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Abstract: Based on the work of Wang and Fang (1990a,b), this paper extends the def-

inition of discrepancy of a set of points with respect to a distribution. To construct

multivariate uniform designs, two transformations, discrepancy-preserving transfor-

mation and density-preserving transformation, and a method of separating variables

are introduced. Also, for some special domains useful in statistics, some related

transformations are given. In particular, as an application of the method of sepa-

rating variables, we give an approach of constructing a uniform design in the Stiefel

manifold and outline its applications in projection pursuit methods.
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1. Introduction

In recent years, a number of statisticians have paid attention to uniform

designs and contributed a number of papers to explore the related theory and

methods. Wang and Fang (1981) proposed a number-theoretic method of con-

structing uniform designs. Afterward, they gave a more systematic elaboration

of their method and spelled out several application examples ( Wang and Fang

(1990a,b)). McKay, Conover, and Beckman (1979) proposed Latin hypercube

sampling as a general sampling technique, which was also used in a computer

experiment. Stein (1987) and Welch et al: (1992) developed this technique fur-

ther and gave a series of results. Owen (1992) and Tang (1993) improved Latin

hypercube sampling by using orthogonal arrays.

Uniform designs have been used in more and more �elds such as numerical

integration, computer experiments, statistical simulations and other statistical

areas. For example, in �nding the integral of a function or estimating statis-

tical parameters, one uses uniform designs to improve precision and speed up

convergence. In computer experiments, one uses uniform designs e�ciently to

estimate parameters and screen out important components of a model, etc. The

above two methods of constructing uniform designs use di�erent ways to select

points in a given hypercube. One is to use the number-theoretic method based
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on Hua and Wang (1981). A set of points obtained by this method possesses a

good representation in terms of lower discrepancy in the sense of Weyl (1916),

even though the sample size is small. Another uses Latin hypercube sampling or

lattice sampling. This method is convenient for studying statistical properties.

In many practical problems, although the methods are di�erent, they have often

led to similar practical conclusions.

In some practical applications, one needs to consider uniform design prob-

lems not only in a unit hypercube but also in other domains. For this reason, it

is necessary to discuss how to extend the notion of a uniform design in a hyper-

cube to a general domain. Wang and Fang (1990a,b) expounded some methods

of generating a set of points with good representation in some special domains.

The present paper intends to explore this further. First, in Section 2 we extend

the de�nition of discrepancy in Wang and Fang (1981) and introduce two types of

transformations, discrepancy-preserving transformations and density-preserving

transformations. In Section 3, we give some examples on constructing uniform

designs in some special areas useful in statistics. Although some of these ex-

amples have been considered in Wang and Fang (1990a,b), there are some new

implications here. We introduce a method of separating variables for construct-

ing uniform designs in Section 4 and use this method to propose an approach of

constructing uniform designs in the Stiefel manifold, which is useful, for example,

in projection pursuit methods.

2. Discrepancy and Transformations

First of all, we simply recall the de�nition of discrepancy introduced in Wang

and Fang (1981).

Let X be a continuous random vector in R
p with cumulative distribution

function F (x) = F (x1; : : : ; xp). For any two points x1 = (x11; : : : ; x1p) and

x2 = (x21; : : : ; x2p) in R
p, if x1i � x2i; i = 1; : : : ; p, we write x1 � x2. As usual,

F (x) = P (X � x). Suppose that Fn = fxi; i = 1; : : : ; ng is a set of points in

R
p and for any x 2 R

p we denote by N(Fn;x) the number of points satisfying

xi � x. Then we call

DF (Fn) = sup
x2Rp

��� 1
n

N(Fn;x)� F (x)
��� (1)

the discrepancy of Fn with respect to F . If there exists a set of points F�
n
=

fx�
i
; i = 1; : : : ; ng � R

p such that

DF (F�
n
) = inf

Fn

DF (Fn); (2)

then F�
n
is said to be a set of best representation points (brp) of F . In particular,

if X has a uniform distribution in domain D, then call F�
n
satisfying the above
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conditions a set of best uniform representation points (burp) in D. In this case,

