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Abstract: Locally asymptotically most stringent tests for autoregressive against diag-

onal bilinear time series models are derived. A (restricted) local asymptotic normality

property is therefore established for bilinear processes in the vicinity of linear autore-

gressive ones. The behaviour of the bispectrum under local alternatives of bilinear

dependence shows the danger of misinterpreting skewness or kurtosis e�ects for non-

linearities. The proposed test statistic is a generalization of the Gaussian Lagrange

multiplier statistic considered by Saikkonen and Luukkonen (1988), and is expressed

as a closed-form function of the estimated residual spectrum and bispectrum. Its local

power is explicitly provided. The local power of the Lagrange multiplier test follows

as a particular case.
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1. Introduction

1.1. Asymptotic inference for nonlinear time series models

The development of time series analysis has been largely dominated by the

theory of linear (ARMA) models. This importance is mainly due to the L2, hence

implicitly Gaussian, approach adopted. Nonlinear models (Granger and Ander-

sen (1978), Priestley (1988), Subba Rao and Gabr (1984), Tong (1990)) were

introduced as a reaction against this excessive predominance of ARMA models.

Unfortunately, the statistical analysis of nonlinear models also runs into math-

ematically more complex problems, a number of which remain unsolved. Much

attention therefore has been devoted to the problem of testing for linear serial

dependence (i.e., ARMA behaviour). The proposed testing procedures either

are purely heuristic (Subba Rao and Gabr (1980), Hinich (1982), McLeod and Li

(1983), Keenan (1985), Chan and Tong (1990), Petruccelli and Davies (1986), An

and Cheng (1991), Subba Rao and da Silva (1992), Hinich and Patterson (1992),

Chan and Tran (1992), Skaug and Tj�stheim (1993a, b)), or belong to the class

of Gaussian Lagrange multiplier tests (against bilinear alternatives: Saikkonen
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and Luukkonen (1988, 1991), Gu�egan and Pham (1992). See Gu�egan (1990) or

Tong (1990) for a review). All of them, of course, are of an asymptotic nature.

If, however, asymptotic inference is to be considered, the most adequate and

powerful technique, certainly, is LeCam's (1960, 1986) local asymptotic normal-

ity (LAN) methodology, which has been very successfully applied in the linear

context (Akritas and Johnson (1982), Swensen (1985), Hallin, Ingenbleek and

Puri (1985), Kreiss (1987, 1990a,b), Garel (1989), Hallin and Puri (1994), Garel

and Hallin (1995)). LAN indeed allows for deriving asymptotically optimal tests

and estimates, for computing asymptotic local powers and asymptotic relative ef-

�ciencies, etc. Except however for Gu�egan and Pham (1992), where a contiguity

property is assumed rather than proved, and for Benghabrit and Hallin (1992),

where the particular case of testing for white noise against �rst-order superdiag-

onal bilinear dependence is treated, LAN so far has not been considered in the

context of nonlinear time series models. The reason is that nonlinear models,

even the simplest bilinear ones, are considerably more complicated than linear

ones, due to the presence of in�nite products in deconvolution formulae. The

same technical di�culties are met in the proof of LAN properties as in the study

of the asymptotic distribution of maximum likelihood or least square estimates

of bilinear coe�cients{a question which remains essentially an open problem.

Due to these technical di�culties, the elegant method of Swensen (1985), itself

based on LeCam (1986, Ch: 10) could not be applied here, and a more traditional

Taylor expansion approach had to be adopted.

1.2. Testing for linearity

Optimality or asymptotic optimality is an important and extremely desirable

property for a testing procedure � it is not the only one. The three main issues

we are emphasizing in this derivation of asymptotic tests are (i) their validity,

(ii) their ease of use and interpretability, and (iii) their power and optimality

features:

(i) (asymptotic validity) Since the L2 approach is inadequate in the bilinear con-

text, Gaussian assumptions are highly unnatural, and should be avoided. If

Gaussian likelihoods are to be considered, they should be treated in a pseudo-

likelihood perspective, and it is essential that the (asymptotic) distributions of

the test statistics to be proposed, hence the (asymptotic) probability levels of

the resulting tests, remain valid under arbitrary probability densities.

(ii) (ease of use and interpretability) Most of time series practice, and much

of the experience and intuitive insight of time series analysts is connected with

correlogram inspection. Therefore, it is important that test statistics, in time

series analysis, whenever possible, remain correlogram-based. Of course, tradi-



OPTIMAL TESTS FOR AUTOREGRESSIVE AGAINST BILINEAR DEPENDENCE 149

tional correlograms cannot be used in the detection of a nonlinear behaviour.

