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Abstract: Consider the multiple regression model yn =
P

i
�ixni + �n, n = 1; 2; : : :,

where the �n are unobservable random errors; �1; : : : ; �p are unknown parameters and

yn is the observed response corresponding to the design vector x
~
n
= (xn1; : : : ; xnp)

0.

Lai & Wei (1982) established results concerning the strong consistency and asymptotic

normality of the least squares estimate of �
~
= (�1; : : : ; �p)

0 where f�ng is a martingale

di�erence sequence and some regularity conditions are satis�ed. We obtain the same

asymptotic normality result under weaker conditions, and also establish the test of

linear hypothesis and the strong consistency of the constrained least squares estimate

of �
~
under H 0

�

~
= h
~
.

Keywordsandphrases: Asymptotic normality, constrained least squares, linear hypoth-

esis, martingales, stochastic regressors, strong consistency.

1. Introduction

Consider the multiple regression model

yn = �1xn1 + �2xn2 + � � � + �pxnp + �n; n = 1; 2; : : : ; (1:1)

where the �n are unobservable random errors; �1; : : : ; �p are unknown parame-

ters and yn is the observed response corresponding to the design vector x
~
n =

(xn1; : : : ; xnp)
0. Let Xn = (xij), 1 � i � n, 1 � j � p, Yn = (y1; : : : ; yn)

0

and �
~
n = (�1; : : : ; �n)

0. Then X
0
n = (x

~
1; : : : ; x

~
n). The regression model (1.1)

can be written as Yn = Xn�

~
+ �
~
n; and b

~
n = (bn1; : : : ; bnp)

0 = (X 0
nXn)

�1
X
0
nYn

is the least squares estimate of �
~

= (�1; : : : ; �p)
0 based on the observations

x
~
1; y1; x

~
2; y2; : : : ; x

~
n; yn assuming that X 0

nXn is nonsingular. We shall assume

that f�ng is a martingale di�erence sequence with respect to an increasing se-

quence of �-�elds fFng, i.e: �n is Fn-measurable and E(�n j Fn�1) = 0 for every

n. We shall also assume that x
~
n is Fn�1-measurable. Therefore, the design vector

x
~
n at stage n may depend on the previous observations x

~
1; y1; : : : ; x

~
n�1; yn�1.

Now rewrite the least squares estimate b
~
n of �

~
as follows:

b
~
n = �

~
+

 
nX
1

x
~
ix
~
0

i

!�1 nX
1

x
~
i�i:
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The statistical properties of the least squares estimate b
~
n are related to the ran-

dom matrix X
0
nXn and the martingale transform

Pn
1 x
~
i�i. Lai & Wei (1982)

established results concerning the strong consistency and asymptotic normal-

ity of b
~
n. Previously, Anderson and Taylor (1979) and Christopei and Helmes

(1980) also established the strong consistency of b
~
n under stronger conditions.

Wei (1985), among other results, also discussed asymptotic properties of b
~
n under

a reparametrization of model (1.1).

In this note we study the hypothesis testing problem for the stochastic re-

gression model (1.1). More precisely, we consider the problem of testing the linear

hypothesis H 0
�

~
= h

~
against H 0

�

~
6= h

~
, where H 0 is a k � p �xed matrix (k < p)

with rank k and h
~
is a k � 1 known vector. The strong consistency problem of

the constained least squares estimate under H 0
�

~
= h

~
will also be studied.

In Section 2, we review some important results in the stochastic regression

model and give an example to motivate the need for weak convergence under

weaker conditions than those of Lai & Wei (1982). In Section 3, the proof of the

new result will be given. Then, in Section 4, we apply the new result to test the

hypothesis H0 : H
0
�

~
= h

~
against H1 : H

0
�

~
6= h

~
. Finally, a summary is presented

in Section 5.

2. Review

Assume that the errors f�ng in the regression model (1.1) form a martingale

di�erence sequence w.r.t: the �-�elds fFng such that

sup
n
Efj�nj

�
j Fn�1g <1 a.s. for some � > 2 (2:1)

and

lim
n!1

E(�2n j Fn�1) = �
2 a.s. for some constant �: (2:2)

An important special case is where the f�ng are independent random variables

with zero means, variance �
2, and supnEj�nj

�
< 1 for some � > 2. The

following theorems give conditions on the stochastic regressors x
~
n that ensure the

strong consistency and the asymptotic normality of the least squares estimate b
~
n

established by Lai and Wei (1982).

