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ALMOST SURE CONVERGENCE OF WEIGHTED SUMS

Xiru Chen, Li-Xing Zhu and Kai-Tai Fang�

Chinese Academy of Sciences and Hong Kong Baptist University�

Abstract: Suppose that e1; e2; : : : are i.i.d. random variables with Ee1 = 0 and

Eje1j
r < 1 for some r with 1 � r < 2. In this paper, we obtain su�cient con-

ditions for almost sure convergence of the weighted sum
P

n

i=1
a(i)ei=A(n) and derive

that these conditions are necessary in some sense.
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1. Introduction and Main Results

Jamison et al: (1965) proved the following result: Suppose that e1; e2; : : :

are i.i.d. random variables with Ee1 = 0, a(1); a(2); : : : are positive constants

such that A(n) =
P

n

i=1 a(i) ! 1 as n ! 1. Denote by N(K) the number of

subscripts i such that A(i)=a(i) � K. If

N(K) = O(K); (1:1)

then
nX
i=1

a(i)ei=A(n)! 0; a.s.: (1:2)

Conversely, if (1.1) is not true, then there exist i.i.d. random variables e1; e2; : : :

with Ee1 = 0 such that (1.2) is false.

Three questions may be raised concerning this result.

a). What happens when fA(n)g is replaced by some other constant sequence

satisfying monotone increasingness? (In the following, we still use the notation

fA(n)g for the sequence without confusion.)
b). What happens when the sets fi : i � 1; a(i) > 0g and fi : i � 1; a(i) < 0g are
in�nite?

c). What happens when ei possesses moments of order higher than one ?

These questions have already been considered by some authors for various

special series fA(n)g. See for example Kolmos and Revesz (1964) and Azuma

(1967). Zhu (1989), in an unpublished doctoral dissertation, considered the case

where A(n) =
Pn

i=1 a
2(i) in connection with the strong consistency of LS esti-

mates of linear regression coe�cients.
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In this paper we consider the above questions under the assumption that

Ejeijr < 1 for some r 2 [1; 2). Write u(i) = a(i)=A(i) and let ([n; 1]; : : : ; [n; n])

be a permutation of (1; : : : ; n) such that

ju([n; 1])j � � � � � ju([n; n])j;
[n; i] < [n; j]; if i < j and ju(i)j = ju(j)j:

Let I(�) be the indicator function and de�ne

V1(n; j) =
nX
i=1

a(i)I(ju(i)j � ju([n; j])j); for 1 � j � n;

and V1(n) = max
1�j�n

jV1(n; j)j:

Now we can formulate the main results of this paper:

Theorem 1. Suppose that e1; e2; : : : are i.i.d: random variables with Ee1 = 0,

a(i) 6= 0 for i � 1 and 0 < A(1) � A(2) � � � � ! 1. Then (1:2) holds if (1:1)

and

V1(n) = O(1) (1:3)

hold simultaneously. Conversely, if at least one of (1:1) and (1:3) is not true,

then there exists an i.i.d: sequence feig with Ee1 = 0 such that (1:2) does not

hold.

The result becomes simpler when ei possesses a higher-order moment:

Theorem 2. Suppose that e1; e2; : : : are i.i.d. random variables with Ee1 = 0

and Eje1jr <1 for some r 2 (1; 2), fa(i); i � 1g and fA(i); i � 1g are constant

sequences satisfying the conditions speci�ed in Theorem 1. Then (1:2) holds

true when N(K) = O(Kr). Conversely, if N(K) is not of the order O(Kr),

then there exists an i.i.d: sequence feig with Ee1 = 0 and Eje1jr <1 such that

(1:2) is false.

It is interesting to note that for r 2 (1; 2) the additional condition (1.3) is

not needed.

2. Some Remarks

In this section, we give some comments on the results stated in Section 1.

1. If a(i) > 0 for all i, condition (1.3) becomes

nX
i=1

a(i) = O(A(n)): (2:1)
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This gives an answer of the question a) in Section 1: A(n) must satisfy the

condition that
P

n

i=1 a(i) = O(A(n)). Therefore, in the case where a(i) > 0 for

all i,
P

n

i=1 a(i) = A(n) is essentially the only possible choice to ensure the truth

of (1.2).

2. Theorem 2 can not be extended to r � 2. True, the condition N(K) =

O(Kr) remains necessary even for r � 2, but is no longer su�cient. A simple

counter-example is that e1; e2; : : : are i.i.d: with common distribution N(0; 1),

a(i) = 1 for i � 1 and A(n) = n
1=r.