In addition to classical autocorrelation coe�cients (i.e., standardized versions ofP
t ZtZt�i, where Zt is some residual series), we also consider here the third-

order moment structure; what we call the cubic autocorrelation coe�cients are

standardized versions of
P

t ZtZt�iZt�j , constituting the bispectrum), and their

non-Gaussian counterparts. Both traditional and cubic autocorrelation coe�-

cients enter into the de�nition of our test statistics; inspecting the corresponding

correlograms, however, provides quite an amount of side information (see Gabr

(1988)).

(iii) (optimality) The tests we are proposing are designed for linear dependence

against bilinear alternatives with unspeci�ed \innovation" densities under the

null as well as under the alternative. As far as optimality properties are con-

cerned, however, some arbitrary but �xed \innovation" density has to be chosen

as a target, since nonadaptive inference procedures cannot be expected to be uni-

formly (w.r.t. innovation densities) optimal. To be speci�c, our tests are locally

asymptotically most stringent against the bilinear alternatives associated with

some (arbitrarily) predetermined density type.

In order to keep things as simple and readable as possible, we are restricting

the present paper to the case of �rst-order BL(1; 0; 1; 1) bilinear dependence.

Higher-order cases are very similar, but notationally and technically more intri-

cate, and are the subject of a forthcoming paper. All the ideas and conclusions

developed here remain valid under the more general BL(p; q;P;Q) setting.

1.3. Outline of the paper

Section 2 presents the notation and main technical assumptions to be consid-

ered in the paper, then briey recalls the de�nition of local asymptotic normality

and its consequences in hypothesis testing context. Section 3 starts with the

de�nition of the statistical tools|viz., generalized versions of the spectrum (f-

autocorrelation coe�cients) and bispectrum (the so-called cubic autocorrelation

coe�cients)|to be used. The asymptotic joint normality of these generalized

autocorrelation coe�cients is then established (Section 3.3) under very mild as-

sumptions. In Section 3.4, a correlogram-based LAN result, i.e: involving a central

sequence which is measurable with respect to the residual spectrum and bispec-

trum, is proved: the estimated residual spectrum and bispectrum accordingly

will be locally asymptotically su�cient. Section 4 deals with the asymptotic lin-

earity property needed in order to substitute estimated residuals for exact ones.

The optimal tests we are proposing are given in Section 5.1. They are based on

an explicit quadratic form in the estimated residual spectrum and bispectrum.

The corresponding local power is also provided. A comparison is made in Sec-
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tion 5.2 between the traditional Lagrange multiplier test and ours; an essential

di�erence is that arbitrary estimates (such as M- or R- or adaptive estimates)

can be used in the derivation of the residual spectrum and bispectrum, provided

that they converge at an appropriate rate. Finally, the local asymptotic powers

of our tests are provided explicitly. The local power of the Gaussian Lagrange

multipliers method follows as a particular case.

2. Local Asymptotic Normality

2.1. Notation and technical assumptions

Denote by H
(n)

f (�), � = (a; b)0 or by H
(n)

f (a; b) the hypothesis under which

an observed series X(n) = (X
(n)
1 ; : : : ;X(n)

n ) constitutes a �nite realization of some

solution of the bilinear stochastic di�erence equation (�rst-order diagonal or

BL(1; 0; 1; 1) model)

Xt � aXt�1 � bXt�1�t�1 = �t; t 2 Z; (2:1)

where f�t; t 2 Zg is independent white noise, i.e., an i.i.d. process, with density f .

The probabilistic properties of this model have been studied in detail by Pham

and Tran (1981).

The following assumptions are made on f :

(A1) f(x) > 0, x 2 R;
R
1

�1
xf(x)dx = 0;

R
1

�1
x4f(x)dx <1; denoting by �2 the

variance
R
1

�1
x2f(x)dx, let ��1f1(�=�) = f(�):

(A10) Same as (A1), but
R
1

�1
x6f(x)dx <1.

(A2) f is absolutely continuous on �nite intervals, i.e., there exists _f such that

for all �1 < a1 < a2 <1; f(a2)� f(a1) =
R a2
a1

_f(x)dx: Letting �f = �
_f=f , as-

sume that the Fisher information associated with f is �nite:
R
1

�1
�2
f (x)f(x)dx =

I(f) <1.

