; X1); : : : ; (Yn;Xn)

on (Y;X). The interesting structure in this distribution, at least at a gross level,

is often captured by the location and spread of the conditional distribution. In

such cases, it is natural to adopt the model

Yi = m(Xi) + s(Xi)ei; 1 � i � n; (1:1)

where m and s > 0 are smooth location (or regression) and spread functions

respectively and feig is a sequence of independent random variables which are
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independent of fXig. This model entails

location(YijXi) = m(Xi) + s(Xi)location(e);

spread(YijXi) = s(Xi)spread(e); 1 � i � n;

and so is identi�able when we specify a location and scale functional on the ei for

which location(ei) = 0 and spread(ei) = 1. If we are prepared to identify s only

up to a multiplicative constant, we do not need to specify a spread functional.

This is of course part of the motivation for the common practice of treating

logfs(x)g rather than s(x) as the parameter of interest.

Exploratory analysis based on the model (1.1) requires at least estimation of

the regression and spread functions m and s. However, in particular problems,

we may also be interested in the derivatives of these functions. For example, in

�tting growth curves, M�uller (1988) has argued that the �rst two derivatives of

the regression function m are of interest and for �tting generalised linear models

(see for example McCullagh and Nelder (1990)) without assuming that the link

or variance function is known as in Weisberg and Welsh (1995), m, m0 and v = s2

are required for an algorithm based on the method of scoring whilem00 and v0 are

additionally required for a Newton-Raphson algorithm. Derivatives of m and s

are also nuisance parameters in the substitution or \plug-in" method of optimal

bandwidth estimation. Thus, we need to be able to estimate the regression and

spread functions and their derivatives. It is important that we produce good

estimates on the boundary of the support of X and that X can be allowed

to be a vector of general dimension d. Finally, it is important, particularly in

exploratory work, that all of these requirements be achieved robustly in the sense

that the estimators are insensitive to at least large feig.

There is an extensive literature on a variety of di�erent approaches to most

of these problems though they are typically treated as distinct. See for example

the books by Eubank (1988), M�uller (1988), H�ardle (1990) and Wahba (1990).

Our purpose in this paper is to present a uni�ed approach to achieving all the

above requirements simultaneously by using local polynomial �tting. Recent pa-

pers on local polynomial �tting include Stone (1977, 1982), Cleveland (1979),

Tsybakov (1986), M�uller (1987), Cleveland and Devlin (1988), Fan (1990, 1992,

1993), Chaudhuri (1991), Ruppert and Wand (1994), Fan, Hu and Truong (1992)

and Hastie and Loader (1993). Hastie and Loader (1993) gave an excellent re-

view of local polynomial smoothing and discuss its advantages over traditional

kernel smoothing methodology. Local polynomial �tting involves the �tting of

approximating polynomial models by weighted regression methods, where suit-

able weights are de�ned through a kernel function K and a bandwidth h > 0.

The �tted intercept of the approximating polynomial is the estimator of the func-
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tion and the �tted slope coe�cients contain information about the derivatives of

the function.

The present work is motivated by the paper of Ruppert andWand (1994) who

show that by analysing local polynomial �tting directly as a weighted regression

method rather than as an approximate kernel smooth, asymptotic results for

estimating m can be obtained for complex problems including vector X, general

polynomials, derivative estimation and boundary problems. We extend their

results to allow for robust �tting, for modelling general heteroscedasticity and

for derivative estimation in the multivariate case. Tsybakov (1986) and Fan, Hu

and Truong (1992) have considered local robust �tting of linear polynomials when

X is scalar but do not treat higher polynomial �tting or derivative estimation.

Moreover, Tsybakov treats the errors as homoscedastic and both articles ignore

the scale. Even if the errors are homoscedastic (i.e: s(x) is constant, which

probably should not be assumed in an initial exploratory analysis) this means

that their estimators are not scale equivariant unless the scale is known or can

be factored out of the estimation problem; this greatly restricts the applicability

of their results.