3. What happens when the random variables e1; e2; : : : are assumed to be in-

dependent but not necessarily identically distributed? Let Fi be the distribution

of ei. It is easy to see that if there are only �nitely many di�erent distributions in

fFig, then the conclusion of Theorem 2 remains valid. The same is true for The-

orem 1 if a(i) is positive for all i. Even this simplest extension becomes invalid

for Theorem 1 without this additional restriction. Here is a counter-example:

Put A(i) = i, and

a(i) =

�
(�1)i

p
i; for 2m � [2m=2] � i � 2m; m = 2; 3; : : :,

1; other i � 1.

It is easy to verify that fa(i); A(i) : i � 1g so de�ned satis�es (1.1) and (1.3),

but fja(i)j; A(i) : i � 1g does not satisfy (1.3). According to Theorem 1, there

exist i.i.d: variables ~e1; ~e2; : : : with E~e1 = 0 such that
Pn

i=1 ja(i)j~ei=A(n) does not
converge almost surely to zero. Put ei = sgn(a(i))~ei for i � 1, then fe1; e2; : : :g
is an independent series with Eei = 0 and there are only two di�erent members

in the distribution series fFig, but (1.2) is false.
4. Even if a(i) > 0 for all i, the condition (1.3) does not follow from (1.1).

This convinces us that this condition is, indeed, essential. The following is a

counter-example. Take a subsequence of positive integers n1 < n2 < � � � such
that

k
�1(log k)�2 lognk !1; as k !1: (2:2)

De�ne a(i) = 1 for 1 � i � n1, and for k � 2,

a(i) = (log k)2=(i� n1 � � � � � nk�1) for n1 + � � �+ nk�1 < i � n1 + � � � + nk:

Let A(n) = a
2(1) + � � � + a

2(n). Obviously A(n) ! 1 and there exist positive

constants c1 and c2 such that

c1k(log k)
4 � A(n) � c2k(log k)

4
; k � 2: (2:3)

Denote by Mk(K) the number of subscripts i such that n1 + � � � + nk�1 <

i � n1 + � � � + nk and a(i)=A(i) > K
�1. Then by (2.3) it is easily seen that
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Mk(K) � Kc
�1
1 k

�1(log k)�2. Therefore

N(K) � n1 +Kc
�1
1

1X
k=2

k
�1(log k)�2 = O(K)

and (1.1) is satis�ed. On the other hand, in view of (2.2) and (2.3), we have

V (n1 + � � �+ nk) =

n1+���+nkX
i=1

a(i)=A(n1 + � � �+ nk)

� c
�1
2 k

�1(log k)�4(log k)2
nkX
i=1

i
�1

� c
�1
2 k

�1(log k)�2 log nk !1; as k !1:

So (1.3) fails.

3. Proof of the Theorems | Su�ciency

Suppose that the conditions of Theorem 1 or Theorem 2 are satis�ed. Put

e
0

i
= eiI(jeij < ju(i)j�1); i � 1; and Z

0(n) =
nX
i=1

a(i)e0
i
=A(n):

Then using an argument similar to that used in Jamison et al: (1965), we prove

that

P

�
lim
n!1

Z(n) = 0
�
= P

�
lim
n!1

Z
0(n) = 0

�
; (3:1)

and

Z
0(n)�EZ

0(n)! 0; a.s.: (3:2)

We mention that the condition (1.3) is not used in the proof of (3.1) and (3.2).

This fact is important in the proof of necessity of (1.3).

From (3.1) and (3.2), it follows that in order to prove (1.2) we need only to

show that

lim
n!1

EZ
0(n) = lim

n!1

nX
i=1

a(i)Ee0
i
=A(n) = 0: (3:3)

De�ne

Vr(n; j) =

jX
i=1

a([n; i])ju([n; j])jr�1
=A(n) for 1 � j � n;

and Vr(n) = max
1�j�n

jVr(n; j)j for 1 < r < 2: (3:4)

The condition N(K) = O(Kr) entails u(i)! 0 as i!1, so we can de�ne

ui = the i-th largest among fju(k)j : k � 1g;
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we then have u1 � u2 � � � � > 0.

We need the following lemma.

Lemma 1. Suppose that N(K) = O(Kr) holds for given r 2 (1; 2), then

Vr(n) = O(1):

Proof. There exists a positive integer R such that the number of elements in

the set fi : i � 1; ju(i)jr > 1=mg does not exceed mR, m = 1; 2; : : :. Hence

juijr � m
�1
; i > mR; for m = 1; 2; : : : :

Since ju([n; i])j � juij for 1 � i � n, we have

ju([n; i])jr �m
�1
; mR < i � n:

Therefore iju([n; i])jr � i=m � (m + 1)R=m � 2R, when mR < i � (m + 1)R;

i � n;m = 1; 2; : : :. Further, iju([n; i])jr � Ru
r

1 when i � R. Hence there exists

a constant c such that for 1 � i � n

ju([n; i])jr � ci
�1=r

; (3:5)

which entails, on noting that 0 < A([n; i]) � A(n),

ja([n; i])j=A(n) � ja([n; i])j=A([n; i]) = ju([n; i])j � ci
�1=r

; for 1 � i � n:

Combining this and (3.5), and noting that r > 1, we get for 1 � j � n

jVr(n; j)j � c
r�1

j
�(r�1)=r

jX
i=1

ci
�1=r � c0j

1�1=r
j
�(r�1)=r = c0; (3:6)

for some constant c0. The lemma is proved.