(A20) Same as (A2), but
R
1

�1
j�(f)j2+�f(x)dx <1 for some � > 0.

(A3) �f is di�erentiable, with derivative _�f ; both �f and _�f are Lipschitz, i.e.

max
�
j�f (x)� �f (y)j; j _�f (x)� _�f (y)j

�
< Af jx� yj; (2:2)

for all x; y 2 R.

Denote by F (resp. F
0) the class of all densities satisfying A1-A3 (resp.

A10, A20, A3): F 0 clearly contains most usual densities, such as the normal, the

logistic, the Student with six or more degrees of freedom, : : : but also skew and

possibly contaminated densities. We are interested in testing the null hypothesis

H(n) =
[
g2F

H(n)
g

�
resp.,

[
g2F 0

H(n)
g

�
; (2:3)
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where

H(n)
g =

[
a2(�1;1)

H(n)
g (a; 0): (2:4)

Most of the results below, however, remain valid under much weaker conditions

(such as A1 for Proposition 3.1 , etc.).

2.2. LAN and locally asymptotically most stringent tests

The key result, if locally optimal testing procedures are to be constructed,

is the locally asymptotically normal (LAN) structure of the family of likelihoods

under study. Denote by �
(n)

�;f (�; a), with a 2 (�1; 1) and � = (�; �)0 2 R
2,

the logarithm of the likelihood ratio for H
(n)

f (�) = H
(n)

f (a; 0) against H
(n)

f (� +

�(n)�) = H
(n)

f (a+ n�1=2�; n�1=2�=�), where

�(n) = n�
1
2

�
1 0

0 ��1

�
:

The restricted LAN property we need is as follows:

(LAN1) For all a 2 (�1; 1), there exist random vectors �
(n)

f (a) and nonrandom

matrices W2
f (a) such that W2

f (�) is continuous with respect to a, and

�
(n)

�(n);f (X
(n); a) = �

(n)0�
(n)

f (a)�
1

2
�
(n)0

W
2
f (a)�

(n) + oP (1); (2:5)

under H
(n)

f (a; 0), as n ! 1, for all sequence �
(n) = (�(n); �(n))0 such that

sup
n

�
(n)0

�
(n) <1.

(LAN2) For all a 2 (�1; 1), �
(n)

f (a) is asymptotically normal under H
(n)

f (a; 0),

as n!1, with mean 0 and covariance matrix W2
f (a).

If â(n) denotes a root n-consistent estimate (under H
(n)

f (a; 0)) of a (all usual

estimates are root n-consistent under H(n)), it follows from LeCam (1986, Ch.11)

that a locally asymptotically most stringent test for H
(n)

f against the alternative

[a2(�1;1) [b6=0 H
(n)

f (a; b), at asymptotic probability level �, consists in rejecting

H
(n)

f whenever Q
(n)

f (â(n)) exceeds the (1 � �)-quantile of a chi-square variable

with one degree of freedom, where

Q
(n)

f (a) = (�
(n)

f (a))0
�
W

�2
f (a)� (W2

f (a)11)
�1

�
1 0

0 0

��
�

(n)

f (a): (2:6)

This, at �rst sight, settles the problem (provided that LAN is proved).

However, LAN1 and LAN2 are derived under �xed density f , and the asymp-

totic optimality against [a2(�1;1) [b6=0 H
(n)

f (a; b) of a test based on Q
(n)

f (â(n))
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holds for the null sequence [a2(�1;1)H
(n)

f (a; 0) only, not for the more general

[g2F [a2(�1;1)H
(n)
g (a; 0), as expected. The fact that Q

(n)

f (â(n)) is asymptotically

chi-square under H
(n)

f does not guarantee indeed that it remains asymptotically

chi-square under H(n)
g , g 6= f . Actually, it is not. The above test accordingly

is not valid under H(n) (not even asymptotically) and, therefore, is not very

attractive.

Fortunately, central sequences are never uniquely determined, and �
(n)

f (a)

in (2.5) can be replaced with any alternative sequence ~�
(n)

f (a) such that (for all

a 2 (�1; 1))
~�

(n)

f (a)��
(n)

f (a) = oP (1); n!1; (2:7)

under H
(n)

f (a; 0). Similarly, any (possibly random) sequence of matrices ~W
(n)2

f (a)

can be substituted for W2
f (a) in (2.7), provided that

~W
(n)2

f (a(n))�W
2
f (a) = oP (1); (2:8)

still under H
(n)

f (a; 0), as n ! 1, for any sequence a(n) ! a, any a 2 (�1; 1).