In this paper, we consider two approaches to �tting the model (1.1). The

details of the approaches are given in Section 2. Both methods are based on mak-

ing methods of �tting polynomial models local by incorporating kernel weights

into the estimating equations. Speci�cally, we consider local regression quantile

�tting and local M-estimation by incorporating kernel weights into the regres-

sion quantile procedure of Koenker and Bassett (1978) and the procedure for

M-estimation of heteroscedastic regression models.

Running regression quantile estimators were considered by Chaudhuri (1991)

who obtained similar results to those in Theorem 3.1 below. However, Chaudhuri

treated s(x) as constant so the errors are homoscedastic and did not consider the

spread problem. Fan, Hu and Truong (1992) considered only linear polynomials

and ignored both the spread and derivative problems. In contrast, our approach

enables us to estimate the spread and the derivatives of both the running regres-

sion quantile functions and the spread function.

The quantile approach requires the distribution function F to be smooth so

it is not generally applicable in the generalised linear model framework. We,

therefore, consider the general class of local M-estimators applied to an approx-

imating heteroscedastic regression model which pertain whether F is smooth or

not and allow the possibility of increased e�ciency in estimation.

We introduce some further notation, the required assumptions and explicit

de�nitions of the procedures proposed in Section 2. We then derive the con-

ditional asymptotic biases and variances of the running regression quantile and

heteroscedastic M-estimators in Section 3. These results con�rm that our local
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polynomial �tting procedures produce estimators of the regression and spread

functions and their derivatives and that they can be chosen to achieve robust-

ness. Moreover, provided m and s are smooth enough, we can reduce the bias

of the estimators by increasing the order of the polynomials being �tted. We

also discuss the implications of our results, window estimation, the performance

of the estimators on the boundary of the support of X and the extension of the

results to the case of vector X. One obvious advantage of the local polynomial

approach is that when d = 1 a single window can be used for all the estima-

tors though this does not simultaneously optimise the mean squared error of all

the estimators. As shown by Fan (1990, 1992), Ruppert and Wand (1994), and

Fan, Hu and Truong (1992), local polynomial methods have excellent edge-e�ect

behaviour and as pointed out by Ruppert and Wand (1994), this extends to

the multivariate case and is also true for derivative estimation. Finally, in Sec-

tion 4, we present three applications which illustrate the practical utility of the

methodology.

2. Robust Local Polynomial Procedures

To simplify the presentation, we adopt the model (1.1) throughout and make

the additional assumption that the feig are identically distributed with common

distribution function F . The extension to the important case of non-identical

distributions is straightforward but complicates matters without adding anything

conceptually. In any case, if procedures do not work in simple models, they are

unlikely to work in more complicated ones; so model (1.1) can be regarded as a

baseline model in which to evaluate our procedures.

We assume throughout that model (1.1) holds and in addition that, for some

nonnegative integers p and q,

(i) fXig are independent and identically distributed with density function g,

g(x) > 0 and g0 is continuous in a neighbourhood of x;

(ii) m(p+2)(x) and s(q+2)(x) are continuous in a neighbourhood of x;

(iii) K is bounded, symmetric, has compact support and satis�es
R
K(u)du = 1;

and

(iv) Np and Nq are non-singular, where Np denotes the (p+ 1) � (p+ 1) matrix

with (i; j)th element �i+j�2 and �j =
R
ujK(u)du.

Condition (iii) on K is adopted to simplify the proofs of the theoretical results;

it can be relaxed to allow kernels with noncompact support.

The statements of our results involve the (p + 1) � (p + 1) matrix Tp with

(i; j)th element
R
ui+j�2K(u)2du. Note that this matrix can be obtained explic-

itly as soon as K is speci�ed. The assumption that K is symmetric gives Np a

checker-board pattern which is preserved when Np is inverted but the squaring of
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K in the elements of Tp means that it is not similarly patterned. Also, to identify

particular components in our vector and matrix expressions, let kr denote the

(p+ 1)-vector with a one in the rth position and zeros elsewhere, 1 � r � p+ 1.

The �rst approach we consider involves the use of a local regression quantile

�t.