We note that (3.6) breaks down if r = 1. This is the reason why, for r = 1,

the additional condition (1.3) is needed.

Now turn to the proof of (3.3). Denote by F the distribution of e1, and

de�ne

p(i; r) =

Z
ju([n;i])j�1�jxj<ju([n;i+1])j�1

jxjrdF; for 1 � i � n� 1;

p(n; r) =

Z
jxj�ju([n;n])j�1

jxjrdF;
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and

~p(i; r) =

Z
ju([n;i])j�1�jxj<ju([n;i+1])j�1

x
r
dF; for 1 � i � n� 1;

~p(n; r) =

Z
jxj�ju([n;n])j�1

x
r
dF:

Since Ee1 = 0, we have

EZ
0(n) = �A(n)�1

nX
i=1

a(i)

Z
jxj�ju(i)j�1

xdF

= �A(n)�1

nX
i=1

a([n; i])

Z
jxj�ju([n;i])j�1

xdF

= �A(n)�1

nX
i=1

�
a([n; i])

nX
j=i

~p(j; 1)
�

= �A(n)�1

nX
j=1

�
~p(j; 1)

jX
i=1

a([n; i])
�
: (3:7)

For r > 1, combining the fact that j~p(j; 1)j � ju([n; j])jr�1
p(j; r) and the de�ni-

tion of Vr(n; j), we get

jEZ 0(n)j �
nX
j=1

jVr(n; j)jp(j; r) =
�h�1X
j=1

+
nX

j=h

�
jVr(n; j)jp(j; r) � Jn1 + Jn2; (3:8)

where h is a �xed integer with 2 � h � n. It is easily seen that (3.8) remains true

for r = 1 with V1(n; j) de�ned in Section 1. Indeed, if ju([n; j])j = ju([n; j + 1])j,
then p(j; 1) = 0, otherwise we have A�1(n)

Pj

i=1 a([n; i]) = V1(n; j). So we always

have A�1(n)
P

j

i=1 a([n; i])p(j; 1) = V1(n; j)p(j; 1) and (3.8) follows from (3.7).

Since ju([n; i])j � u1, ja([n; i])j = ju([n; i])jA([n; i]) � u1A([n; i]), we have

jVr(n; j)j � j u
r

1A(max
1�i�j

[n; i])=A(n):

Hence

Jn1 � (h� 1)2ur1A( max
1�i�h�1

[n; i])=A(n):

Since u(i) 6= 0 for i � 1 and u(i) ! 0 as i ! 1, there exists a positive integer

H such that [n; i] � H for 1 � i � h� 1 and n su�ciently large. Therefore,

Jn1 � (h� 1)2ur1A(H)=A(n)

which entails Jn1 ! 0 as n!1 for �xed h, since A(n)!1 as n!1. Further,

using (1.3) for r = 1 or Lemma 1 if 1 < r < 2, we see that jVr(n; j)j � c for and

some constant c, 1 � j � n. Hence

Jn2 � c

nX
j=h

p(j; r) = c

Z
jxj�ju([n;h])j�1

jxjrdF:
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Since Eje1jr <1 and ju([n; h])j can be made arbitrarily small by taking h large

enough and n � h, Jn2 can be made arbitrarily small by taking h su�ciently

large and n � h. This, together with Jn1 ! 0 proved earlier, and (3.8), gives

(3.3). The proof of su�ciency is concluded.

Remark. Note the slight di�erence between V1(n) de�ned in Section 1 and

Vr(n)jr=1 where Vr(n) is de�ned by (3.4). True, if in condition (1.3) V1(n) is

replaced by Vr(n)jr=1, then the proof of su�ciency still works, but it can be

shown that (1.3) is no longer necessary.

4. Proof of the Theorems | The Converse

According to those stated in the theorems, we establish counterexamples

when (1.1) or (1.3) does not hold.

For the case r = 1, a(i) > 0 and A(n) =
Pn

i=1 a(i)!1 as n!1. Jamison

et al: (1965) has proved that if (1.1) does not hold, then there exists an i.i.d:

sequence fe1; e2; : : :g with Ee1 = 0 such that (1.2) is not true. Their proof,

with some minor modi�cations, can be used here to deal with the condition

N(K) = O(Kr); 1 < r < 2. So, the remaining task concerns only the condition

(1.3) in case r = 1, and we may assume that (1.1) holds. Thus, as argued in

Section 3, (1.2) is equivalent to Z 0(n)! 0 a.s., and the latter in turn is equivalent

to (3.3) (remember the fact we mentioned earlier that in proving (3.1) and (3.2),

no use is made on the condition (1.3)).