Such substitutions clearly do not a�ect the asymptotic behavior of Q
(n)

f (â(n)),

neither under H
(n)

f nor under contiguous alternatives, so that the optimality

properties of the corresponding test remain unchanged. But (2.7) and (2.8) are

not required to hold under H(n)
g , g 6= f , and this provides quite an amount of

exibility in the de�nition of an optimal test statistic. The following questions

then quite naturally arise: (i) is this exibility enough to allow for tests that

remain valid under H(n)? for tests that are measurable with respect to some

appropriate, intuitively interpretable, sequence of �-algebras (e.g., generated by

some adequately generalized correlograms)? (ii) does it allow for (asymptotically)

invariant (rank-based) tests? etc. The purpose of the present paper is to answer

the �rst of these two questions. Rank-based methods are the subject of another,

forthcoming paper (Benghabrit and Hallin (1993)).

3. Generalized Correlograms

3.1. Generalized autocorrelation coe�cients

The main tool in the analysis of linear time series models is the correlogram,

i.e., (for a series Z1; : : : ; Zn) the set of autocorrelation coe�cients

r
(n)

i = (n� i)�1

nX
t=i+1

ZtZt�i=�̂
2
(n); i = 1; : : : ; n� 1; (3:1)

with �̂2
(n) = n�1

X
Z2
t (all series here are assumed to have zero mean). Now, r

(n)
i

is a typically Gaussian statistic, the non-Gaussian version of which (for density
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f) is the so-called f -autocorrelation coe�cient

r
(n)

i;f = (n� i)�1

nX
t=i+1

�f1

 
Zt

�̂(n)

!
Zt�i

�̂(n)
=(Î(n)(f1))

1=2; i = 1; : : : ; n� 1; (3:2)

with Î(n)(f1) = n�1
P

t �
2
f1
(Zt=�̂(n)); (cf., e.g., Hallin and Puri (1992, 1994) or

Section 2.3 below). This scaling factor is such that (n � i)1=2r
(n)

i;f , just as (n �

i)1=2r
(n)

i , is asymptotically standard normal under the assumptions of Proposition

3.1 below. For notational convenience, we also introduce the nonstandardized

quantities

c
(n)

i;f = (Î(n)(f1))
1=2r

(n)

i;f = (n� i)�1

nX
t=i+1

�f1

 
Zt

�̂(n)

!
Zt�i

�̂(n)
; (3:3)

as well as the constants (assuming that the integrals converge)

Ig(f; g) =

Z
1

�1

�f1(x)�g1(x)g1(x)dx (3:4)

and

Ig(f) = Ig(f; f) =

Z
1

�1

�2
f1
(x)g1(x)dx: (3:5)

For particular choices of f , it may happen that Ig(f) does not depend on g and

thus reduces to I(f1): this latter constant can then be used in (3.2) instead of its

estimate Î(n)(f1); an example is the Gaussian autocorrelations, where Ig(G) =

�

R
1

�1
x�g1(x)g1(x)dx = 1, so that (3.2) reduces to (3.1).

3.2. Cubic autocorrelation coe�cients

The f -autocorrelation coe�cients are locally ine�cient in the problem of

detecting departures from linearity, i.e., their asymptotic distributions are exactly

the same under linearity as under local alternatives of bilinear dependence. We

therefore need another class of statistics, the cubic autocorrelation coe�cients

q
(n)

i;j;f=

8>>>><
>>>>:
(n� j)�1

nX
t=j+1

�f1

� Zt

�̂(n)

��Zt�i

�̂(n)

��Zt�j

�̂(n)

�
=[Î(n)(f1)]

1=2; if 0 < i < j < n,

(n� i)�1

nX
t=i+1

�f1

� Zt

�̂(n)

�Z2
t�i

�̂2
(n)

