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Abstract: Fractional factorial designs of mixed levels two and four are often carried out

in industrial experiments. A convenient method to set up such designs is to use orthog-

onal arrays. By applying the technique of replacement to two-level orthogonal arrays,

mixed-level orthogonal arrays can be established for practical applications. Treatment

combinations for the experiment can be obtained by assigning factors to appropriate

columns. However, when level changes in subsequent experimental runs and trend

resistance of certain e�ects are considered, caution must be taken on replacement in

order to minimize the cost of level changes and to achieve trend resistance. In this

paper, level changes and the degree of trend resistance in the resulting column from

the replacement are explored. When such information is available, the assignment

becomes easier. Two applications are presented for illustrations.

Keywordsandphrases: Orthogonal arrays, Hadamard product, replacement, level changes,

trend resistance.

1. Introduction

In industrial experiments, the most common number of levels are two, three

and four. When using an orthogonal array to set up such designs, an asymmet-

ric orthogonal array is required, that is, an array whose columns have di�erent

numbers of levels. When only factors of levels two and four are considered,

the asymmetric orthogonal array needed can be obtained by applying the re-

placement technique to orthogonal arrays of two levels. This approach has been

emphasized by authors such as Dey (1985), Wang (1990) and Wu (1989). While

Wang (1990) used it to construct three series of orthogonal main-e�ect plans,

Wu (1989) explored the maximum number of replacements in the orthogonal

array of size 2n. However, their usage of replacement ignored the fact that the

observations in a factorial experiment might be highly correlated with the order

of experimental runs. When this occurs, the run order is important and more

consideration on replacement is required.

Randomization on experimental runs is not desired when the run order is

considered. Many statisticians have discussed this point and suggested useful

procedures to deal with run orders. These discussions are based on two criteria:
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the trend resistance to make certain e�ects independent of the run order and

the level change to minimize the cost of carrying out all the experimental runs.

Some authors have concentrated on trend resistance. Cheng and Jacroux (1988)

accomplished trend-resistant run orders for two-level factorial designs after they

observed that t-factor interactions in the standard order of complete factorial

designs are free of polynomial trends with t � 1 degrees, while Bailey, Cheng

and Kipnis (1992) extended this to mixed-level factorial designs. Others paid

attention to both criteria. While Coster and Cheng (1988) utilized generalized

foldover techiques to arrange the experimental order for the designs, with and

without de�ning contrasts, Jacroux (1990) and Wang (1991) derived the level

change properties of each column in an orthogonal array used for designing an

experiment. In this article, level changes on the resulting column from replace-

ment and its degree of trend resistance are explored. When such information

is available, one can construct an appropriate asymmetric orthogonal array for

one's own use. After factors are assigned to the columns of such an array to

obtain experimental runs with the row order as a run order, the appropriate re-

placement would reduce the cost of level changes and make certain e�ects free of

unknown trend e�ects.

The orthogonal array LN(2
p4q) is de�ned to be an N�(p+q) matrix contain-

ing p columns of two levels and q columns of four levels such that any possible

pair from any two columns appears equally often, where N is 2 to the power

k for some integer k. Here we use (1;�1) as two levels of 2-level factors. The

orthogonal array LN(2
p4q) can be constructed from LN(2

p+3q) by replacement.

To do this, we de�ne the Hadamard product of two-level columns in the array

to be componentwise multiplications. Any set of three columns in an orthogonal

array is said to have the Hadamard property when the Hadamard product of any

two columns is equal to the third. Such a set is called a Hadamard set. Each

Hadamard set can be switched to a 4-level column by the replacement

1 1 1

1 �1 �1

�1 1 �1

�1 �1 1

�!

1

2

3

4

: (1)

In order to arrange the run order of the experiment using LN(2
p4q), we explore

the information on level changes and trend resistance of the 4-level columns. The

exploration will be given in the next section.

2. Main Results

A standard procedure to set up an orthogonal array of size N = 2k for some

integer k is to utilize k standardN�1 columnsX1=(1; 1; : : : ; 1;�1;�1; : : : ;�1)T ,
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X2=(1; : : : ; 1;�1; : : : ;�1; 1; : : : ; 1;�1; : : : ;�1)
T ; : : : ; Xk=(1;�1; 1;�1; : : : ; 1;�1)

T .

