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Abstract: Wavelet-based curve estimators have received considerable recent attention,

particularly in terms of their ability to adapt to irregularities in a curve. Nevertheless,

the threshold rules on which wavelet estimators are based are not well understood, and

indeed some contemporary workers employ rules that are suboptimal by an order of

magnitude. In this paper we give necessary conditions and su�cient conditions on the

form of the threshold for the resulting curve estimator to achieve optimal convergence

rates in the case of smooth and piecewise-smooth functions. We discuss practical

threshold rules that achieve optimal rates and study spatially adaptive rules that

permit a degree of local smoothing. We address the important statistical problem of

which tuning parameters in threshold rules produce genuine statistical smoothing in

the sense of allowing adjustment of variance against bias in a �rst-order sense. Some

tuning parameters a�ect only bias while others inuence neither bias nor variance to

�rst order.

Key words and phrases: Bias, convergence rate, mean squared error, smoothing pa-

rameter, threshold, variance, wavelet.

1. Introduction

A wavelet estimator of a function f is typically based on replacing wavelet

coe�cients by their respective empirical versions in a formula for the \wavelet

transform" of f . Now, the wavelet transform is an in�nite double series over both

frequency (i.e: resolution) and location, and direct substitution of coe�cient es-

timators for true coe�cients produces a double series which does not converge.

In practice this di�culty is overcome by truncating the sum over resolution and

including in the double series only those empirical wavelet coe�cients which ex-

ceed a certain threshold. The truncation operation is relatively innocuous and

is robust against adjustments. In practice it serves only to ensure that coe�-

cient estimates that are included in the curve estimator are based on su�ciently

many data values for their variability not to be excessive. However, selection of

threshold can be crucial to performance. The aim of this paper is to address the

issue of threshold choice in the context of smooth and piecewise-smooth function

estimation.
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We show that a wavelet-based curve estimator achieves optimal convergence

rates if and only if the threshold which it employs is bounded by a constant

multiple of n�1=2, where n denotes sample size, up to a certain critical resolution

level k0 (depending on both n and the order of wavelet); and, beyond that point,

increases at least as fast as const: n�1=2(k� k0)
1=2 among higher resolution levels

k. The critical resolution level k0 is given by an integer close to (2r+1)�1 log2 n,

where r denotes the order of the wavelet and log2 indicates logarithm to base

2. Other threshold rules, such as the \pure threshold" approach with threshold

set equal to const: n�1=2(log n)1=2 at all resolution levels, can have creditable

performance but do not quite achieve the level of accuracy of estimators with

appropriately varying thresholds. The \pure threshold" estimator is intrinsically

oversmoothed | it excludes too many low-resolution wavelet coe�cients with the

result that the bias contribution to its mean integrated squared error dominates

the variance contribution.

We point out that if the threshold is selected in a way which is adaptive

relative to both spatial location and resolution then variance may be balanced

against bias in a spatial sense. In this case the mean integrated squared error for-

mula is strikingly similar to its counterpart in the context of variable bandwidth

kernel estimation. For example, an r'th order kernel estimator ~f of an r-times

di�erentiable probability density f , using the variable bandwidth h(x) = h0H(x)

where h0 ' n�1=(2r+1) depends only on n and H(x) depends only on x, has mean

integrated squared error given by

Z
E( ~f � f)2 � B1(nh0)

�1

Z
fH�1 +B2 h

2r
0

Z
f (r)

2

H2r : (1:1)

(The constants B1 and B2 depend only on the kernel function. See Rosenblatt

(1971) for discussion of related results.) An identical formula holds for appropri-

ately thresholded r'th order wavelet estimators; there, B1 � 1, B2 depends only

on the wavelet function, h0 = 2�k0 , and log2 H must be integer-valued. The lat-

ter restriction results from the dyadic de�nition of scale at successive resolution

levels in the wavelet transform. An important aspect of the wavelet version of

(1.1) is that it continues to hold when f is only piecewise smooth. By way of

contrast, kernel estimators can be seriously a�ected by discontinuities in f , and

formula (1.1) fails there unless r = 1.