=[Î(n)(f1)m̂
(n)
4 ]1=2; if 0 < i = j < n,

(3:6)

where m̂
(n)
4 = n�1

P
t(Z

(n)
t )4=�̂4

(n). For Gaussian f , (3.6) takes the much simpler

form

q
(n)

i;j =

8>>>><
>>>>:
(n� j)�1

nX
t=j+1

ZtZt�iZt�j=�̂
3
(n); if 0 < i < j < n,

(n� i)�1

nX
t=i+1

ZtZ
2
t�i=�̂

3
(n)(m̂

(n)
4 )1=2; if 0 < i = j < n,

(3:7)
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which (under the terminology bispectrum) constitutes the main tool in bilinear

model identi�cation; (see Gabr (1988)). For notational convenience, we also

introduce the non standardized quantities

d
(n)

i;j;f = (n� j)�1

nX
t=j+1

�f1(
Zt

�̂(n)
)
Zt�i

�̂(n)

Zt�j

�̂(n)
; 0 < i � j < n: (3:8)

3.3. Asymptotic normality

In the sequel, we only need cubic autocorrelation coe�cients of the form

q
(n)

1;`;f ; ` � 1, which we henceforth denote by q
(n)

`;f . For simplicity, the following

central-limit theorem is restricted to that particular case. A similar result could

be stated in the general case.

Proposition 3.1. Let f satisfy Assumptions A1 and A2. Assume that Z1; : : :,

Zn are i.i.d., with density g, where g satis�es A1 and is such that
R
1

�1
�f (x)g(x)dx

= 0 and Ig(f) <1. Then , for all k and `,�
(n� 1)1=2r

(n)

1;f ; : : : ; (n� k)1=2r
(n)

k;f ; (n� 1)1=2q
(n)

1;f ; : : : ; (n� `)1=2q
(n)

`;f

�
(3:9)

is asymptotically multinormal, with mean 0 and covariance matrix�
Ik�k Cf ;g

C0

f ;g I`�`

�
; (3:10)

where (Cf ;g)ij = (m3

�3
)g(

m4

�4
)�1=2
g I[i = j = 1], with (mi=�

i)g =
R
1

�1
xig1(x)dx,

i = 3; 4.

Proof. The proof is straightforward, and we only briey sketch it here. Con-

sider arbitrary linear combinations of the components of (3.9): they are sums of

max(k; `)-dependent variables, and their asymptotic normality results from the

classical Robbins-Hoe�ding central-limit theorem for m-dependent summands

(see, e.g., Anderson (1971) p.427). Application of the usual Cram�er-Wold argu-

ment completes the proof.

Note that the assumptions of the proposition are satis�ed in the following

two cases:

� f is Gaussian and g satis�es A1: then
R
1

�1
�fgdx reduces to

R
1

�1
xg(x)dx = 0,

and
R
1

�1
�2
f (x)g(x)dx to

R
1

�1
x2g(x)dx = �2

g ;

� f and g are symmetric with respect to the origin, g satis�es A1 and

Ig(f) <1.

Asymptotic normality still holds under densities g such that
R
�f (x)g(x)dx 6= 0,

but the centering terms and asymptotic covariance matrices are then considerably

more complicated.
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3.4. A correlogram-based LAN result

Assume that X0 and �0 are observable. These starting values have no inu-

ence upon asymptotic results (their inuence on central sequences is oP (1)), but

they allow for a considerable simpli�cation of the form of likelihood functions.

Thus the likelihood functions and log-likelihood ratios �
(n)

�;f(�; a) considered here

(see Section 2.2) are those associated with (�0; X0;X
(n)).

Proposition 3.2. Assume that f satis�es A10, A20 and A3. Let Zt = Z
(n)
t (a) =

X
(n)
t � aX

(n)
t�1, t = 1; : : : ; n. Then

(i) LAN1 and LAN2 hold, with

�
(n)

f (a) =
n�1X
i=1

ai�1(n� i)1=2
 
c
(n)

i;f

d
(n)

i;f

!
(3:11)

= [Î(n)(f1)]
1=2

(
(n� 1)1=2

 
r
(n)

1;f

(m̂
(n)
4 )1=2q

(n)

1;f

!
+

n�1X
i=2

ai�1(n� i)1=2
 
r
(n)

i;f

q
(n)

i;f

!)

and

W2
f (a) = I(f1)

�
(1� a2)�1 (m3

�3
)f

(m3

�3
)f (m4

�4
)f +

�2

1�a2

�
: (3:12)

(ii) under H(n)
g (a; 0), where g satis�es A1,

R
1

�1
�fgdx = 0 and Ig(f) < 1, as

n!1, �
(n)

f (a) is asymptotically normal, with mean 0 and covariance matrix

W2
f ;g(a) = Ig(f)

�
(1� a2)�1 (m3

�3
)g

(m3

�3
)g (m4

�4
)g +

a2

1�a2

�
: (3:13)

Proof. See Appendix A.