Theorem A. Assume the regression model (1:1). Suppose that (2:1) holds and

�min(n) ! 1 a.s., log �max(n) = o(�min(n)) a.s., where �min(n) and �max(n)

denote the minimum and maximum eigenvalues of X 0
nXn respectively. Then

b
~
n ! �

~
a.s.

Theorem B. Suppose that, in the regression model (1:1), f�ng is a martin-

gale di�erence sequence w.r.t: an increasing sequence of �-�elds fFng such that

(2:1) and (2:2) hold. Moreover assume, for each n, that the design vector
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x
~
n = (xn1; : : : ; xnp)

0 at stage n is Fn�1-measurable and that there exists a non-

random positive de�nite symmetric matrix Bn such that B�1
n (

Pn
1 x
~
ix
~
0
i)
1=2 p
! Ip

and max1�i�n kB
�1
n x
~
ik

p
�! 0. Then (

Pn
1 x
~
ix
~
0
i)
1=2

(b
~
n � �

~
)
D
�! N(0

~
; �

2
Ip), where

p
�! and

D
�! denote, respectively, the convergence in probability and in distribu-

tion.

However, the assumption of positive de�niteness on Bn seems unnecessarily

strict and the computation ofB�1
n (X 0

nXn)
1=2 at stage n in Theorem B is extremely

cumbersome. This makes Theorem B di�cult to apply. In Section 3, the results

of Theorem B are obtained under much weaker conditions on Bn. Before stating

the new result on the weak convergence of b
~
n, we demonstrate an example to

motivate the need for weakening the conditions about Bn as follows.

Example. Consider the time series model

yt = ryt�1 + �(r � 1)t� �+ �t; t = 1; 2; : : : ; (2:3)

where f�tg are i.i.d: random variables with mean zero and variance one. Let

zt = yt + �(t+ 1). Then we have

zt = rzt�1 + �t (2:4)

and 2
4 zt�1t

1

3
5 =

2
4 1 � 0

0 1 0

0 0 1

3
5
2
4 yt�1t

1

3
5 = Ax

~
t; A =

2
4 1 � 0

0 1 0

0 0 1

3
5 ;

where x
~
t is the vector notation in model (1.1) and in Theorem B. Now from (2.3)

we know that �
~
= (r; �(r � 1);��)0 and

X
0

nXn =

2
64
Pn

1 y
2
i�1

Pn
1 i yi�1

Pn
1 yi�1Pn

1 i yi�1
Pn

1 i
2

Pn
1 iPn

1 yi�1

Pn
1 i n

3
75 :

Assume that 0 < r < 1, then by (2.4) and (A2.7) in Wei (1987), we havePn
1 z

2
i � n=(1� r

2) where \�" denotes order equivalence. Note that

nX
1

zi = z0r(1� r
n)=(1 � r) +

nX
t=1

nX
i=1

r
t�i
�i

= z0r(1� r
n)=(1 � r) +

nX
1

�i(1� r
n�i+1)=(1 � r):

Let ui = (1� r
n�i+1), and by using

Pn
1 u

2
i � n and (2.8) in Lai & Wei (1982) we

obtain
Pn

1 �iui=n
p
�! 0 as n!1; thus

Pn
1 zi = op(n). Further, since by the same
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argument, we have
Pn

1 izi = r
Pn�1

1 izi+r
Pn�1

1 zi+
Pn�1

1 i�i = r
Pn�1

1 izi+o(n
2),

this implies
Pn

1 izi
p
�! 0 as n!1.

Taking

Cn =

2
4 [(1� r

2)=n]1=2 0 0

0 (3=n3)1=2 0

0 0 n
�1=2

3
5 ;

and by B�1
n = CnA we have

B
�1
n

nX
1

2
4 zt�1t

1

3
5 [zt�1; t; 1](B0

n)
p
�!