These considerations raise the issue of which tunable parameters in the

wavelet estimator provide genuine statistical smoothing, to �rst order, and which

parameters adjust only bias (without appreciably a�ecting variance) or simply

ensure that the estimator is well-de�ned by guaranteeing convergence of the dou-

ble series used to construct it. The truncation parameter is of the latter type

| the manner in which it is typically used does not provide any trade-o� of
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bias against variance, and so does not produce statistical smoothing. Neither,

in the case of the pure threshold estimator noted earlier, does the constant in

the threshold formula \const: (n�1 log n)1=2" provide any statistical smoothing

to �rst order. For all permitted choices of that constant, adjustments to its value

a�ect only bias to �rst order. The pure threshold estimator does not have a tun-

able smoothing parameter. However, more exible threshold rules do o�er a real

potential for statistical smoothing. Such smoothing may be available globally

| for example, the critical resolution level discussed in the second paragraph of

this section provides global smoothing | or locally as in the case of a spatially

varying threshold.

We should stress that these conclusions are founded on a speci�c model for

the true function f , which (when it is estimated using an r'th order wavelet)

is taken to have r bounded derivatives in a piecewise sense. Here the spatial

adaptability of wavelet methods is evident from their ability to cope with dis-

continuities in derivatives of lower order than r, and also (in the case of spatially

varying thresholds) their potential for providing local smoothing in this context.

In this respect more traditional methods, such as those based on kernels, do

not perform so well, and in fact produce estimators whose convergence rates

are an order of magnitude slower than those of wavelet estimators when f has

discontinuities. Generally, the pure threshold method responds relatively well to

high-order episodes in the curve, such as uctuations whose frequency is of larger

size than (log n)1=2. This issue has been taken up by Hall and Patil (1995a) and

Fan, Hall, Patil and Martin (1993). Nevertheless, a critical point made by the

present paper is that pure thresholding does not adapt at all well to the lower

frequency changes with which statistical scientists are often concerned.

Wavelet methods were introduced to statistics by Donoho (1992), Donoho

and Johnstone (1992a-b, 1994) and Kerkyacharian and Picard (1992, 1992a-c).

The approach adopted in the present paper di�ers from that taken by these au-

thors in that we focus attention on a �xed target function f rather than describe

performance uniformly over large classes of f 's. The purpose of our restriction is

to identify more clearly the ways in which choice of threshold a�ects the perfor-

mance of a wavelet-based curve estimator. There is no di�culty in generalizing

our results so that they apply uniformly over classes of functions with r bounded

derivatives in a piecewise sense. However, in most cases our claims about the

performance of di�erent threshold rules, and the extent to which they provide

genuine statistical smoothing, are not valid uniformly over the very large Sobolev

spaces considered by Donoho, Johnstone, Kerkyacharian and Picard.

The results produced in this paper are, of course, theoretical, and the argu-

ments that derive them are heavily mathematical. To avoid clouding the central

issues by technical matters we give all derivations in outline only. Concise details
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follow lines pursued by Hall and Patil (1995b), to which the reader interested

in the technical side is referred. As in that paper we address only the case of

nonparametric density estimation, in the knowledge that other applications, such

as nonparametric regression, do not di�er in qualitative terms. Thus, our results

about the e�cacy of di�erent threshold rules are available quite generally.

Organization of the rest of the paper is as follows. Our main results, as

indicated in the second paragraph above, are described in Section 2. In Section

3 we give three speci�c examples of threshold rules. The �rst two achieve the

optimal mean square convergence rate, although the third | pure thresholding

| does not. Still in Section 3 we propose re�nements of those threshold rules

which achieve optimal mean square convergence rates. We also discuss spatially

adaptive threshold rules. The issue of which tunable parameters provide genuine

statistical smoothing is discussed in Section 4. Extensions of our results and

conclusions to piecewise-smooth densities are indicated in Section 5.

2. Main Results

2.1. Summary, and introduction to wavelet transforms

Section 2.2 introduces approximations to wavelet coe�cients and their esti-

mators, and discusses some of the implications of those formulae. The formulae

are applied in Section 2.3 to derive necessary and su�cient conditions for r'th

order wavelet-based density estimators to achieve the optimal convergence rate,

O(n�2r=(2r+1)) among densities in a class of r-times di�erentiable functions,

Fr(B) =

�
f � 0 :

Z
f = 1 ; sup jf (j)j � B ;

Z
jf (j)j � B for

0 � j � r ; f (r) is uniformly continuous on (�1;1) ;

and f (r) is monotone on (�1;�B) and on (B;1)

�
;

where B � 1. The monotonicity assumption here is employed to enable in�nite

series to be approximated by integrals, in calculation of bias terms. It seems so

mild that we have not attempted to relax it.