we have F (x) = jDxj=jDj, where Dx stands for the subdomain (y � x) \D of

D and jDxj the volume of Dx. From this, we see that the intuitive meaning of a

burp F�
n
set is that the ratio of the number of points of F�

n
in a subdomain Dx to

n, the total number of points in D, is uniformly close to the ratio of the volume

of subdomain Dx to that of D. This just shows some uniformity of the set of

points F�
n
located in D. For a general random vector X, a brp F�

n
set means that

the ratio of the number of points of F�
n
in a domain (y � x) is uniformly close to

the probability P (X � x), which indicates the closeness between the sampling

distribution F�
n
and the distribution F of X. Usually, for any distribution F and

given n, it is di�cult to �nd a brp set of F . Because of this, we also need the

following de�nition: Fn is called a set of good representation points (grp) of F if

DF (Fn) = O(n�1+�) as n!1, where 0 < � <
1

2
. Hua and Wang (1981) gave a

method for �nding the grp sets in a hypercube and listed some related parameter

tables.

To �nd a grp (brp) set for a given distribution, we introduce the following

de�nition.

De�nition 1. Let Y = T (X) be a one-to-one di�erentiable transformation from

a random vector X = (X1; : : : ;Xp) to a random vector Y = (Y1; : : : ; Yp), X and

Y respectively having distributions F (x) and G(y). Assume that Fn = fxi; i =
1; : : : ; ng is a set of points in R

p and F 0
n
= fyi; yi = T (xi); i = 1; : : : ; ng is the

image of Fn through T . If for any Fn, the discrepancy of Fn with respect to F

equals the discrepancy of F 0
n
with respect to G, i.e.

DF (Fn) = DG(F 0
n
); (3)

then we call T a discrepancy-preserving transformation (DIPT).

Obviously, a DIPT Y = T (X) can ensure that a grp (brp) set of F is trans-

formed to a grp (grp) set of G, and the inverse of a DIPT is also a DIPT provided

its Jacobian is not zero. So we can �nd a grp (brp) set of G from that of F by

using a DIPT.

Example 1. If the c.d.f. F (x) of a random vectorX = (X1; : : : ; Xp) has the formQ
p

i=1 Fi(xi), where Fi(xi) is the c.d.f. of component Xi, then the transformation

Yi = Fi(Xi); i = 1; : : : ; p, is a DIPT.

Example 2. If two random vectors X = (X1; : : : ;Xp) and Y = (Y1; : : : ; Yp) have

the relationship Y = AX + B, where A is a matrix with nonnegative elements

and B a constant vector, then the transformation is a DIPT.

Proof. Since for any x1 � x2 we have y1 = Ax1 + B � Ax2 + B = y2; then for

any set of points Fn we have N(Fn;x) = N(F 0
n
; y); where y = Ax+B. Also, for
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any x 2 R
p, it follows that

F (x) = P (X � x) = P (AX +B � Ax+B) = P (Y � y) = G(y):

ThereforeDF (Fn)=DG(F 0
n
) is valid for all Fn, proving the discrepancy-preserving

property.

We say that a transformation Y = T (X) is order-preserving if x1 � x2

implies that y1 = T (x1) � T (x2) = y2. From the proof of Example 2 we get the

following corollary immediately.

Corollary 1. An order-preserving transformation Y = T (X) is also DIPT.

The above method is based on an easy to �nd grp set and a DIPT. Usually,

it is also di�cult to �nd a DIPT and an F whose grp set can be determined. In

this case, we need the following more general discrepancy de�nition.

Let a random vector X be de�ned in a domain D and have a c.d.f. F (x).

Suppose that we have a one-to-one transformation X = T (V ) so that the random

vector V obtained through T is de�ned in an image domain D
0 and has a c.d.f.