2
4 1 0 0

0 1 31=22�1

0 31=22�1 1

3
5 ;

and max1�t�n x
~
0
t(B

0
n)
�1
B
�1
n x
~
t = max1�t�n

�
(1� r

2)z2t�1=n+3t2=n3+1=n
	 p
�! 0

as n ! 1, which satis�es the same condition of Theorem B but (
Pn

1 x
~
ix
~
0
i)
1=2

does not need to be computed here. Therefore the matrix Bn does not satisfy

the positive de�nite condition of Theorem B and it does avoid the di�culty of

evaluating (
Pn

1 x
~
ix
~
0
i)
1=2; this is why we need to weaken the conditions of Theorem

B in the following section.

3. New Result

Before stating the new result, we �rst state a corollary of the result given in

Hall & Heyde (1980, pp.58).

Corollary 1. Let fSni; Fni, 1 � i � kn, n � 1g be a zero-mean, square-

integrable martingale array with di�erence Xni, and let �
2 be an a.s: �nite

random variable. If for all � > 0,
Pkn

i=1E
�
X

2
niIfjXnij>�g j Fn;i�1

� p
�! 0, and

V
2
n;kn

=
Pkn

i=1E [X2
ni j Fn;i�1]

p
�! �

2, and if Fn;i � Fn+1;i, 1 � i � kn, n �

1 then Sn;kn =
Pkn

i=1Xni ) Z (stably), where Z has characteristic function

E
�
expf� 1

2
�
2
t
2
g

�
.

Next, we discuss the following convergence result. Since it was only brie
y

mentined in Wei (1983), we give a proof.

Theorem 1. Under the regression model (1:1), assume that f�ng is a martingale

di�erence sequence w.r.t: an increasing sequence of �-�elds fFng and that f�ng

satis�es (2:1) and (2:2). Suppose that for each n there exists a nonsingular

matrix Bn such that B�1
n X

0
nXn(B

0
n)
�1 p
�! �, where � is positive de�nite and

max1�i�n x
~
0
i(BnB

0
n)
�1
x
~
i

p
�! 0. Then

(i) (B�1
n X

0
nXn(B

0
n)
�1, B�1

n X
0
nXn(bn � �

~
))

D
�! (�;�1=2

N
~
),

(ii) (b
~
n � �

~
)0X 0

nXn(b
~
n � �

~
)
D
�!�

2
�
2
p,

where N
~
� N(0

~
; �

2
Ip) and �

2
p denotes the chi-squared distribution with p degrees

of freedom.
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Proof. Let Fn;k = Fk, Xnk = c
~
0
B
�1
n x
~
k�k, where c

~
is a �xed constant vector.

Since max1�i�n x
~
0
i(BnB

0
n)
�1
x
~
i

p
�! 0, we can assume without loss of generality

that B�1
n x
~
k is bounded. This in turn implies that

E[Xnk j Fk�1]=E[c
~
0
B
�1
n x
~
k�k j Fk�1]=0 and sup

1�k�n
E[jXnkj

�
j Fk�1] <1 a.s.

for some � > 2. Note that

nX
i=1

E[X2
ni j Fn;i�1] =

nX
i=1

E[(c
~
0
B
�1
n x
~
i�i)

2
j Fi�1](1)

= c
~
0
B
�1
n

n nX
1

x
~
ix
~
0

iE[�
2
i j Fi�1]

o
(B�1

n )0c
~

p
�!c

~
0
�
2�c
~
:

(2) 8 � > 0, since
Pn

i=1E[X
2
ni j Fn;i�1]

p
�!kc

~
0�1=2

k
2
�
2, we get

nX
i=1

E[X2
niIfjXnij>�g j Fn;i�1] =

nX
i=1

E[X2
niIfjXnij>�g j Fi�1]

�

nX
i=1

E[jXnij
�
j Fi�1]=�

��2 =
nX
i=1

jc
~
0
B
�1
n x
~
ij
�
E[j�ij

�
j Fi�1]=�

��2 p
�! 0:

This is because sup1�k�nE[j�kj
�
j Fk�1]=�

��2 = Op(1),
Pn

i=1 jc
~
0
B
�1
n x
~
ij
2 = Op(1)

and
sup

1�k�n

jc
~
0
B
�1
n x
~
kj
��2

� kc
~
k
��2 sup

1�k�n

kB
�1
n x
~
kk

��2

= kc
~
k
��2

h
sup

1�k�n
x
~
0

k(B
0

n)
�1
B
�1
n x
~
k

i(��2)=2 p
�! 0:

Thus, (1) and (2) verify the conditions of Corollary 1.