� Running regression quantiles

Let �̂(�) 2 Rp+1 denote the minimum of

nX
i=1

��fYi � zi(x)
T�g Kf(Xi � x)=hg; h > 0;

where zi(x) = (1;Xi � x; (Xi � x)2; : : : ; (Xi � x)p)T , 1 � i � n, p � 0, and

��(x) = xf�� I(x < 0)g. Then set

m̂(r)(x) = r!�̂r+1(1=2); 0 � r � p;

and

IQR(r)(x) = r!f�̂r+1(3=4) � �̂r+1(1=4)g; 0 � r � p:

The running regression quantile lines �̂1(�), 0 < � < 1, which are estimating the

conditional quantilesm(x)+s(x)F�1(�), are useful in their own right for studying

the conditional distribution of Y given X and can be used to explore whether

the reduction to consideration of regression and spread in (1.1) is sensible in any

given problem. Here IQR(r)(x) is estimating fF�1(3=4) � F�1(1=4)gs(r)(x), the

interquartile range of F times the rth derivative of of s; so we may choose (a) to

ignore the constant F�1(3=4)�F�1(1=4), (b) estimate the interquartile range of

F and renormalise or (c) work on the log scale.

Our results for running regression quantiles depend on a vector (�) which

is de�ned to be a vector for which �̂(�) is asymptotically unbiased so that the

asymptotic variance of �̂(�) about (�) can be obtained by standard arguments.

The leading bias term is obtained from an asymptotic expansion of (�) about

the vector of derivatives of m and s. This part of the argument requires some

attention to detail because the pattern in the Np and Qp matrices results in

very di�erent expressions for the bias of the (r + 1)th component depending on

whether p� r (or q � r) is odd or even.

The function �� in the de�nition of the running regression quantiles is not

su�cently smooth for direct expansion arguments to apply. This means that the

burden of smoothness must be carried by F , the distribution of the errors feig.

We require

(v) the density f = F 0 is continuous and positive on its support.
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Part of our motivation for exploring the heteroscedastic M-estimation ap-

proach is to remove the burden of smoothness from F which is not under our

control. We, therefore, consider

� Heteroscedastic M-estimation

Let (�̂T ; �̂T )T 2 Rp+q+2 denote a solution of the system of equations

An(�; �) = 0;

where

An(�; �)

=(nh)�1=2
nX

i=1

�
zi(x) exp(�wi(x)

T �) fexp(�wi(x)
T �)(Yi�zi(x)

T�)g

wi(x)�fexp(�wi(x)
T �)(Yi � zi(x)

T�)g

�
K
nXi�x

h

o
;

h > 0,  and � are real functions satisfying
R
 (e)dF (e) =

R
�(e)dF (e) = 0,

zi(x) = (1;Xi � x; (Xi � x)2; : : : ; (Xi � x)p)T ; 1 � i � n; p � 0; and

wi(x) = (1;Xi � x; (Xi � x)2; : : : ; (Xi � x)q)T ; 1 � i � n; q � 0: Then set

m̂(r)(x) = r!�̂r+1

and

l̂(r)(x) = r!�̂r+1:

Here l̂(r)(x) is estimating l(r)(x), the rth derivative of logfs(x)g. We can either

adopt this as the natural scale for treating spread or we can convert back to the

raw scale using s(x) = expfl(x)g, s(1)(x) = l(1)(x)s(x) etc.

Note that we obtain the heteroscedastic M-estimation procedure by approx-

imating (1.1) by the heteroscedastic regression model

Yi = zi(x)
T� + exp(wi(x)

T �)ei; 1 � i � n;

writing down estimating equations for M-estimation of the parameters � and �,

and then making the �t local by including kernel weights. If the errror distri-

bution F is known and has density f , we can obtain the \maximum likelihood"

estimator by taking  (x) = �f 0(x)=f(x) and �(x) = x (x)�1. The usual choice

when F is Gaussian is obtained by taking  (x) = x. However,  and � can be

chosen to be bounded functions to ensure robustness (Huber (1981, p.135�)).

Heteroscedastic M-estimation can be regarded both as local maximum likelihood

and local pseudo-likelihood estimation since these are identical in this case. A

study of these methods for �tting parametric heteroscedastic regression models

under general conditions is given by Welsh, Carroll and Ruppert (1994).
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For the heteroscedastic M-estimation method, the order of the bias is deter-

mined by min(q; p) unless the estimators of regression and scale are orthogonal

in the sense that Z
e 0(e)dF (e) =

Z
�0(e)dF (e) = 0:

This condition is satis�ed in the important case when  (x) = x and �(x) =

x (x)�1 but is not generally satis�ed by robust estimators unless F is symmetric.