G(v). Assume further that Fn = fxi; xi 2 D; i = 1; : : : ; ng is a set of points in D
and F 0

n
= fvi; xi = T (vi); i = 1; : : : ; ng is the set of image points in D

0 of Fn. If

we denote D0
v = (V � v)\D0, Dx = T (D0

v) and also use N(Fn;Dx) to indicate

the number of points of Fn in Dx, then we have N(Fn; Dx) = N(F 0
n
;D

0
v) =

N(F 0
n
; v), F (Dx) = G(D0

v) = G(v) (here F (Dx) =
R
Dx

F (dx) and G(D0
v) =R

D0

v
G(dv) ), and hence

��� 1
n

N(Fn; Dx)� F (Dx)
��� =

��� 1
n

N(F 0
n
; v)�G(v)

���: (4)

We call

D
T

F
(Fn) = sup

x2D

��� 1
n

N(Fn;Dx)� F (Dx)
��� (5)

a transformation discrepancy (t-discrepancy) of Fn with respect to F under T . If

there exists an F�
n
such that DT

F
(F�

n
) = infFn

D
T

F
(Fn); then we call the F�

n
a brp

(tbrp) set of transformation of F under T. Similarly, we also have the de�nitions

of a tgrp set and tgurp set of a distribution.

Clearly, by (4) we have DT

F
(Fn) = DG(F 0

n
) and D

T

F
(F�

n
) = DG(F�0

n
). Evi-

dently, the de�nition of t-discrepancy depends on the transformation T used. But

it has the following general implication. A set tbrp F�
n
of F is such that, for any

Dx, the ratio of the number of points of F�
n
in Dx to n is uniformly close to the

probability P (X 2 Dx) = P (Dx); it just shows uniformity of F�
n
with respect

to distribution F (x). In this sense, we can say that this de�nition is essentially

similar to that of discrepancy given above, especially when the transformation
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T is convex. Therefore in applications we do not distinguish between them and

use the same notations brp, grp, and gurp for both.

From the de�nition above, note that, for any continuous random vectors X

and V , if there is a one-to-one di�erentiable transformation X = T (V ) relating

them, then we can always �nd a brp set from one random vector to the other. In

particular, to do this, we recommend an important transformation below.

Let X be a continuous random vector with p.d.f. f(x) and c.d.f. F (x). Let

F (xijx1; : : : ; xi�1) denote the conditional c.d.f. of Xi given X1 = x1; : : : ;Xi�1 =

xi�1; i = 2; : : : ; p. Let

V1 = F (X1);

Vi = F (XijX1; : : : ;Xi�1); i = 2; : : : ; p:
(6)

This is the well-known Rosenblatt transformation (Rosenblatt (1952)) and denote

it by R�.

Note that, for every i, Vi has a uniform distribution on [0; 1] which does not

depend on V1; : : : ; Vi�1, and hence V1; : : : ; Vp are i.i.d. U [0; 1] random variables. It

is easy to see that the Jacobian of R� is f(x). So R� is a one-to-one di�erentiable

transformation and it can always change a continuous random vector in any

domain to the random vector with uniform distribution in a unit hypercube.

Therefore, the signi�cance of the R� transformation lies in the fact that it may

allow us to �nd a tgrp set for many random vectors by �nding a grp set in a unit

hypercube, provided that the p.d.f. f(x) of the random vector X has suitable

properties so that we can get X = (R�)�1(V ).

In particular, we are interested in �nding a gurp set in any domain. For this,

in the following we consider another transformation.

De�nition 2. Let D be a domain in R
p, and x = (x1; : : : ; xp) stand for a point

in D and v = (v1; : : : ; vn) stand for a point in D
0. If a one-to-one di�erentiable

transformation X = T (V ):

xi = gi(v1; : : : ; vp); i = 1; : : : ; p; (7)

transforms the domain D to a domain D
0 in R

p, and its Jacobian

jJ j � c;

where J = ( @gi
@vj

) and c is a constant, then we say the transformation (7) is

density-preserving (DEPT).

By density-reserving, we mean that, through a DEPT X = T (V ) the density

of V is the same as that of X up to a constant factor. In particular, if X
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has a uniform distribution in D, then V also has a uniform distribution in D
0.

Obviously, the inverse of a DEPT is also a DEPT.

Under a DEPT, the volume elements in the two domains have the relation-

ship
V
p

i=1 dxi = c

V
p

i=1 dvi, in the exterior product symbol, where
V
p

i=1 dxi =

dx1 � � � dxp, or more simply (dx) = c(dv).