Note that, for Gaussian f , (3.12) yields

W2
G
(a) =

�
(1� a2)�1 0

0 3 + a2

1�a2

�
; (3:14)

whereas under an arbitrary innovation density g, (3.13) (still for Gaussian f) in

general is not diagonal, with

W2
G;g(a) =

�
(1� a2)�1 (m3

�3
)g

(m3

�3
)g (m4

�4
)g +

a2

1�a2

�
; (3:15)

this latter matrix clearly strongly depends on the skewness and kurtosis of the

underlying (in practice, unknowm) density g.
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4. Local Asymptotic Linearity

4.1. Asymptotic distributions under local alternatives

The LAN result of Proposition 3.2 and LeCam's so-called third lemma also

provide for asymptotic distributions under local alternatives of bilinear depen-

dence. Inspecting the form ((4.3) below) of �
(n)

f (a)'s asymptotic mean immedi-

ately reveals the main problem we are faced with: the skewness of the underlying

density g induces the same type of asymptotic behavior as does the presence of

a bilinear term in the model.

Proposition 4.1. Assume that f satis�es A1 and A2. Let g satisfy A10, A20,

A3, and be such that
R
1

�1
�fgdx = 0 and Ig(f) < 1. Denote by (�(n); �(n)) a

bounded sequence: supn(j�
(n)
j + j�(n)

j) < 1. Then, under H(n)
g (a + n�1=2�(n),

n�1=2�(n)=�), where �2 denotes the variance associated with g, as n!1,

(i) the joint distribution of (3:9) is asymptotically multinormal, still with covari-

ance matrix (3:10), but with centering terms

�
[�(n) + �(n)(m3

�3
)g](Ig(f))

�1=2Ig(f; g); i = 1,

�(n)ai�1(Ig(f))
�1=2Ig(f; g); i > 1,

(4:1)

for (n� i)1=2r
(n)

i;f , and

�
[�(n)(m3

�3
)g + �(n)(m4

�4
)g](

m4

�4
)�1=2
g (Ig(f))

�1=2Ig(f; g); i = 1,

�(n)ai�1(Ig(f))
�1=2Ig(f; g); i > 1,

(4:2)

for (n� i)1=2q
(n)

i;f .

(ii) �
(n)

f (a) is asymptotically bivariate normal, with mean

�
�(n)(1� a2)�1 + �(n)(

m3

�3
)g; �

(n)(
m3

�3
)g + �(n)

�
(
m4

�4
)g +

a2

1� a2

��0
Ig(f; g);

(4:3)

and covariance matrix (3.12).

Proof. Here, again, the proof is lengthy but easy. Denoting by

�(n)
g;�(a) =

�X
i=1

ai�1(n� i)1=2

 
c
(n)
i;g

d
(n)
i;g

!

a truncated version of �(n)
g (a), the asymptotic joint normality of (3.9) and

�(n)
g;�(a) follows along the same lines as in the proof of Proposition 3.1. Now, the

di�erence�(n)
g (a)��(n)

g;�(a) converges to zero in probability, as �!1, uniformly

in n, i.e., for all � > 0 and � > 0, there existsK such that P [k�(n)
g (a)��(n)

g;�(a)k >

�] < � for all � > K and all n. Applying Anderson's (1971) Theorem 7.7.1



OPTIMAL TESTS FOR AUTOREGRESSIVE AGAINST BILINEAR DEPENDENCE 157

to arbitrary linear combinations of (3.9) and �(n)
g (a), along with the classical

Cram�er-Wold argument then provides the joint asymptotic normality of (3.9)

and �(n)
g , hence that of (3.9) and �

(n)

�(n);g. LeCam's third Lemma completes the

proof of Part(i) of the proposition, from which Part(ii) is an immediate conse-

quence. Details are left to the reader.

4.2. Local asymptotic linearity

Asymptotic linearity results play an essential role when estimated residuals

are to be substituted for the exact ones in test statistics. Such results have

been obtained in Kreiss (1987, (4.5)) and Hallin and Puri (1994), Proposition 5.1

(iii) for f -autocorrelation coe�cients; their analogues for cubic autocorrelation

coe�cients are derived here.