Then the matrix (X1;X2;X1X2; X3;X1X3; X2X3;X1X2X3; X4; : : : ;X1X2X3 : : :

Xk) is an LN(2
N�1) orthogonal array. The columns in this array can be grouped

into (2k � 1)=3 or (2k � 5)=3 Hadamard sets depending on even or odd k (see

Wu (1989)). It can be observed that vector Xi changes level 2i � 1 times. The

ordering of the standard columns X1; : : : ;Xk will be retained throughout the pa-

per. Let `(A) denote the number of level changes in a vector A with convention

`(�) = 0. The following lemma from Jacroux (1990) or Wang (1991) is needed.

Lemma 1. For i1 > i2 > � � � > it, `(Xi1Xi2 : : : Xit) = `(Xi1) � `(Xi2) + � � � +

(�1)t�1`(Xit) = 2i1 � 2i2 + � � � + (�1)t�12it � �, where � = 0 if t is even, = 1

otherwise.

For any column C = Xi1Xi2 : : : Xit , we say C contains columns Xi1 , Xi2 ; : : :,

and Xit . By the de�nitions of the X 0

is and Lemma 1, we have the following

lemma:

Lemma 2. Let A = Xi1Xi2 : : : Xit and B = Xj1Xj2 : : : Xjs , where i1 > i2 >

� � � > it and j1 > j2 > � � � > js for some s and t. Then

(i) if i1 > j1 , `(A) > `(B), and

(ii) if i1 = j1 , i2 = j2 ; : : : ; ir�1 = jr�1 and ir > jr then `(A) > `(B) when r is

odd and `(A) < `(B) otherwise.

Conversely,

(iii) if `(A) > `(B), then one of (a) i1 > j1 , (b) i1 = j1 , i2 = j2 ; : : : ; ir�1 = jr�1

and ir > jr for some odd r, or (c) i1 = j1 , i2 = j2 ; : : : ; iu�1 = ju�1 and iu < ju
for some even u, is true.

Proof. Proofs of the three parts are similar. We just prove the �rst. For t > 1,

`(A)� `(B) = `(Xi1)� `(Xj1)� `(Xi2) + `(Xi3 : : : Xit) + `(Xj2 : : : Xjs)

� `(Xi1)� `(Xj1)� `(Xi2)

= 2i1 � 2j1 � 2i2 + 1 > 0

since neither i2 nor j1 can be larger than i1 � 1. It is trivial for t = 1.

Corollary. `(Xj) � `(Xi1 : : : Xit) if and only if j � maxfi1; i2; : : : ; itg.

Theorem 1. Let A, B and C be three columns in an orthogonal array forming

a Hadamard set. Then `(A) � `(B) + `(C).

Proof. When A changes its levels, one of B and C has to change also.

Note that when A is just a standard column with `(A) > maxf`(B), `(C)g,

we have `(A) = `(B) + `(C). This can be shown by direct calculations.
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Theorem 2. Let A, B and C be any three columns in LN(2
N�1) with the

Hadamard property and maxf`(B), `(C)g < `(A). Assume A = Xi1Xi2 : : : Xit

with i1 > i2 > � � � > it and t > 1.

(i) If i1 > i2 + 1, then `(B) + `(C) � `(A) + 2`(Xi2 : : : Xit), with equality when

B = AXj and C = Xj for i2 < j < i1.

(ii) If i1 = i2 + 1, and t � 3, then `(B) + `(C) � `(A) + 2`(Xi4 : : : Xit), with

equality when t = 3, B = Xi1Xi2 and C = Xi3 .

Proof. (i) Since A contains Xi1 , exactly one of B and C has to contain Xi1 , say

B. Let E be a column formed by the Hadamard product of standard columns in

B with indices strictly between i1 and i2. Remove all the standard columns with

indices greater than i2 from A and B respectively to obtain columns D and F ;

then we have A = Xi1D, B = Xi1EF and C = AB = DEF .

Now

`(C) = `(E)� `(DF ); `(B) = `(Xi1)� `(E)� `(F )

and so
`(B) + `(C) = `(Xi1)� `(DF )� `(F )

= `(A) + `(D)� (`(DF )� `(F ))

� `(A) + 2`(D); [Theorem 1]

where (+;�) or (�;+) depends on the number of standard columns forming E.

(ii) Without loss of generality, assume Xi1 in B. By `(B)<`(A) and Lemma 2; if

B contains Xi1 , then B also needs to contain Xi2 . Let D = Xi4 : : : Xit ; then B =

Xi1Xi2Xi3CD. To complete the proof, we consider two cases: (a) C containing

Xi3 and (b) B containing Xi3 . In each case, we compute the level changes of B

and C using di�erent formulas.