Sometimes a domain D under study in R
p is a hypersurface of q-dimension

(q < p) instead of p-dimension. In this case, we also consider a corresponding

DEPT.

De�nition 3. Let D be a q-dimensional domain in R
p (q < p). If a random

vector X de�ned in D has a one-to-one di�erentiable parameter representation

X = T (V ):

xi = gi(v1; : : : ; vq); i = 1; : : : ; p; (8)

in an image domain D
0 in R

q, and its transform determinant satis�es

jT 0T j � c; where T (p� q) = (
@gi

@vj

); (9)

then we call (8) a DEPT from D in R
p to D0 in R

q.

Similarly, if X has a uniform distribution in D, then the V obtained by a

DEPT still has a uniform distribution in D0 and vice versa. Also, we use the ex-

terior product symbol to denote the relationship of di�erential elements between

these two domains: (dx) = c(dv). But (dx) here is the exterior di�erential form

of x in D that stands for an area element of this hypersurface and (dv) is still a

volume element in D
0.

It is easy to see that a DEPT T has the following properties:

1. If D1 is a measurable subdomain of D and D
0
1 is the image of D1 through T ,

denoted by D1 = T (D0
1), then jD1j = jT (D0

1)j = cjD0
1j, where jDj stands for the

volume (or area) of a domain D.

2. In the de�nition of general discrepancy above, a DEPT T has a uniformity-

preserving property, i.e., it transforms a gurp set in D into a gurp set in D
0,

where D = T (D0).

3. Examples

In this section, we use the two transformations above to �nd uniform designs

in several special domains which are commonly used. These examples demon-

strate how to transform gurp sets in a unit hypercube to those in a general domain

by using a DIPT or a DEPT.

First we consider an example of �nding gurp in a p-dimensional unit ball or

ball ring, which is fundamental for �nding gurp for many other domains.
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Example 3. Let D = fx = (x1; : : : ; xp); 0 � � � Pp

i=1 x
2
i
� 1g. The following

two transformations are its DEPT and DIPT respectively:

x1 = (pv1)
1=p sin(F�1

2 (v2)) � � � sin(F�1
p�1(vp�1)) sin vp;

x2 = (pv1)
1=p sin(F�1

2 (v2)) � � � sin(F�1
p�1(vp�1)) cos vp;

xj = (pv1)
1=p

p�j+1Y
i=2

sin(F�1
i

(vi)) cos(F
�1
p�j+2(vp�j+2)); j = 3; : : : ; p� 1;

xp = (pv1)
1=p cos(F�1

2 (v2));

(10)

where �
p

p
� v1 � 1

p
, 0 � vj � B( 1

2
;
1

2
(p � j + 1)), j = 2; : : : ; p � 1, 0 � vp � 2�,

Fj(x) =
R
x

0
sinp�j xdx, F�1

j stands for the inverse function of Fj , B(x; y) denotes

the Beta function,

v1 =
1

p

t1;

vj = B

�1
2
;

1

2
(p� j + 1)

�
tj ; j = 2; : : : ; p� 1; (11)

vp = 2�tp;

and �
p � t1 � 1, 0 � tj � 1; j = 2; : : : ; p.

The density-preserving property of (10) can be deduced as follows.

First, note that the transformation

x1 = r sin �1 � � � sin �p�2 sin �p�1;
xj = r sin �1 � � � sin �p�j cos �p�j+1; j = 2; : : : ; p;

(12)

where � � r � 1, 0 � �j � �, j = 1; : : : ; p � 2, 0 � �p�1 � 2�, and with a

convention sin �0 = 1, has the di�erential relationship

p^
i=1

dxi = r
p�1 sinp�2 �1 sin

p�3
�2 � � � sin �p�2

�p�1^
i=1

d�i

�^
dr: (13)

Again, let

v1 = F1(r) =

Z
r

0

r
p�1

dr =
1

p

r
p
;

vj = Fj(�j�1) =

Z
�j�1

0

sinp�j xdx; j = 2; : : : ; p� 1; (14)

vp = �p�1;
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where the domain of (v1; : : : ; vp) is

�
p

p

� v1 �
1

p

; 0 � vj � B

�1
2
;

1

2
(p� j + 1)

�
; j = 2; : : : ; p� 1; 0 � vp � 2�;

since Fj(�) = B( 1
2
;
1

2
(p� j + 1)).