Proposition 4.2. Assume that f satis�es A1 and A2. Let g satisfy A10, A20,

A3, and be such that
R
1

�1
�fgdx = 0 and Ig(f) < 1. Then, under H(n)

g (a), as

n!1, for all bounded sequences �(n) (such that supn[�
(n)]2 <1),

(n� i)1=2(r
(n)

i;f (a+ n�1=2�(n))� r
(n)

i;f (a)) + �(n)ai�1(Ig(f))
�1=2Ig(f; g) = oP (1);

i = 1; 2; : : : ; (4:4)

(n�1)1=2(q
(n)

1;f (a+n
�1=2�(n))�q

(n)

1;f (a))+�
(n)(

m3

�3
)g(

m4

�4
)�1=2
g (Ig(f))

�1=2Ig(f; g)

= oP (1); (4:5)

and, for i = 2; 3; : : :,

(n� i)1=2(q
(n)

i;f (a+ n�1=2�(n))� q
(n)

i;f (a)) = oP (1): (4:6)

Proof. See Appendix B.

Denote by â(n) an estimate of a satisfying the following assumptions.

(A4) (i) â(n) is root n-consistent, i.e., for all f 2 F , all a 2 (�1; 1), all � > 0, there

exist � = �(f ; a; �) andN = N(f ; a; �) such that, underH
(n)

f (a), P [n1=2
jâ(n)�aj >

�] < �, all n � N . (ii) â(n) is locally discrete, i.e. for all f 2 F , all a 2 (�1; 1),

all �xed c > 0, the number of possible values of â(n) in intervals of the form

[a� cn�1=2] remains bounded, under H
(n)

f (a), as n!1.

Assumption A4(i) is satis�ed by all usual estimates (e.g., by a(n)=
P
XtXt�1=

P
X2

t ;

but \approximate" or robust estimates can be considered as well). As for As-

sumption A4(ii), though discretization techniques can be used (see LeCam (1960),

Hallin and Puri (1994), Section 5.3), it has no practical implications and safely

can be ignored (except for the purpose of proving convergence theorems). The
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number of digits in numerical applications indeed is always strictly bounded. We

then have the following Corollary to Proposition 4.2.

Corollary 4.2. Let â(n) satisfy A4(i) and (ii). Denote by r̂
(n)

i;f , q̂
(n)

i;f and �̂
(n)

f ,

respectively, the correlation coe�cients and central sequence r
(n)

i;f (â
(n)), q

(n)

i;f (â
(n))

and�
(n)

f (â(n)) computed from the resulting estimated residuals Z
(n)
t (â(n)). Then,

under the assumptions of Proposition 4.2,

(n�i)1=2(r̂
(n)

i;f �r
(n)

i;f ) = �ai�1(Ig(f))
�1=2Ig(f; g)n

1=2(â(n)�a)+oP (1); i = 1; 2; : : : ;

(4:7)

(n�1)1=2(q̂
(n)

1;f �q
(n)

1;f ) = �(
m3

�3
)g(

m4

�4
)�1=2
g (Ig(f))

�1=2Ig(f; g)n
1=2(â(n)�a)+oP (1);

(4:8)

(n� i)1=2(q̂
(n)

i;f � q
(n)

i;f ) = oP (1); i = 2; 3; : : : (4:9)

and

�̂
(n)

f (â(n))��
(n)

f (a) = �

�
(1� a2)�1

(m3

�3
)g

�
Ig(f; g)n

1=2(â(n) � a) + oP (1):

The proof readily follows from an argument which goes back to LeCam (see

Kreiss (1987), Lemma 4.4 for a formal proof).

5. Locally Asymptotically Optimal Tests

5.1. General case

We now can state the main result of the paper. Let

m̂
(n)
3 (â(n)) =

n�1
Pn

t=1[Z
(n)
t (â(n))]3

n�1[
Pn

t=1[Z
(n)
t (â(n))]2]3=2

(5:1)

and

m̂
(n)
4 (â(n)) =

n�1
Pn

t=1[Z
(n)
t (â(n))]4

[n�1
Pn

t=1[Z
(n)
t (â(n))]2]2

: (5:2)

Proposition 5.1. Assume that f satis�es A1 and A2. Let g satisfy A10, A20,

A3, and be such that
R
1

�1
�fgdx = 0 and Ig(f) <1. Let â(n) satisfy A4. Then,

the test rejecting H(n) whenever

Q̂
(n)

f =
1� (â(n))2

Î(n)(f1)[m̂
(n)
4 (1� (â(n))2) + (â(n))2 � (m̂

(n)
3 )2(1� (â(n))2)2]