Next we describe the wavelet transform and its empirical version for non-

parametric density estimation. Let  and � denote respectively mother and

father wavelet functions of r'th order, enjoying the properties
R
�2 =

R
 2 = 1,R

xi  (x) dx = 0 for 1 � i � r � 1, and = r!� (say) 6= 0 when i = r. Fur-

thermore, for arbitrary p > 0, and de�ning pk = p 2k for k � 0, the functions

�l(x) = p1=2 �(px � l) and  kl(x) = p
1=2
k  (pkx � l) form an orthonormal basis

for the class of square-integrable functions f . The orthogonality relations may

be expressed by
R
�l1 �l2 = �l1l2 ,

R
 k1l1  k2l2 = �k1k2 �l1l2 ,

R
�l1  kl2 = 0, where
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�ij denotes the Kronecker delta. The wavelet transform of a square-integrable

function f is given by

f =
X
l

bl �l +
1X
k=0

X
l

bkl  kl ; (2:1)

where bl =
R
f �l and bkl =

R
f  kl are wavelet coe�cients.

In addition to the standard properties of wavelets listed above, we suppose

that both � and  are bounded and compactly supported.

If f is a probability density and X1; : : : ;Xn is a random sample from the

associated probability distribution, then

b̂l = n�1
nX

i=1

�l(Xi) and b̂kl = n�1
nX

i=1

 kl(Xi)

are unbiased estimators of bl and bkl, respectively. An empirical version of (2.1)

is given by

f̂ =
X
l

b̂l �l +

q�1X
k=0

X
l

b̂kl I(jb̂klj > tkl) kl ; (2:2)

where q � 1 is a truncation parameter, tkl is a threshold and I is the indicator

function. If we were to remove the truncation and threshold operations | that

is, take q =1 and tkl = 0 | then the double series at (2.2) would not converge.

These representations of f and f̂ are not unique. In particular, if k� is any

positive integer then the function f may be expressed as

f =
X
l

b�l �
�

l +
1X
k=0

X
l

b�kl  
�

kl ;

where ��l (x) = (p 2k
�

)1=2 �(p 2k
�

x� l),  �kl =  k�+k;l b
�

l =
R
f ��l and b

�

kl = bk�+k;l.

Furthermore, if tkl = 0 whenever 0 � k � k� � 1 then the estimator f̂ de�ned at

(2.2) is identical to

f̂ =
X
l

b̂�l �
�

l +

q�k��1X
k=0

X
l

b̂�kl I(jb̂
�

klj > tk�+k;l) 
�

kl ; (2:3)

where b̂�l = n�1
Pn

i=1 �
�

l (Xi) and b̂�kl = n�1
Pn

i=1  
�

kl(Xi) = b̂k�+k;l. In view

of these di�erent expressions for the same estimator it is a little awkward to

discuss thresholds unambiguously, particularly since there exist important classes

of estimators that have all low-resolution thresholds equal to zero. We remove

this di�culty by taking pk � � 2k, where � 2 [1; 2). Much of the treatment of

wavelet methods extant in the literature is for the case � = 1, and to simplify
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our discussion we adopt this convention in Sections 2.3 and 3.1. However, such

an approach allows smoothing via the resolution level to be implemented only

in discrete, dyadic steps. It does not avail itself of the continuum of smoothing

that may be enjoyed by adjusting � as well as k, as we show in Section 3.2.

For the sake of simplicity we adhere to convention and de�ne k to be the

resolution level associated with the contribution b̂kl I(jb̂klj > tkl) kl to the esti-

mator f̂ . However, this is not entirely satisfactory since adjoining the variable

�, as discussed above, does slightly alter the e�ective resolution. Hall and Patil

(1995a,b) denoted resolution by pk, rather than k, to avoid this problem.

We shall assume throughout that the truncation point, q, is chosen so that

2q = O(n1��) for some � > 0.