It is di�cult to assess the validity of an assumption of symmetry in the presence

of heteroscedasticiy so we avoid this assumption. Thus, unless we are con�dent

that F is symmetric, general scale equivariant robust estimation of the regression

function requires estimation of the spread to the same order. This is easily

achieved by setting p = q.

Our results for the heteroscedastic M-estimation approach require

(vi) As a; b! 0,

E fexpfag[e + b]g = Ee 0(e)a+E 0(e)b+ o(jaj+ jbj)

and

E�fexpfag[e+ b]g = Ee�0(e)a+E�0(e)b+ o(jaj+ jbj):

Moreover, the matrices

K=

 
s(x)�2E (e)2 s(x)�1E (e)�(e)

s(x)�1E (e)�(e) E�(e)2

!
and M=

 
s(x)�2E 0(e) s(x)�1Ee 0(e)

s(x)�1E�0(e) Ee�0(e)

!

are both �nite and M is nonsingular.

(vii) For a; b! 0 and ja1j; jb1j � C <1,

Esupfj [expfb1+bgfe+a1+ag]� [expfb2+bgfe+a2+ag]j : ja1�a2j; jb1�b2j � �g � C�

and

Esupfj�[expfb1+bgfe+a1+ag]��[expfb2+bgfe+a2+ag]j : ja1�a2j; jb1�b2j � �g � C�

for � > 0 su�ciently small, and, as � ! 0

Esupfj [expfb1+bgfe+a1+ag]� [expfb2+bgfe+a2+ag]j
2 : ja1�a2j; jb1�b2j��g=o(1)

and

Esupfj�[expfb1+bgfe+a1+ag]��[expfb2+bgfe+a2+ag]j
2 : ja1�a2j; jb1�b2j��g=o(1):
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These are essentially the conditions used by Carroll and Ruppert (1982) in their

study of robust estimation for parametric heteroscedastic regression models; (see

also H�ardle and Luckhaus (1984) for further motivation). Although condition (vi)

is written for the case that  and � are smooth, when � and  are monotone but

not smooth and F is smooth, the results of Section 3 hold with only notational

changes. The suprema inside the expectation in (vii) can be removed when  is

of bounded variation and � is of bounded variation on [0;1).

3. Theoretical Results

3.1. Theorems

We �rst prove that the (r + 1)st component of the running regression quan-

tile estimator �̂r+1(�) estimates fm(r)(x) + s(r)(x)F�1(�)g=r!. It follows imme-

diately that if we impose F�1(1=2) = 0, the (r + 1)st component of the running

median estimator �̂r+1(1=2) estimates m(r)(x)=r!. The result gives the order of

the asymptotic bias and the variance of �̂r+1(�).

Theorem 3.1. Suppose that Conditions (i)-(v) hold, x is an element of the

interior of the support of g and that nh2r+1 ! 1 as n ! 1 and h ! 0.

Then for 0 < � < 1 the running regression quantile estimator �̂r+1(�) estimates

fm(r)(x) + s(r)(x)F�1(�)g=r! with asymptotic bias of O(hp�r+1) for p � r odd

and O(hp�r+2) for p� r even. In either case, the asymptotic variance is

n�1h�2r�1ffF�1(�)g�2�(1 � �)g(x)�1s(x)2kT
r+1N

�1
p
TpN

�1
p
kr+1:

The exact expression for the asymptotic bias and full details of the proof are

available from the author. The algebra in the proof is complicated but the broad

approach is conceptually simple. Let

An(�) = (nh)�1=2
nX

i=1

zi(x) fYi � zi(x)
T�g Kf(Xi � x)=hg;

where  (x) = � � I(x < 0) denotes the estimating equations for �̂r+1(�), and

de�ne (�) � n(�) by E[Anf(�)gjX] = 0. The bias is studied by making a

local Taylor series expansion of E[Anf(�)gjX] and then solving for (�). The

asymptotic variance is established by a modi�cation to the proof of Lemma 4.1

of Bickel (1975), to prove that

supfjAn(�)�An()�EfAn(�)jXgj : j� � j � C(nh)�1=2g = op(1):

Arguing as in the proof of Lemma A.2 of Ruppert and Carroll (1980) we can

then prove that An(�̂) = op(1) and then; using the method of Jure�ckov�a (1977),

that �̂ �  = Opf(nh)
�1=2g. Then, since EAn() = 0, we have

(nh)1=2(� � ) = ffF�1(�)g�1D�1
n
An() + op(1)



ROBUST REGRESSION AND SPREAD 355

from which the result follows.