Case (a):

`(B) + `(C) = `(Xi1Xi2) + `(Xi3CD) + `(Xi3)� `(Xi3C)

= `(A) + `(D) + `(Xi3CD)� `(Xi3C)

� `(A) + 2`(D): [Theorem 1]

Case (b):

`(B) + `(C) = `(Xi1Xi2) + `(Xi3)� `(CD) + `(C)

= `(A) + `(D)� `(CD) + `(C)

� `(A) + 2`(D): [Theorem 1]

The equality assertion is obvious by direct computations.
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Now assume that A, B and C are three columns in LN(2
N�1) with A = BC.

Replacing three columns (B;C;A) using the replacement scheme (1) with a 4-

level column R, we obtain an LN(4
12N�4) array. Since each level change in R

requires two across A, B and C,

`(R) = (`(A) + `(B) + `(C))=2: (2)

In fact, the result (2) is true for the replacement on any three columns in an

orthogonal array having the Hadamard property. A lower bound and an upper

bound for the resulting column R from the replacement (1) can be obtained based

on the above theorems. For example, `(R) is less than or equal to the sum of any

two of `(A), `(B) and `(C), and greater than or equal to maximum level changes

among columns A;B and C. This information is useful for choosing appropriate

Hadamard sets for replacement when the cost of level changes is considered.

In order to investigate the degree of trend resistance of the resulting column

from the replacement, we need to de�ne trend resistance. Let Pj(V; !) = i if

symbol ! occurs the j-th time in the i-th component of vector V , where V is an

N�1 vector in LN(2
p4q), ! is any symbol in V , i is between 1 and N and j is any

positive integer less than or equal to N=2 or N=4. For example, P2(V;�1) = 4

and P3(V; 1) = 6 for V = (1;�1; 1;�1;�1; 1;�1; 1)t in L8(2
7). Any column K

in an LN(2
p4q) orthogonal array is q-trend resistant, denoted by P (K) = q, if

Pv

j=1 Pj(K;!)
x is independent of symbols in the column with v = N=2 or N=4 for

x = 0; 1; : : : ; q, but not for x = q + 1. In this case the degree of trend resistance

for the column is q.

Theorem 3. Assume that columns A, B and C in LN(2
N�1) form a Hadamard

set and are r-, s- and t-trend resistant repectively. Let R be the 4-level column

resulting from the replacement of (A;B;C). Then P (R) = minfr; s; tg.

Proof. The result is obvious because columns A, B and C are orthogonal con-

trasts of column R.

The degree of trend resistance of any column in the LN(2
N�1) orthogonal

array depends on the number of di�erent standard columns forming the column.

In fact, it is equal to the number minus one (see Cheng and Jacroux (1988) or

Wang (1991)). It follows that the degree of trend resistance for the resulting 4-

level column from the replacement is one less than the minimum of the numbers

of standard columns forming three columns in a Hadamard set.

3. Applications

In this section we present two examples in the L(2p4) orthogonal array. Here

we merely illustrate the usefulness of our results in the previous section. We do

not intend to establish explicit rules to gain the best plans in the general array
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L(2p4q). The issue is really di�cult even in the case q = 1 or 2. This has been

investigated, using our results, by Wang and Chen (1994).

Table 1. An ordered L16(2
15) orthogonal array

column number

run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

3 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

4 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

5 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1

6 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1

7 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1

8 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

9 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1

10 �1 �1 1 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1

11 �1 �1 1 �1 1 1 �1 �1 1 1 �1 1 �1 �1 1

12 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1 1 �1

13 �1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1

14 �1 1 �1 �1 1 �1 1 �1 1 �1 1 1 �1 1 �1

15 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

16 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

1 1 2 2 1 1 3 3 1 1 2 2 1 1 4

� 2 3 2 3 4 3 2 3 4 2 4

3 4 3 4 4

4

� The last row indicates the indices of standard columns forming the cor-

responding columns.