2.2. Approximations to bkl, b̂kl and mean integrated squared error

Observe that, by Parseval's identity, the mean integrated squared error of

the estimator de�ned at (2.2) is given by

MISE =

Z
E(f̂ � f)2 =

X
l

al +

q�1X
k=0

X
l

(a1kl + a2kl) +
1X
k=q

X
l

b2kl ; (2:4)

where al = E(b̂l � bl)
2 ; and

a1kl = Ef(b̂kl � bkl)
2 I(jb̂klj > tkl)g ; a2kl = b2kl P (jb̂klj � tkl) :

It is not di�cult to see, for plausible choices of the threshold tkl, that a2kl dom-

inates a1kl when k is very large, and a1kl dominates a2kl when k is small. The

approximations that we develop below are for the intermediate case, where a1kl
and a2kl are of similar sizes, or at least have a ratio that is not excessively large

or small. Values of k (and l) which produce this intermediate behaviour are those

which determine the performance of thresholding rules.

With the exception of Section 3.3, and small portions of Sections 4 and 5,

we suppose below that the threshold tkl depends only on k. This is typically

the case in practice, and by making that assumption we may simplify both our

notation and our discussion. To express the assumption we write the threshold

as tk.

Let � = �(k; l; x) denote a quantity lying between 0 and 1, and put � = � f (r),

a bounded function. Then for f 2 Fr(B),

bkl = E(b̂kl) = p
�1=2
k

Z
 (x) ff(x+ l)=pkg dx

= p
�1=2
k

Z
 (x)

�r�1X
j=0

(j!)�1(x=pk)
j f (j)(l=pk)

+ (r!)�1(x=pk)
r f (r)f(�x+ l)=pkg

�
dx
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= p
�fr+(1=2)g
k (r!)�1

Z
xr  (x) f (r)f(�x+ l)=pkg dx

' p
�fr+(1=2)g
k �(l=pk) :

Also,

n Var(b̂kl) = Ef kl(X)2g � b2kl ' Ef kl(X)2g =

Z
 (x)2 ff(x+ l)=pkg dx

' f(l=pk) ;

and, provided n=pk is large, b̂kl is approximately Normally distributed. Therefore,

writing N for a Normal N(0; 1) random variable,

a1kl ' n�1 f(l=pk)E[N
2 Ifjn�1=2 f(l=pk)

1=2N + p
�fr+(1=2)g
k �(l=pk)j > tkg] ;

a2kl ' p
�(2r+1)
k �(l=pk)

2 Pfjn�1=2 f(l=pk)
1=2N + p

�fr+(1=2)g
k �(l=pk)j � tkg :

Similarly,
1X
k=q

X
l

b2kl �

�Z
�2
� 1X

k=q

p�2rk = (1� 2�2r)�1
�Z

�2
�
p�2rq :

Also, for compactly supported � ;
P

l al = O(n�1) : Arguing thus, writing tk =

n�1=2 �k for a positive constant �k (possibly depending on n as well as k), and

noting (2.4) and the fact that the MISE is of larger order than n�1, we deduce

that

MISE �

q�1X
k=0

Z �
n�1 pk f(x)E[N

2 Ifjn�1=2 f(x)1=2N

+ p
�fr+(1=2)g
k �(x)j > n�1=2 �kg]

+ p�2rk �(x)2 Pfjn�1=2 f(x)1=2N

+ p
�fr+(1=2)g
k �(x)j � n�1=2 �kg

�
dx

+(1�2�2r)�1
�Z

�2
�
p�2rq : (2:5)

2.3. Choice of threshold and truncation when pk � 2k

Let k0 denote the integer part of (2r+1)
�1 log2 n = (2r+1)�1(log 2)�1(log n),

this quantity being chosen since it ensures that p2r+1k0
=n is bounded away from 0

and 1 as n!1. Let C1; C2; : : : be positive constants, depending on f but not

on k or n. We claim that if f 2 Fr(B) then in order for MISE = O(n�2r=(2r+1))

it is

(a) necessary that there exist C1; : : : ; C5 such that for all n: q � k0 � C1, #fk :

0 � k � k0 � 1, and �k > C2g � C3, and #fk : k0 � k � q � 1 : �k �

C4(k � k0)
1=2
g � C5; and
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(b) su�cient that there exist C1; : : : ; C5 with C4 chosen su�ciently large, such

that for all n : q � k0 � C1, #fk : 0 � k � k0 � 1; �k > C2g � C3, and

#fk : k0 � k � q � 1; �k � C4(k � k0)
1=2
g � C5.