It is now straightforward to establish the behaviour of the running inter-

quantile range estimator. We see that �̂r+1(1��)��̂r+1(�) estimates s(r)(x)fF�1

(1� �)� F�1(�)g=r!.

Corollary 3.1. Suppose that Conditions (i)-(v) hold, x is an element of the

interior of the support of g and that nh2r+1 ! 1 as n! 1 and h ! 0. Then

for 0 < � < 0:5, the running interquartile range estimates s(r)(x)fF�1(1� �)�

F�1(�)g=r! with asymptotic bias of O(hp�r+1) for p � r odd and O(hp�r+2) for

p� r even. In either case, the asymptotic variance is

n�1h�2r�1g(x)�1s(x)2�
h
(1� �)ffF�1(1� �)g�2 + (1� �)ffF�1(�)g�2

� 2�ffF�1(1��)g�1ffF�1(�)g�1
i
kT
r+1N

�1
p
TpN

�1
p
kr+1:

The result follows directly from the preceding theorem.

We next establish that the (r + 1)st component of the heteroscedastic M-

estimators �̂r+1 and �̂r+1 estimatem(r)(x)=r! and l(r)(x)=r! respectively, when the

location and scale functionals on F which identify the model (1.1) are implicitly

de�ned by the requirement that
R
 (e)dF (e) =

R
�(e)dF (e) = 0. We �rst give

the result for the case p = q and then for general p and q but assuming thatR
e 0(e)dF (e) =

R
�0(e)dF (e) = 0. The proofs are similar to that of Theorem 3.1

and so are omitted. However, exact expressions for the asymptotic bias and the

full details of the proofs are available from the author.

Theorem 3.2. Suppose that Conditions (i)-(iv) and (vi)-(vii) hold, x is an

element of the interior of the support of g and that nh2r+1 !1 as n!1 and

h! 0. Then �̂r+1 and �̂r+1 estimate m(r)(x)=r! and l(r)(x)=r!, respectively, with

biases of O(hp�r+2) if p�r is even and O(hp�r+1) if p�r is odd. In either case,

the asymptotic variances are

Var[�̂r+1jX] � n�1h�2r�1(M�1KM�1)11g(x)
�1kT

r+1N
�1
p
TpN

�1
p
kr+1

and

Var[�̂r+1jX] � n�1h�2r�1(M�1KM�1)22g(x)
�1kT

r+1N
�1
p
TpN

�1
p
kr+1:

Theorem 3.3. Suppose that Conditions (i)-(iv) and (vi)-(vii) hold, x is an

element of the interior of the support of g and that nh2r+1 ! 1 as n ! 1

and h ! 0. Then �̂r+1 estimates m(r)(x)=r! with bias of O(hp�r+2) if p � r is

even and of O(hp�r+1) if p� r is odd, and �̂r+1 estimates l(r)(x)=r! with biases

of O(hq�r+2) if q� r is even and of O(hq�r+1) if q� r is odd. In either case, the

asymptotic variances are

E[f�̂r+1�r+1g
2jX] �n�1h�2r�1g(x)�1s(x)2fE 0(e)g�2E (e)2kT

r+1N
�1
p
TpN

�1
p
kr+1
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and

E[f�̂r+1 � �r+1g
2jX] � n�1h�2r�1g(x)�1fEe�0(e)g�2E�(e)2kT

r+1N
�1
p
TpN

�1
p
kr+1:

Moreover, �̂ and �̂ are asymptotically conditionally independent given X.