Now suppose that (1.3) does not hold. De�ne

~
V1(n; j) = A(n)�1

nX
i=1

a(i)I(ju(i)j � ju([n; j])j); ~
V1(n) = max

1�j�n
j ~V1(n; j)j:

Then fj ~V1(n; j)j : n � 1g must be unbounded, for otherwise (1.3) will be true.

Hence, turning to some subsequence of positive integers if necessary, we may

assume that there exists a sequence of fj(n); n � 1g with 1 � j(n) � n such that

j ~V1(n; j(n))j ! 1: We may require that j(n) satis�es the additional conditions

that j(n)!1 and j ~V1([n; j(n)])j < j ~V1([n; 1])j. Find "(n) # 0 such that

"(n)j ~V1(n; j(n))j ! 1: (4:1)

Denote by j0 � j
0(n) the largest integer i � n satisfying ju([n; i])j > ju([n; j(n)])j,

and de�ne

W1(n) = (ju([n; j0])j + ju([n; j(n)])j)=2; W2(n) = min
1�i�n

ju(i)j:

Find a subsequence of positive integers m1 < m2 < � � � satisfying the following

conditions:
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(A)
P1

k=1 "(mk) <1;

(B) W2(mk�1) > W1(mk);

(C)
P

t2Qk
ja(t)j=A(mk) < 1;

where

Qk = ft : 1 � t � mk; ju(t)j�1j � min
1�i�k�1

minf1=W1(mi); 1=W2(mi)gg:

The existence of such subsequence follows from "(n)! 0, u(n)! 0, A(n)!1
and a(i) 6= 0 for all i (hence W2(n) > 0). As W1(n) ! 0 and W2(n) ! 0, from

(A) it follows that

0 < g
�1 �

1X
k=1

"(mk)(W1(mk) +W2(mk)) <1: (4:2)

Now construct a probability distribution F0:

F0(f1=W1(mk)g) = gW1(mk)"(mk); F0(f�1=W2(mk)g) = gW2(mk)"(mk); k � 1:

We have Z
jxjdF0 = 2g

1X
k=1

"(mk) <1;

Z
xdF0 = 0:

The latter assertion follows by observing that since fmkg satis�es (B), so the sup-
port of F0 within the interval [�1=W2(mk); 1=W2(mk)] is f1=W1(mi);�1=W2(mi),

1 � i � kg, so
R
jxj�1=W2(mk)

xdF0 = 0. Letting k !1, we get
R
xdF0 = 0.

Now we proceed to show that if the common distribution of ei is F0, (3.3)

will not hold. For this purpose we divide the terms in the expression

EZ
0(mk) = A(mk)

�1

mkX
i=1

a(i)

Z
jxj<ju(i)j�1

xdF0

into three groups:

1o ju(i)j � ju([mk; j(mk)])j:
According to (B) and the de�nitions of W1(n) and W2(n), it is easily seen

that for such i the support of F0 within the interval (�ju(i)j�1
; ju(i)j�1) is the

set f1=W1(mi);�1=W2(mi); 1 � i � k � 1; 1=W1(mk)g. Hence
Z
jxj<ju(i)j�1

xdF0 = g"(mk):

2o i 2 Hk � fi : ju(i)j > ju([mk; j(mk)])jg \Qk.

Put

J =
X
j2Hk

a(j)

Z
jxj<ju(j)j�1

xdF0=A(mk):
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Then by (C) we have

J �
Z
jxjdF0 <1: (4:3)

3o Other i � mk.

For such i we have ju(i)j > ju([mk; j(mk)])j and i =2 Qk. So ju(i)j > W1(mk)

in view of the de�nition ofW1(n). Hence the points 1=W1(mt) and�1=W2(mt) do

not fall into the interval (�ju(i)j�1
; ju(i)j�1) when t � k. As i =2 Qk, the interval

(�ju(i)j�1
; ju(i)j�1) contains the points 1=W1(mj) and�1=W2(mj); 1 � j � k�1.

From this and the de�nition of F0 we have
R
jxj<jx(i)j�1

xdF0 = 0.

Summing up the above three cases and recalling the de�nition of ~
V1(n; j),

we have

EZ
0(mk) = g"(mk) ~V1(mk; j(mk)) + J: (4:4)

From (4.1), (4.3) and (4.4), we see that (3.3) is not true. As argued earlier, this

implies that (1.2) is false. This completes the proof of the necessity of (1.3).
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