To establish these claims �rst observe that if pk � 2k then the very last

term on the right-hand side of (2.5) equals O(n�2r=(2r+1)) if and only if, for some

C6 > 0, 2q � C6 n
1=(2r+1); or equivalently, if and only if q � k0 � C7.

Next, note that the contribution to the right-hand side of (2.5) from that

part of the series corresponding to the sum over k0 � k � q � 1, dominates

C8 n
�2r=(2r+1)

q�k0�1X
k=0

2k EfN 2 I(jN j > C9 �k0+k)g

� C10 n
�2r=(2r+1)

q�k0�1X
k=0

2k exp (� C11 �
2
k0+k)

and is dominated by

C12 n
�2r=(2r+1)

q�k0�1X
k=0

2k exp [� C13fmax(�k0+k � C14; 0)g
2
] :

Similarly, the contribution from the sum over 0 � k � k0 � 1 dominates

C15 n
�2r=(2r+1)

k0�1X
k=0

fI(2kfr+(1=2)g � C16 �k)� P (jN j > C17 2
kfr+(1=2)g)g

and is dominated by

C18 n
�2r=(2r+1)

k0�1X
k=0

fI(2kfr+(1=2)g � C19 �k) + P (jN j > C20 2
kfr+(1=2)g)g :

The claims two paragraphs above follow from these bounds. Indeed, the bounds

may be established uniformly in densities f 2 Fr(B), even with the assumption

that f (r) is continuous removed from the de�nition of Fr(B); and so conditions (a)

and (b) above are respectively necessary and su�cient for achieving the optimal

convergence rate uniformly in f 2 Fr(B).

3. Threshold Rules

3.1. Summary and examples

In the present section we give three speci�c examples of threshold rules and

discuss them in the light of results in Section 2.3. Section 3.2 presents re�nements

of the �rst two rules, which produce optimal mean square convergence rates, and

briey addresses the issue of soft thresholding. Spatially adaptive thresholds are

described in Section 3.3, and their properties outlined.
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Let pk � 2k and write C1; C2; : : : for positive constants. In view of the results

derived in Section 2.3, the following two threshold rules achieve the optimal mean

square convergence rate n�2r=(2r+1) uniformly over densities in Fr(B). Assume

that k0 � C1 � q � C2(log n)(log 2)�1 for arbitrary C1 > 0 and C2 2 ((2r +

1)�1; 1). Take �k = 0 for 0 � k � k1, and either �k = C3(k � k1)
1=2 for k > k1,

or �k = C3(log n)
1=2 for k > k1, where jk1 � k0j � C4, C4 > 0 is arbitrary, and

C3 is su�ciently large.

However, a third threshold rule, given by �k � C5(log n)
1=2 for all k, does not

produce the mean square convergence rate n�2r=(2r+1). No matter what the value

of C5 the rate is no better than (n�1 log n)2r=(2r+1), as may be deduced from

(2.5). The reason for the logarithmic factor is that the density estimator with

this �xed threshold is oversmoothed in the sense that the variance contribution

to MISE is asymptotically negligible relative to the squared bias contribution.

To illustrate this point we treat the case of large C5 in a little detail. With

C5 > (2 sup f)1=2 and q � C2(log n)(log 2)�1 where C2 2 ((2r + 1)�1; 1), it may

be shown that

q�1X
k=0

n�1 pk

Z
f(x)E[N 2 Ifjn�1=2 f(x)1=2N + p

�fr+(1=2)g
k �(x)j > n�1=2 �kg] dx

= of(n�1 log n)2r=(2r+1)g ; (3:1)
q�1X
k=0

p�2rk

Z
�(x)2 Pfjn�1=2 f(x)1=2N + p

�fr+(1=2)g
k �(x)j � n�1=2 �kg dx

� (n�1 log n)2r=(2r+1) ; (3:2)

and p�2rq = of(n�1 log n)2r=(2r+1)g, in which the notation \an � bn" means

\an=bn and bn=an are both bounded sequences". (It is possible to re�ne (2.7) by

replacing the relation \� (n�1 log n)2r=(2r+1)" by \= cn(n
�1 log n)2r=(2r+1)", but

the sequence fcng here does not converge, although its lim inf is strictly positive

and its lim sup �nite.) Therefore, in view of (2.5),

MISE � (n�1 log n)2r=(2r+1) :

Now, the integral of squared bias of f̂ is asymptotic to the left-hand side of (3.2)

| all but a negligibly small part of the integral of variance is expressed by the

left-hand side of (3.1). Therefore, the threshold choice �k � C5(log n)
1=2 renders

the estimator oversmooth, with squared bias dominating variance.