3.2. Remarks

Remark 1. Although our proofs deal naturally with vectors of estimators, we

have stated all our results for a single component of those vectors. This is partly

because it is simpler and partly because of the need to at least consider using

di�erent bandwidths to estimate the di�erent functions of interest. However,

matrix expressions are easily obtained. Moreover, we have chosen to state the

results in terms of asymptotic conditional biases and variances rather than local

Bahadur representations or asymptotic conditional normality as has been done

by Fan, Hu and Truong (1992). However, since our proofs produce asymptotic

linearity results for the estimators, conversion to these formats is straightforward.

Thus, in the special case s(x) = 1, r = p = 1, � � 0 and wi(x) � 0, Theorems

3.1 and 3.3 have essentially the same content Theorem 1 of Fan, Hu and Truong

(1992). It is also possible (but not very useful) to restate our results in terms

of equivalent kernels as has been done by Ruppert and Wand (1994). If we take

 (x) = x, � � 0 and wi(x) � 0 Theorem 3.3 reduces to Theorems 4.1 and 4.2 of

Ruppert and Wand (1994).

Remark 2. In all our results, if p� r (or q � r) is odd, the leading term of the

conditional bias of the estimator m(r)(x) or s(r)(x) does not involve the density g

of X. This property was called design adaptivity by Fan (1992, 1993). However,

as noted by Ruppert and Wand (1994), it does not hold when p� r is even.

Remark 3. We often choose p = r+1 or r+2 in applications. Thus if we want

to estimate the regression and spread functions (for which r = 0), we can take

p = 1 to incur a bias of O(h2). The slope terms estimate the derivatives (r = 1)

at no extra cost with a bias of O(h2) too. If we increase p so p = 2, the bias for

the estimators of the regression and spread functions is O(h4) while that of the

derivatives remains O(h2). For p = 3, in estimating the regression and spread

functions, we incur a bias of O(h4) and for estimating their derivatives, a bias of

O(h4). These results are summarised in Table 1 below. Of course, in particular

applications, we may require the bias to be smaller than some speci�ed order

and in this case we may need to choose p to satisfy these requirements.

Remark 4. Our results are easily manipulated to produce asymptotic condi-

tional mean squared errors. For example, for the running regression quantile

estimators, the asymptotic conditional mean squared error of r!�̂r+1(�) is the
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sum of two terms, the �rst of which is of O(n�1h�2r�1) and the second of which

is of O(h2(p�r+1)) for p � r odd and O(h2(p�r+2)) for p � r even. The asymp-

totic conditional mean integrated squared error can be obtained by integrating

these expressions with respect to a weight function over the support of g. These

criteria can then be minimised with respect to h to obtain bandwidths which pro-

duce optimal estimators with respect to asymptotic conditional mean or mean

integrated squared error. The optimal window width h0 for estimating the rth

derivative of the regression function satisi�es h0 = O(n�1=(2p+3)) for p � r odd

and h0 = O(n�1=(2p+5)) for p�r even. We can use a single h to estimate m and s

and their derivatives simultaneously, but the optimal window width for estimat-

ing m(r) or s(r) changes as r changes so simultaneous optimal estimation is not

possible. This is often not important when these quantities are merely nuisance

parameters because then very di�erent optimality criteria should be used. Alter-

natively, we can use di�erent weights (corresponding to di�erent bandwidths) to

estimate each derivative. To use the optimal window widths in practice, we need

to construct preliminary estimates of the unknown quantities in the appropriate

asymptotic conditional mean or mean integrated squared error. This problem

is has been investigated by Ruppert, Sheather and Wand (1995) for the least

squares estimator. Since it should be straightforward to extend their results to

the present problem, we will not pursue the matter in detail here.

Remark 5. The results obtained above all require x to be interior to the support

of g but we can also obtain results which apply when x is close to the boundary

of the support of g. Let supp(g) = [a; b] and x = @x + hc, where @x = a or

b, and c is chosen so @x + hc 2 [a; b]. Finally, let S = f�c + (a � @x)=h <

u < �c + (b � @x)=hg \ supp(K). Now for the running regression quantiles,

the asymptotic bias for the (r + 1)th entry is readily shown to be of O(hp�r+1).