Substituting (14) into (12) we obtain (10), and from (13) and (14) we see

that
Vp

i=1 dxi =
Vp

i=1 dvi, showing that (10) is a DEPT. By Example 2, (11) is

obviously a DIPT.

Example 4. Consider the p-dimensional unit sphere Sp = fx = (x1; : : : ; xp);P
p

i=1 x
2
i
= 1g. Its DEPT and DIPT can be respectively taken as

x1 = sin(F�1
1 (v1)) � � � sin(F�1

p�2(vp�2)) sin vp�1;

x2 = sin(F�1
1 (v1)) � � � sin(F�1

p�2(vp�2)) cos vp�1;

xj =

p�jY
i=1

sin(F�1
i

(vi)) cos(F
�1
p�j+1(vp�j+1)); j = 3; : : : ; p� 1;

xp = cos(F�1
1 (v1));

(15)

where 0 � vj � B( 1
2
;
1

2
(p � j)), j = 1; : : : ; p � 2, 0 � vp�1 � 2�, Fj(x) =R x

0
sinp�j�1 xdx, F�1

j
is the inverse function of Fj , and

vj = B

�1
2
;

1

2
(p� j)

�
tj ; j = 1; : : : ; p� 2;

vp�1 = 2�tp�1;
(16)

where 0 � tj � 1, j = 1; : : : ; p� 1.

Similar to Example 3, we can show the density-preserving property of (15).

The only di�erence is that the transform determinant here is jT 0T j = Q
p�2
i=1

sinp�i�1 �i and its di�erential relationship is (dx) =
Q

p�2
i=1 sin

p�i�1
�i(
V
p�1
i=1 d�i).

Example 5. Consider the p-dimensional simplex Ds=f(x1; : : : ; xp);
P

p

i=1 xi=1

with xi > 0g. We have its DEPT

x1 = ((p� 1)v1)
1=(p�1)((p� 2)v2)

1=(p�2) � � � (2vp�2)1=2
vp�1p
p

;

x2 = ((p� 1)v1)
1=(p�1)((p� 2)v2)

1=(p�2) � � � (2vp�2)1=2(1�
vp�1p
p

);

xj =

p�jY
i=1

((p� i)vi)
1=(p�i)(1� ((j � 1)vp�j+1)

1=(j�1)); j = 3; : : : ; p� 1;

xp = 1� ((p� 1)v1)
1=(p�1)

;

(17)
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where 0 � vj � 1

p�j , j = 1; : : : ; p� 2, 0 � vp�1 � pp, and DIPT

vj =
1

p� j

tj ; j = 1; : : : ; p� 2; vp�1 =
p
ptp�1; (18)

where 0 � tj � 1; j = 1; : : : ; p� 1 .

To deduce the density-preserving property of (17), we need to use an inter-

mediate transformation

x1 = sin2 �1 � � � sin2 �p�2 sin2 �p�1;
xj = sin2 �1 � � � sin2 �p�j cos2 �p�j+1; j = 2; : : : ; p;

(19)

(0 � �j � �, j = 1; : : : ; p� 1, 0 � �p � 2�) which has the transform determinant

jT 0T j = p
p

p�1X
i=1

sin2(p�i)�1 �i cos �i: (20)

The rest of the deduction is similar to Example 3.

Usually, for simplicity we combine the two transformations into one.

Example 6. Let D = fx = (x1; : : : ; xp);
P

p

i=1 xi � 1 with xi > 0g. We have a

DEPT

x1= (pv1)
1=p((p� 1)v2)

1=(p�1) � � � (2vp�1)1=2vp;

xj= (pv1)
1=p

p�jY
i=1

((p�i)vi+1)1=(p�i)(1�((j�1)vp�j+2)1=(j�1)); j=2; : : : ; p�1; (21)

xp= (pv1)
1=p(1� ((p� 1)v2)

1=(p�1));

where vj =
1

p�j+1 tj , 0 � tj � 1, j = 1; : : : ; p.