By Corollary 1, we have, for any given constant vector c
~
, that

c
~
0
B
�1
n

nX
i

x
~
i�i = c

~
0
B
�1
n

nX
1

x
~
ix
~
0

i(b
~
n � �

~
) =

nX
i=1

Xni ) Z (stably);

where Z � N(0; kc
~
0�1=2

k
2
�
2). That is, Z = kc

~
0�1=2

kW = c
~
0�1=2

N
~
, where

W � N(0; �2) and N
~
� N(0

~
; �

2
Ip). By the Cramer-Wold Theorem we con-

clude that (�; B�1
n X

0
nXn(b

~
n � �

~
))

D
�! (�;�1=2

N
~
). Since B�1

n X
0
nXn(B

0
n)
�1 p
�! �,

(B�1
n X

0
nXn(B

0
n)
�1, B�1

n X
0
nXn(b

~
n � �

~
))

D
�! (�, �1=2

N
~
) and

(b
~
n � �

~
)0X 0

nXn(b
~
n � �

~
)

= fB
�1
n X

0

nXn(b
~
n � �

~
)g0fB0

n(X
0

n(X
0

nXn)
�1
BngfB

�1
n (X 0

nXn)(b
~
n � �

~
)g

D
�! N

~

0�1=2��1�1=2
N
~
= N

~

0
N
~
= �

2
�
2
p:
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4. Hypothesis Testing

In this section we test the hypothesis H0 : H
0
�

~
= h

~
against H1 : H

0
�

~
6= h

~
,

where H 0 is a k � p �xed matrix (k < p) with rank k and h
~
is a k � 1 known

vector.

Let b
~

�

n be the constrained least squares estimate (CLS) of �
~
under the re-

striction H
0
�

~
= h

~
. Using the Lagrange multiplier �

~
, we have

b
~

�

n = (X 0

nXn)
�1
X
0

nYn � (X 0

nXn)
�1
H�
~
= b
~
n � (X 0

nXn)
�1
H�
~

and H
0
b
~

�

n = h
~
:

Hence

b
~

�

n = b
~
n � (X 0

nXn)
�1
H[H 0(X 0

nXn)
�1
H]�1(H 0

b
~
n � h

~
):

The following result gives the strong consistency of the CLS b
~

�

n.

Theorem 2. Suppose that in the regression model (1:1), f�ng is a martingale

di�erence w.r.t: an increasing sequence of �-�elds fFng such that (2:1), (2:2)

hold and �min(n)!1 a.s., log �max(n) = o(�min(n)) a.s.. Then b
~

�

n ! �

~
a.s..

Proof. Let Zn = X
0
nXn, Qn = H

0
Z
�1
n H. Then

b
~

�

n � b
~
n = �Z

�1
n HQ

�1
n H

0(b
~
n � �

~
) = �Z

�1=2
n Z

�1=2
n HQ

�1
n H

0
Z
�1
n X

0

n�
~
n:

Since Z�1
n � Z

�1
n H Q

�1
n H

0
Z
�1
n = (I � Z

�1
n H Q

�1
n H

0)Z�1
n (I � HQ

�1
n H

0
Z
�1
n ) is

positive semide�nite,

kb
~

�

n � b
~
nk

2
� kZ

�1=2
n k

2
� kZ

�1=2
n HQ

�1
n H

0
Z
�1
n X

0

n�
~
nk

2

� �
�1
min(n) � �

~
0

nXn(Z
�1
n HQ

�1
n H

0
Z
�1
n )X 0

n�
~
n

� �
�1
min(n) � �

~
0

nXnZ
�1
n X

0

n�
~
n = �

�1
min(n) � O(log �max(n)):

Therefore b
~

�

n ! �

~
a.s: under H 0

�

~
= h by Theorem A.