In the asymptotic variance, Tp is replaced by Tp(S), the matrix with entriesR
S
ui+j�2K(u)2du. However, Tp was not patterned so the form of the expression

is unchanged and we have

Varf(nh)1=2(�̂�)g�g(x)�1ffF�1(�)g�2�(1��)H�1Np(S)
�1Tp(S)Np(S)

�1H�1:

The general point is that the e�ect of the boundary is to restrict the domain of

integration of all integrals to S and thereby destroy the all important patterns

in Np. This simpli�es the expression for the asymptotic bias and means that the

bias of the (r + 1)th component is O(hp�r+1) whether p � r is odd or even. In

particular, for p� r odd, this means that the asymptotic bias on the boundary is

of the same order as that in the interior, a point noted in the work of Fan (1990,

1992), Ruppert and Wand (1994), and Fan, Hu and Truong (1992).
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Table 1. The order of the bias of estimators of the regression and spread

functions (r = 0) and their �rst derivatives (r = 1) for polynomials of order

p when x is an interior or a boundary point.

x in Interior x on Boundary

r = 0 r = 1 r = 0 r = 1

p = 0 h
2

� h �

p = 1 h
2 �

h
2

h
2 �

h

p = 2 h
4

h
2 �

h
3

h
2 �

p = 3 h
4 �

h
4

h
4 �

h3

� Cases where p� r is odd.

This, together with the design adaptivity property, is the primary motivation for

using p = r+1 as a default choice. It is straightforward to obtain similar results

for boundary points for the other estimators.

Remark 6. Problems with vector X of dimension d � 1 are also of interest.

The case d = 2 is of particular interest because it arises naturally with spatial

geographic data and the results can still be examined graphically. Asymptotics

in a general multidimensional setting have been addressed by Stone (1980, 1982).

The extension of our results to this case is notationally complex but otherwise

straightforward. The details have been omitted to save journal space but are

available from the author.

4. Examples

In this section we illustrate the practical utility of the methodolgy we have

proposed by applying it to two data sets. All the analysis was carried out in

Splus.

We used local linear �ts (p = 1) for simplicity throughout. Thus, we esti-

mated the regression and spread functions simultaneously without changing the

order of the local polynomial or the window width to improve derivative esti-

mation. The choice of p = 1 ensures that the bias of the regression and spread

estimators is of O(h2) both in the interior and on the boundary. On the other

hand, the bias of the estimators of the derivatives of these functions is of O(h2)

in the interior but only O(h) on the boundary and so are not expected to perform

as well. Nonetheless, as is shown below, the derivative estimators perform rather

well. This performance is remarkable in view of the notorious di�culty of using

conventional smoothing methods to estimate derivatives.

We used the Gaussian density function as the kernel function in all the �ts.
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The window width h was chosen by inspection based on trial and error. An initial

plausible value was chosen as

h = 2minfSD(X); MAD(X)g;

where SD(X) denotes the usual sample standard deviation of the covariates and

MAD(X) denotes 1.48 times the median absolute deviation from the median of

the covariates. This is a slightly modi�ed version of the suggestion of Silverman

(1986, p 45�). The window was then adjusted until a reasonably smooth �t with

little apparent bias was obtained.

The running regression quantile �ts were obtained using the function writ-

ten by Koenker and D'Orey (1987). There is no direct provision for passing

weights to the function but the �t at x is easily e�ected by applying the func-

tion to YiKf(Xi � x)=hg and (Xi � x)Kf(Xi � x)=hg. For the heteroscedastic

M-estimators we solved the de�ning estimating equations at x by means of a

modi�cation of the robust pseudo-likelihood algorithm described by Carroll and

Ruppert (1988, p196).

For our robust �ts, we need to specify  and �. We used a variant of

Huber's proposal 2 for the heteroscedastic M-estimators. That is, we used the

Huber  function for which  (x) = max(�c;min(c; x)) with c = 1:35 and set

�(x) =  (x)2 �
R
1

�1
 (t)2d�(t) with c = 2:00, where � is the standard Gaussian

distribution function. This choice is simple and familiar but there are other

possibilities; an interesting possibility would be to replace the Huber  function

by the bisquare function for which  (x) = xf1�(x=c)2g2I(jxj � c) and c = 4:685.