Example 7. Let D = f(x1; : : : ; xp); 0 � x1 � � � � � xp � 1g. We can take a

DEPT

xj =

p�j+1Y
i=1

t

1=(p�i+1)
i ; j = 1; : : : ; p;

where 0 � ti � 1, i = 1; : : : ; p.

Example 8. Let D = f(x1; : : : ; xp);
Pp

i=1 xi = 0 and
Pp

i=1 x
2
i
= 1 g. We

take a transformation X = A1V , where (a; A1) is a p � p orthogonal ma-

trix with a = 1p
p
(1; : : : ; 1)0 as its �rst column, which changes domain D1 =

f(v1; : : : ; vp�1);
P

p�1
i=1 v

2
i
= 1g to domain D. Clearly, the transformation determi-

nant is jA0
1A1j � 1. This means that the transformation is a DEPT. Therefore ,

we can �nd gurp in D by �nding gurp in D1, which has been done in Example 4.
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The domain in this example is useful in statistics especially in experimental

design, for we can consider D as the set of contrast directions for comparison.

4. The Method of Separating Variables and Uniform Design in the

Stiefel Manifold

First we give the following lemma and corollary.

Lemma 1. Let D be some domain in space R
p and let a random vector X =

(X1; : : : ;Xp) have uniform distribution on D. Assume that

xj = xj(u1; : : : ; us; v1; : : : ; vt); j = 1; : : : ; p; s+ t = p; (22)

is a one-to-one di�erentiable transformation which maps the domain D onto a

product space D1 �D2, where u = (u1; : : : ; us) 2 D1 and v = (v1; : : : ; vt) 2 D2,

and assume it satis�es the di�erential form relationship

p^
i=1

dxi =
� s^
i=1

dui

�� t^
j=1

dvj

�
: (23)

Then, (22) is a DEPT, and U and V have uniform distributions in D1 and D2

respectively. Conversely, if U and V have uniform distributions on D1 and D2

respectively and (22) satis�es (23), then X has a uniform distribution in D.

Proof. By De�nition 2 the density-preserving property of (22) is a direct result.

The second part of the conclusion is obvious. Also the converse is clear.

By Lemma 1 the following corollary follows immediately.

Corollary 2. Under the assumptions of Lemma 1, if Fl = fxi = (xi1; : : : ; xip),

i = 1; : : : ; lg is a gurp set in D, then Ll = fui = (ui1; : : : ; uis); i = 1; : : : ; lg and

Ml = fvi = (vi1; : : : ; vit); i = 1; : : : ; lg are respectively a gurp set in D1 and D2,

where xij = xj(ui1; : : : ; uis; vi1; : : : ; vit), j = 1; : : : ; p, i = 1; : : : ; l.

We give the method above a name, the method of separating variables, for

the method can transform a gurp set in a domain into two gurp sets in two

domains separately.

Using this method, we consider uniform designs in the Stiefel manifold. First,

we describe an application of such a design in the projection pursuit method.

In projection pursuit (PP) methods, one usually observes the projections of

a set of high-dimensional data on some low-dimensional space (projection space)

to explore the structure and character of this set of data (Huber (1985)). What

we can do is select a �nite number of projection spaces to observe. So, how to

choose the projection spaces becomes an important problem in PP methods.
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As is well known, when we have no prior knowledge about the structure and

character of these data, to get most information about it, the selected projection

spaces should be scattered uniformly in all the possible projection spaces. The

existing method of �nding projection spaces is to �rst take a projection space

as an original position and then rotate the space according to some rule to get

all spaces we want and to observe the projection on these spaces (Friedman and

Tukey (1974)). But we are not sure if the selected spaces have uniformity in

all the spaces. Furthermore, if the dimension of the considered space is very

high, say 20, it is not easy for the rotation method to give consideration to every

possible position of projection spaces, because the angles needed to rotate are too

numerous and the position of the projection space in a high-dimensional space

is too complicated. In practice, in order to quickly �nd a best projection space,

we can consider the following strategy. First choose a few projection spaces to

observe so that we get a rough understanding of the set of data to determine

an initial position around which we might �nd a better structure of the data,

and then take a careful observation around the initial position to get the best

projection space. However, how to choose the few projection spaces, remains

perhaps a very di�cult problem for the existing method. Under these cases, a

new method of choosing projection spaces with uniformity is needed.