Now we de�ne R
2
0 = min�

~

(Yn�Xn�

~
)0(Yn�Xn�

~
) and R

2
1 = minH0�

~
=h
~
(Yn�

Xn�

~
)0 (Yn�Xn�

~
). Then R

2
0 = (Yn � Xnb

~
n)
0(Yn�Xnb

~
n) = ~�

~

0

n~�
~
n and R

2
1 = (Yn�

Xnb
~

�

n)
0(Yn �Xnb

~

�

n) = ~�
~

�
0

n ~�
~

�

n. Here ~�
~
n = (I � Pn)�

~
n, Pn = XnX

+
n is the pro-

jection operator on R(Xn), X
+
n = (X 0

nXn)
�1
X
0
n, ~�

~

�

n = (I �Pw)�
~
n and Pw =

fXn�X
+ 0

n H[H 0(X 0
nXn)

�1
H]�1H 0

gX
+
n , is the projection operator on L = fXn�

~
j

H
0
�

~
= h

~
g. By straightforward calculation,

R
2
1 �R

2
0 = �

~
0

n(Pn � Pw)�
~
n = �

~
0

nP
�

n�
~
0

n = �̂
~

�
0

n �̂
~

�

n: (4:1)

Here P �
n = Pn�Pw is the projection operator on the orthogonal complement of L

inR(Xn) and �̂
~

�

n = P
�
nPn�

~
n = P

�
nXnX

+
n �
~
n = X

�
n(b
~
n��

~
) since P �

nPn = PnP
�
n = P

�
n ,

where X�
n = P

�
nXn.
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According to (4.1) and the following Lemma, we have an immediate con-

sequence that (R2
1 � R

2
0)=�

2
! �

2
k. Therefore, suppose we have a consistent

estimate �̂2n of �2; the straightforward application of this result is that the hy-

pothesis H0 : H
0
�

~
= h

~
will be rejected at level � if (R2

1 � R
2
0)=�̂

2
n > �

2
k;1�� for

large n, where �2k;1�� is the (1 � �) � 100% percentage point of the �2k. The

following result can be easily derived.

Lemma. Under the assumptions of Theorem 1, and the condition

B
�1
n X

�
0

n X
�

n(B
0

n)
�1 p
�! �1=2

�
U 0

0 0

�
�1=2 (4:2)

then

(b
~
n � �

~
)0X�

0

n X
�

n(b
~
n � �

~
)
D
�! �

2
�
2
k;

where U is a k-dimensional idempotent matrix with rank k and � is positive

de�nite.

Moreover, we can obtain an estimate of �2 as follows.

Theorem 3. Under the assumptions of Theorem 1, we have

�̂
2
n =

nX
i=1

(yi � x
~
0

ib
~
n)

2
=n

p
�! �

2 as n!1:

Proof. Note that

�̂
2
n =

1

n
(Yn �Xnb

~
n)
0(Yn �Xnb

~
n) =

1

n
[�
~
0

n�
~
n � �

~
0

nXn(X
0

nXn)
�1
X
0

n�
~
n]

=
1

n
[�
~
0

n�
~
n � (b

~
n � �

~
)0X 0

nXn(b
~
n � �

~
)]:

Since (b
~
n��

~
)0X 0

nXn(b
~
n��

~
)
D
�! �

2
�
2
� as n!1 and

Pn
i=1[�

2
i�E(�

2
i j Fi�1)] = o(n)

a.s: (see Chow (1965)), we have �̂2n
p
�! �

2 as n!1.

5. Summary

We also note that the constrained least squares estimate for inequality con-

straints can be approached as in the above discussion and the corresponding

strong (or weak) consistency can be investigated. For brevity, we omit these

discussions. Thus, in this note, using the result of Theorem 1, we investigate the

estimate of �
~
under the constraint H 0

�

~
= h

~
and establish the strong consistency,

and weak convergence of this estimate. Finally, we obtain an approximated �
2

test for testing H 0
�

~
= h

~
against the alternative H 0

�

~
6= h

~
.
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