3.2. Re�nements in the case of \optimal" threshold rules

We begin by addressing the �rst two threshold rules suggested in Section 3.1,

and re�ne them by taking pk = � 2k, where � 2 [1; 2) ranges over a continuum of
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values. The respective thresholds are given by tk = n�1=2 �1;k and tk = n�1=2 �2;k,

where

�1;k =

(
0; if 0 � k � k1,

C(k � k1)
1=2; if k > k1,

(3:3a)

and

�2;k =

(
0; if 0 � k � k1,

C(log n)1=2; if k > k1,
(3:3b)

and C > 0. It is easily checked that the results derived in Section 2.3, concerning

necessary and su�cient conditions for optimal performance of the thresholded

estimator, continue to apply in this slightly more general setting.

For simplicity, let q equal the integer part of C 0(log n)(log 2)�1 where C 0
2

((2r + 1)�1; 1). De�ne p = pk1 = � 2k1 , �l(x) = p1=2�(px � l), bl =
R
f �l,

b̂l = n�1
Pn

j=1 �l(Xj). In this notation the formulae at (2.1) and (2.2) may be

equivalently expressed as

f =
X
l

bl �l +
1X
k=0

X
l

bkl  kl ;

f̂j =
X
l

b̂l �l +

q�k1�1X
k=0

X
l

b̂kl I(jb̂klj > n�1=2 �j;k1+k+1) kl : (3:4)

Result (2.5) may be employed to show that, again with p = � 2k1 ,Z
E(f̂j � f)2 � n�1 p+ p�2r aj(f); (3:5)

where

a1(f) =
1X
k=1

�
� 2k

Z
f(x)E[N 2 Ifjf(x)1=2N + ��1=2 2�(2r+1)k=2 �(x)j > C k1=2g] dx

+ 2�2rk
Z
�(x)2Pfjf(x)1=2N + ��1=22�(2r+1)k=2�(x)j � Ck1=2gdx

�
;

a2(f) = (1� 2�2r)�1
Z
�2 ;

� = �(n) = n�1 p2r+1 (which is bounded away from 0 and 1 if jk1 � k0j � C1),

and it is assumed that C is su�ciently large. (For both threshold rules, C >

f2(log 2) sup fg1=2 is adequate.)

It is intuitively clear, and also follows from the de�nitions of a1(f) and a2(f),

that the ratio of the asymptotic mean integrated squared errors of f̂1 and f̂2 may

be rendered arbitrarily close to 1 by choosing C su�ciently large. Of course, the



THRESHOLD RULES FOR WAVELET ESTIMATORS 341

asymptotic mean integrated squared error of f̂2 does not depend on C. Therefore,

in sheer asymptotic terms the estimator f̂2 is not inferior to f̂1, and generally

surpasses it for appropriate choice of C and p.

Formula (3.5) is an analogue of the more familiar mean integrated squared

error formula for an r'th order kernel density estimator,

~f(x) = (nh)�1
nX

j=1

Kf(x�Xj)=hg ;

where K satis�es
R
xiK(x) dx = 1 for i = 0, and = 0 for 1 � i � r � 1. There,

Z
E( ~f � f)2 � (nh)�1

�Z
K2

�
+ h2r

�Z
(f (r))2

��Z
xrK(x) dx

�2

; (3:6)

with which (3.5) compares if we consider p�1 to be the analogue of bandwidth,

h.

The threshold rules employed to construct f̂1 and f̂2 are called \hard thresh-

olds", in that they either include or exclude all of b̂kl | there are no half measures.