Example 1. Suppose an experiment of one 4-level factor and eight 2-level factors

is considered with level-change costs. Assuming a constant cost, c, we can use

an ordered L16(2
15) orthogonal array given in Table 1 for the arrangement of the

experiment,where the numbers under any column in the table are the indices of

standard columns forming the column. Note that the number of level changes

in the i-th column of Table 1 is equal to i. There are many Hadamard sets for

the replacement to obtain a 4-level column. After a Hadamard set is picked, we

can just choose the �rst eight available columns in the ordered L16(2
15) for the

eight 2-level factors and assign factors to the columns accordingly. This would

achieve an experimental plan. Such plans represented by the Hadamard set are

listed in Table 2, with the total number of level changes in the fourth column.

The least cost is 53c. Note that the last row can be shown based on our results.
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To see this, check the �rst eleven columns in L16(2
15). The numbers of level

changes in these columns are less than or equal to 11. Using the results in (ii)

of Theorem 2 and formula (2), we can prove that the resulting columns from the

replacement of Hadamard sets in these columns change levels less than eleven

times. This implies that the total number of level changes in each plan is greater

than or equal to 66 � 11 = 55. The other rows in the table can be found by

direct computations using our results. Three plans with the least cost on level

changes are observed in Table 2. However, if the main-e�ect of the 4-level factor

is required to be one-trend resistant, there is only one choice, that is, the plan

with Hadamard set f6; 10; 12g. This is obtained based on the second column of

Table 2.

Table 2. Level changes of plans

degree of trend level changes total level

plans resistance of R of R changes

(1,14,15) 0 15 59

(2,13,15) 0 15 58

(3,12,15) 0 15 57

(4,11,15) 0 15 56

(5,10,15) 0 15 55

(6, 9,15) 0 15 55

(7, 8,15) 0 15 55

(3,13,14) 0 15 57

(2,12,14) 1 14 57

(5,11,14) 1 15 55

(4,10,14) 1 14 55

(7, 9,14) 0 15 54

(6, 8,14) 1 14 55

(1,12,13) 0 13 57

(6,11,13) 1 15 54

(7,10,13) 0 15 53

(4, 9,13) 1 13 55

(5, 8,13) 1 13 55

(7,11,12) 0 15 53

(6,10,12) 1 14 53

(5, 9,12) 1 13 54

(4, 8,12) 1 12 55

others 0 or 1 � 11 � 55

The results in the previous section give us ranges for the number of level
changes in R: For example; the resulting columnsR obtained from the �rst seven
plans change levels `(X4)=15 times; while the numbers of level changes in those
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from the next six plans are between `(X1X4)=14 and `(X4X1)+2`(X1)=16: This
can be con�rmed by checking the third column of Table 2. The �rst seven plans
in the table can be excluded more easily from the choice of good plans although
the numbers of their level changes can be directly computed. The Hadamard
sets in these plans all contain column 15 and so the resulting columns from the
replacement change levels 15 times. Other than column 15, we have to pick one
column from columns 1 to 7 and one from columns 8 to 14 to form the Hadamard
set. This means that the eight columns for 2-level factors in these seven plans
need to contain six columns in the �rst set of columns (columns 1 to 7) and two in
the second (columns 8 to 14). This implies that the total number of level changes
for each of these plans is greater than or equal to 15+(1+2+3+4+5+6)+(8+9) =
53. However, columns 7 and 8 should be picked simultaneously to form the
Hadamard set and so the total number of level changes is never equal to 53.
We exclude these plans because their costs on level changes are greater than
53c. Now, based on the result (i) in Theorem 2, the resulting 4-level columns
in the next six plans change levels either 14 or 15 times. Following a discussion
similiar to the �rst seven plans (for example, columns 7 and 9 should be excluded
simultaneously), we can also exclude these plans with X1X4, but not X4 in their
Hadamard set. This leaves us to choose the best plans with costs 53c from the
remaining nine plans.

Example 2. First-order trend e�ects are considered in an experiment having
one 4-level factor and six 2-level factors. The cost for level changes of the 4-
level factor is much higher than for those of 2-level factors. Note that the factor
must be assigned to the columns formed by at least two standard columns in
order to achieve one-trend resistant main-e�ects. Since the 4-level factor is most
expensive, we must choose the columns with least level changes for it. The three
columns for the replacement to gain least costs are X1X2, X2X3 and X1X3. The
4-level factor will change its levels six times in the experiment carried out in the
row order when it is assigned to the resulting column. Then X1X2X3, X3X4,
X1X3X4, X1X2X3X4, X2X3X4, X2X4 are picked for the assignment of 2-level
factors to achieve minimum costs and one-trend resistant main-e�ect.
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