Since every m-dimensional projection space is determined by its orthogonal

coordinate system, all the possible m-dimensional projection spaces can be re-

garded as the Stiefel manifold Vm;n = fH1(n�m); H 0
1H1 = Img with a set of m

standard orthogonal vectors as a point. Our purpose is to choose a set of points

Fl = fH1i;H1i 2 Vm;n; i = 1; : : : ; lg for a given l such that Fl has uniformity in

Vm;n.

According to Muirhead (1982), we can de�ne a measure in Vm;n by the dif-

ferential form:

(H 0
1dH1) =

m^
i=1

n^
j=i+1

h
0
j
dhi; (24)

where H1 = [h1; : : : ;hm] and H2 = [hm+1; : : : ;hn] such that [H1

...H2] is an or-

thogonal matrix. H 0
1H2 = 0. This measure is invariant under orthogonal trans-

formations, and so is called a Haar invariant measure. In fact, the above dif-

ferential form stands for the volume element of Vm;n and the volume of Vm;n is

2m�mn=2
=�m(

1

2
n); where �m(a) = �

m(m�1)=4Qm

i=1 �(a� 1

2
(i� 1)).

Thus, actually we need to �nd a gurp set in Vm;n with respect to the measure

(H 0
1dH1).

Lemma 2. Let Z be an n�m (m � n) matrix of rank m and write Z = H1T ,

where H1 2 Vm;n and T is an upper-triangular matrix with positive diagonal

elements. Let H2 (as a function of H1) be an n � (n � m) matrix such that
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H = [H1

...H2] is an orthogonal matrix. Denote H1 = [h1; : : : ;hm] and H2 =

[hm+1; : : : ;hn]. Then

(dZ) =
mY
i=1

t
n�i
ii

(dT )(H 0
1dH1); (25)

where (H 0
1dH1) is as given in (24) (Muirhead (1982, p63)).

Remark. We use the following facts. Let Z = [z1; : : : ; zm] be an n�m matrix

of rank m and Mm;n denote all of n�m matrices of rank m. Use Zv to denote

the stretched vector of Z, i.e. Z
v = (z01; : : : ; z

0
m
), kvk the norm of vector v,

and D the unit sphere in R
mn with centre at the origin. Let DM = fZ; Z 2

Mm;n; kZvk2 � 1g. Because J = fZ;Z 2 Mm;n; jZ 0
Zj = 0g is a low-dimensional

hypersurface, the volume of J in Rmn is equal to zero. Therefore, the volume of

DM in D is equal to that of D (DM being Lebesgue-measurable). We can treat

D and DM as being the same in some sense. For example, let a random vector X

have a uniform distribution in D; then we can say that X also has the uniform

distribution in DM because P (X 2 D �DM ) = 0.

Thus, we introduce an important theorem which can be used to construct a

uniform design in the Stiefel manifold.

Theorem 1. Let Fl = fZi;Zi 2 DM ; i = 1; : : : ; lg be a gurp set in DM . Then

Ll = fH1i; i = 1; : : : ; lg is a gurp set in Vm;n with respect to the measure (H 0
1dH1),

where for every i, H1i satis�es Zi = H1iTi;H1i 2 Vm;n and Ti is an upper-

triangular matrix with positive diagonal elements.

Proof. Consider the transformation

Z = H1T; (26)

where H1 and T are as in Lemma 2. From Lemma 2 it follows that (26) is a one-

to-one di�erentiable transformation and satis�es the equality (25). Furthermore,

let

uij =

8<
:
tij ; i < j,

1

n�i+1 t
n�i+1
ii ; i = j,

0; i > j.

(27)

Writing (27) in matrix form U = K(T ), where both U and T are upper-triangular

matrixes with positive diagonal elements, we have

(dU) =
mY
i=1

t
n�i
ii

(dT ): (28)

Using T = K
�1(U) to denote the inverse function of (27) and substituting it into

(26), we get the transformation

Z = H1K
�1(U) (29)
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which has the di�erential form

(dZ) = (dU)(H 0
1dH1): (30)

This means that (29) is a DEPT.