As noted in Section 2, a local maximum likehood �t based on the Gaussian

distribution is obtained by taking  (x) = x and �(x) = x2 � 1. The resulting �t

is not robust but we use it in the second example below to show the bene�ts of

the robust procedure.

� The raptor data

The �rst example involves data presented by Olsen, Cunningham and Don-

nelly (1994) as part of a study of the evolutionary ecology of reproduction of

raptors. For n = 267 species of raptor, the response variable Y is the logarithm

of the average egg volume and the explanatory variable X is the logarithm of the

average female weight. The data exhibit some curvature and clear heteroscedas-

ticity on the raw scale. Standard applied practice in such situations is often

to transform the data; the logarithmic transformation applied to both variables

produces approximate linearity and removes the heteroscedasticity. We will ap-

ply local polynomial smoothing to assess the e�ectiveness of the transformation

strategy.
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smooth Huber M-estimator are smoother than those obtained from the running

median �t. This can be attributed to the fact that the Huber M-estimator has

a smooth inuence function while the median has an inuence function with a

jump discontinuity at the origin. This property of producing smoother estimates

may be an advantage of the M-estimation procedure over the regression quantile

procedure in some applications.

Finally, note that the quantile curves can cross. This slightly disturbing fea-

ture is a consequence of the local exact �t property which forces each weighted

regression quantile �t to pass through at least two points in the neighbourhood

of points with non-zero weight. For the �t at x, the quantile curves are correctly

ordered only at the kernel weighted mean of the covariates. For interior points,

this will often be close to the centre of the neighbourhood, namely x, but for

boundary points, this will di�er from x. Combined with the local exact �t prop-

erty, it is clear that crossing can occur and that if it does occur, it is more likely

to do so near the boundary.

� The moderate sized beef farm data

The second example involves the set of n = 376 farms with between 50

and 2500 beef cattle which participated in the 1988 Australian Agricultural and

Grazing Industries Survey carried out by the Australian Bureau of Agricultural

and Resource Economics. The response Y here is the farm income and the

covariate X is the number of beef cattle.

This set of moderately sized beef farms was used as a population of interest

by Welsh and Ronchetti (1994) to illustrate the use of robust methods in the

analysis of sample survey data. The analysis was carried out using the model

Yi = �Xi + g(Xi)ei; 1 � i � n;

where g(x) = x. Models of this type are widely used in the super population

approach to the analysis of sample survey data but their utility depends on

their validity. We will use robust local polynomial smoothing with the default

window-width h = 400 to assess the validity of this model.

Figure 4.3 shows the running quantile curves and the local IQR curve for

the moderately sized beef farm data. There appear to be a few very extreme

outliers present in the data. The plots show a roughly linear relationship with

severe heteroscedasticity and some asymmetry.

Figure 4.4 shows a scatterplot of the data with both a Gaussian and a Huber

local polynomial �t. The Gaussian �t is increased by the asymmetry and the

outliers so the Gaussian curve lies above the Huber curve in the plot. Both �ts

are roughly linear until the right hand edge of the plot although the Gaussian

curve is perturbed slightly by the extreme outliers and so is slightly less smooth
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Figure 4.5. Robust and nonrobust �ts to the variability for the beef farm data

The e�ect of the outliers on nonrobust estimators of regression functions is to

increase their variability and, when the outliers are also asymmetric, to increase

their bias relative to robust estimators. Since the easiest visual comparison of

curves is of their relative biases, examples with asymmetric outliers are visually

powerful. Nonetheless, at least relative to the scale of the data (which is not

necessarily the best scale for the comparison), the magnitudes of such biases can

seem misleadingly small. This is not of course the case in spread estimation

where outliers typically have a substantial e�ect. This is shown clearly in Figure

4.5 where the Gaussian estimate of the spread function is far too large and visibly

tracks the extreme outliers in the data. In contrast, the Huber estimate is much

smaller and is robust against the extreme outliers. These di�erences also occur

in the estimates of the derivatives of the spread functions.

Finally, the linearity of the robust spread function estimate and the constancy

of its derivative estimate support the assumption of Welsh and Ronchetti (1994)

that g(x) = x, the spread is linear in the number of cattle.
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