A more general rule has the form

f̂ =
X
l

b̂l �l +

q�1X
k=k1+1

X
l

b̂kl w(n
1=2
jb̂klj=�k) kl

(compare (3.4)), where the function w satis�es w(u) = 0 for 0 < u < c1, w(u) 2

[0; 1] for c1 � u � c2, and w(u) = 1 if u > c2, with 0 < c1 � c2 < 1 being

constants. \Hard thresholding" has c1 = c2 = 1; \soft thresholding" has c1 < c2
and w continuous. Analogues of the mean integrated squared error formula

above are readily established for soft threshold rules. There are no changes to

the conclusions that we have drawn. Generally, w inuences mean squared error

formulae only through terms of second order, and so we do not deal here with

the issue of optimal selection of w :

3.3. Spatially adaptive thresholds

Throughout the discussion above we have taken the threshold t = tk to be

adaptive only with respect to resolution, expressed by k. The threshold has not

been adapted to location, i.e. spatial position, expressed by l. However, we might

allow t to depend on both k and l. For example, consider a spatially adaptive

version of the second of the two threshold rules discussed in Sections 3.1 and 3.2,

where �k was either 0 or C(log n)1=2. Re-de�ne

�k = �k(l) =

(
0; if 0 � k � k1(l),

C(log n)1=2; if k > k1(l) ,
(3:7)
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where k1(l) = k0 + g(l=p0), g is an integer-valued function, p0 = � 2k0 , � 2 [1; 2),

and C > f2(log 2) sup fg1=2. The corresponding wavelet density estimator is

f̂ =
X
l

b̂l �l +

q�1X
k=0

X
l

b̂kl Ifjb̂klj > n�1=2 �k(l)g kl ; (3:8)

and in view of (2.5) its mean integrated squared error satis�es

Z
E(f̂ � f)2 � n�1 p0A+ p�2r0 B ; (3:9)

where

A =

Z
f 2g ; B = (1� 2�2r)�1

Z
�2 2�2rg : (3:10)

In practice one might construct pilot estimators of f and f (r) ; employ those to

calculate estimates of A and B as functionals of g ; and thereby compute an

empirical approximation to the function g which minimizes the right-hand side

of (3.9).

There is of course a version of this estimator de�ned by analogy with f̂1.

(The latter was introduced in Section 3.2.) To de�ne it, replace the formula at

(3.7) by

�k = �k(l) =

(
0; if 0 � k � k1(l),

Cfk � k1(l)g
1=2; if k > k1(l) ,

(3:11)

where again k1(l) = k0 + g(l=p0), and with this change, let f̂ be given by (3.8).

Formula (3.9) holds for the new estimator, with the same expression for A as

before but a new, more complex de�nition of B.

More generally still, in formula (3.11) one could take C to be a function of

location, of the form C(l=p0) but constrained to exceed f2(log 2) sup fg1=2. In

practice one might wish to vary just one of k1 and C, but not both, with location.

In the context of spatially adaptive rules, it is of technical interest to note

that if �k is taken to be a function of x then ideally one should choose �k(x) = 0

or1 according as �(x)2f(x)�1 > or < n�1p2r+1k . This follows from (2.5) and the

fact that the quantity

EfN 2I(jN + �j > �)g+ �2P (jN + �j � �)

is minimized by taking � = 0 or1 according as j�j > or< 1. However, in practice

it is not feasible to implement a threshold rule with this degree of precision.

Furthermore, much less elaborate rules (e.g. those not depending on spatial

location) enjoy identical convergence rates.
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4. Smoothing Parameters

Here we address the issue of which tuning parameters produce genuine statis-

tical smoothing, and which have other roles. We de�ne a smoothing parameter to

be a variable which may be adjusted to e�ect �rst-order changes in both variance

and squared bias contributions to mean integrated squared error, such that one

of these quantities increases while the other decreases. All the tuning parameters

involved in the de�nitions of our wavelet estimators have some impact on both

bias and variance, but the e�ect is often only of second order. For the sake of

brevity we focus on \hard" thresholding rules.

The simplest case is perhaps that of the estimator f̂2, de�ned at (3.4). There

the variance and (squared) bias contributions to asymptotic mean integrated

squared error are given respectively by the �rst and second terms on the right-

hand side of (3.5). They depend only on p. Increasing p increases variance but

decreases bias. Thus, p is the only smoothing parameter. In particular, the

constant C appearing in the de�nition of the threshold �2;k is not a smoothing

parameter. Choosing it within the permitted range does not lead to any �rst-

order changes to either the variance or bias contributions to mean integrated

squared error.