Now we discuss what the image domains of DM are under transformations

(26) and (29). First, note that, for any H1 2 Vm;n, because H
0
1H1 = Im, we have

jZ 0
Zj = jT 0T j = j(K�1(U))0(K�1(U))j (31)

and

kZvk2 = kT vk2 = k(K�1(U))vk2; (32)

where T and K
�1(U) satisfy (26) and (29) respectively.

Write the domains

DM =
n
Z(n�m) = (zij); jZ 0

Zj > 0; kZvk2 =
X
i;j

z
2
ij
� 1

o
;

D
0
1 =

n
T (m�m) = (tij); tij = 0 for all i > j; tii > 0 for all i;

and kT vk2 =
X
i�j

t
2
ij
� 1

o
;

and

D

00

1 =
n
U(m�m) = (uij); uij = 0 for all i > j; uii > 0 for all i;

and k(K�1(U))vk2 =
mX
i=1

((n� i+ 1)uii)
2=(n�i+1) +

X
i<j

u
2
ij
� 1

o
:

Therefore, by (31) and (32), under (26) the product domain D
0
1 � Vm;n is the

image domain of DM and under (29) the product domain D

00

1 � Vm;n is that of

DM . Furthermore, since (29) is a DEPT and we have (30). By Lemma 1, then,

when Z has a uniform distribution in DM , U has a uniform distribution in D

00

1

and H1 has a uniform distribution in Vm;n with respect to the measure (H 0
1dH1).

Finally, according to Corollary 2, when Fl is a gurp set in DM , through the

transformation (29) we get a gurp set Ll in Vm;n. The proof is completed.

Finally, by Theorem 1 we give the following algorithm for �nding gurp in

Vm;n:

1. By using the number-theoretic method (Wang and Fang (1981)) or other

methods (such as the OA-based Latin hypercube (Owen (1992) and Tang (1993))

and uniform design sampling (Zhang and Wang (1994)), we generate a gurp set in

an mn-dimensional unit cube of Rmn, say Fl = fti = (ti1; : : : ; ti;mn); i = 1; : : : ; lg;
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2. Substitute all the points of Fl into formula (11) with p = mn to get a gurp

set, say F 0
l
= fvi = (vi1; : : : ; vi;mn); i = 1; : : : ; lg, in the following hyper-rectangle

D
0 of Rmn:

0 � v1 �
1

mn

;

0 � vi � B(
1

2
;

1

2
(mn� i+ 1)); i = 2; : : : ;mn� 1; (33)

0 � vmn � 2�;

3. Substitute all the points of F 0
l
into formula (10) with p = mn to generate a gurp

set in the mn-dimensional unit ball in R
mn, say F 00

l
= fxi = (xi1; : : : ; xi;mn); i =

1; : : : ; lg;
4. Using the matrix transformation Z = H1T (formula (26)), for every i, take

Zi such that Zv

i
= (xi1; : : : ; xi;mn) 2 F 00

l
and �nd H1i 2 Vm;n. After doing so, we

get the required gurp set F 000

l
= fH1i;H1i 2 Vm;n; i = 1; : : : ; lg in Vm;n.

Especially, when m = 1, V1;n is a unit sphere in R
n. In this case, by Theorem

1, to �nd a gurp set in V1;n is to �nd a gurp set on the unit sphere in R
n. To

do this, we only need to normalize all the vectors in F 00

l
which is a gurp set in

the unit ball in R
n obtained by step 3. This just veri�es the correctness of (15)

which is used to �nd gurp on a unit sphere.

We note the number of independent variables in H1 is (2mn�m(m+1))=2.

But here we have used mn variables to generate the m � n column-orthogonal

matrix H1, so m(m + 1)=2 freedom degrees of variable are wasted. Using a

similar transformation, we have another method of generating uniform designs

in the Stiefel manifold, which does not waste freedom degrees but needs more

mathematical proof (for details see Zhang and Fang (1993)).
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