The case of the estimator f̂1 is more complex. There, the second term on

the right-hand side of (3.5) involves contributions from both variance and bias

| compare the case of f̂2, where it derived solely from bias. The threshold

constant C enters through the value of a1(f), and there C does e�ect a trade-o�

between bias and variance. Thus, both p and C are smoothing parameters in

this example.

We turn next to the \pure threshold estimator" discussed in the latter part of

Section 3.1, which uses the threshold �k � C5(log n)
1=2 for all k. As noted earlier,

asymptotic mean integrated squared error in this case is, for C5 > C0
5 say, dom-

inated entirely by squared bias | the estimator is signi�cantly oversmoothed.

Therefore, while adjustment of C5 within the permitted range inuences the level

of bias, it does not e�ect a trade-o� between variance and bias contributions, at

least to �rst order. The constant C5 is therefore not a smoothing parameter.

Next we examine the �rst of the two spatially adaptive threshold rules dis-

cussed in Section 3.3; see (3.7) and (3.8). There, as in the case of f̂2, inuence of

the constant C in the de�nition of the threshold vanishes entirely, in �rst-order

terms. The only smoothing parameters are p0 and the integer-valued function g,

which e�ects a certain amount of local adaptive smoothing. The variance contri-

bution to asymptotic mean integrated squared error is given by the �rst term on
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the right-hand side of (3.9), and the bias contribution by the second term. From

this fact, and from the structure of the constants A and B de�ned at (3.10), it is

clear that larger values of g tend to increase variance but decrease bias. (How-

ever, the manner in which this is achieved is perhaps a little crude relative to the

smoother, non-dyadic local adaptability obtainable from a variable-bandwidth

kernel density estimator. There, g is e�ectively arbitrary, not constrained to

take integer values.)

In the case of the second spatially adaptive threshold rule, given at (3.11),

each of the quantities p0, g and C is a smoothing parameter. Particularly if C de-

pends on location, as suggested in the paragraph following (3.11), this threshold

rule grants greater exibility in smoothing than that considered in the previous

paragraph.

5. Piecewise-Smooth Densities

In the foregoing discussion it has been convenient to consider f to be an r-

times di�erentiable function, without any discontinuities in f (j) for 0 � j � r�1.

However, all our results and conclusions about wavelet estimators carry over to

the case of piecewise-smooth functions, where the class Fr(B) de�ned in Section

2.1 may be enlarged to

Gr(B) =
n
f � 0 :

Z
f = 1; for 0 � j � r; f (j) is well-de�ned and

continuous at all but at most B points, all lying within

(�B;B); at which both left and right derivatives exist;

sup
x
jf (j)(x+)j � B; sup

x
jf (j)(x�)j � B;

Z
jf (j)j � B for

0 � j � r; f (r) is monotone on (�1;�B) and on (B;1)
o
:

The only change necessary is to ask that 2q n�2r=(2r+1) ! 1, which one may

ensure by insisting that q � C2(log n)(log 2)�1 where C2 2 (2r(2r + 1)�1; 1)

(instead of C2 2 (2r+1)�1; 1), as was formerly the case. This alteration guaran-

tees that the contribution from jump discontinuities to the series
P

k�q

P
l b

2
kl,

which appears in the formula for mean integrated squared error (see (2.4)), is of

smaller order than n�2r=(2r+1). Note that at discontinuities, b2kl is of order p
�1
k ,

and that for each k the number of l's such that bkl is a�ected by a discontinuity

is uniformly bounded. A similar argument shows that the contribution of jump

discontinuities to all other parts of the mean integrated squared error formula is

of smaller order than n�2r=(2r+1).
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The fact that our conclusions carry over to the case of piecewise di�eren-

tiable f 's indicates the considerable spatial adaptability of wavelet methods. By

way of contrast, formula (3.6) for the mean integrated squared error of kernel

estimators is not valid in the case of a discontinuous f , and in fact the optimal

convergence rate in that context is an order of magnitude slower than for the

wavelet estimators f̂1 and f̂2.
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