(5:3)

��
(n)

f (â(n))0
�
(m̂

(n)
3 )2(1� (â(n))2) �m̂

(n)
3 (1� (â(n))2)

�m̂
(n)
3 (1� (â(n))2) 1

�
�

(n)

f (â(n))

exceeds the (1 � �)-quantile �2
1�� of a chi-square variable with one degree of

freedom
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(i) has asymptotic level � under H(n)
g ,

(ii) is locally asymptotically most stringent against [a2(�1;1)[b6=0H
(n)

f (a; b) (at

asymptotic probability level �),

(iii) has asymptotic power

1��

�
z�=2 + �((

m4

�4
)g +

a2

1� a2
� (

m3

�3
)2g(1� a2))1=2Ig(f; g)(Ig(f))

�1=2

�

+�

�
�z�=2 + �((

m4

�4
)g +

a2

1� a2
� (

m3

�3
)2g(1� a2))1=2Ig(f; g)(Ig(f))

�1=2

�
(5:4)

against H(n)
g (a; n�1=2�=�), where z� and � stand for the (1 � �)-quantile and

distribution function of the standard normal variable, respectively.

(iv) If moreover â(n) is the (pseudo-)maximum likelihood estimator associated

with f , then �
(n)

f (â(n))1 = oP (1), and Q̂
(n)

f reduces to

Q̂
(n)

f =
[1� (â(n))2][�

(n)

f (â(n))2]
2

Î(n)(f1)[m̂
(n)
4 (1� (â(n))2) + (â(n))2 � (m̂

(n)
3 )2(1� (â(n))2)2]

:

Proof. The form of the test statistic (5.3) follows from (3.13) and the general

result (2.6) by an explicit computation of

W�2
f (â(n))�

h
(W2

f (â
(n)))11

i
�1
�
1 0

0 0

�
:

De�ne

Q(n)(a) = (�
(n)

f (a))0(W2
f (â

(n)))�1=2

� fI� (W2
f (â

(n)))1=2(Î(n)(f1))
�1

�
1� (â(n))2 0

0 0

�
(W2

f (â
(n)))1=2g

� (W2
f (â

(n)))�1=2�
(n)

f (a): (5:5)

The matrix between braces is symmetric and idempotent, of rank one, and, since

W2
f (�) has been assumed continuous, (W2

f (â
(n)))�1=2�

(n)

f (a) under H
(n)

f (a; 0)

is asymptotically N(0; I); Q(n)(a) therefore is asymptotically chi square under

H
(n)

f (a; 0), with one degree of freedom. Substituting â(n), m̂
(n)
3 and m̂

(n)
4 for a,

m3=�
3 and m4=�

4, respectively, in (5.5) yields Q(n)(â(n)) = Q̂
(n)

f . Now,

Q(n)(â(n))�Q(n)(a)

= (�
(n)

f (â(n)) +�
(n)

f (a))0
�
(W2

f (â
(n)))�1

� (Î(n)(f1))
�1

�
1� (â(n))2 0

0 0

��

� (�
(n)

f (â(n))��
(n)

f (a));

where, from Corollary 4.2,

�
(n)

f (â(n))��
(n)

f (a) = �(n)((1� (â(n))2)�1; m̂
(n)
3 )0 + oP (1)
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under H(n)
g (a), as n ! 1, and �(n) itself is OP (1). And, since Î(n)(f1)((1 �

(â(n))2)�1; m̂
(n)
3 ) coincides with W2

f (â
(n))'s �rst row,

�
(W2

f (â
(n)))�1

� (Î(n)(f1))
�1

�
1� (â(n))2 0

0 0

���
(1� (â(n))2)�1

m̂
(n)
3

�

= (Î(n)(f1))
�1

��
1

0

�
�

�
1

0

��
= 0:

This entails the asymptotic equivalence, under H(n)
g (a) (hence, also under the

contiguous H(n)
g (a; n�1=2b)), of Q(n)(a) and the test statistic Q

(n)

f (â(n)), and com-

pletes the proof of part (i) of the proposition.

Part (ii) now is obvious, since (5.3) under H
(n)

f (a) is of the form Q
(n)

f (â(n)),

with Q
(n)

f (�) given in (2.6). Part (iii) follows from the same asymptotic equiva-

lence (underH(n)
g (a; n�1=2b)) as above, and the asymptotic distribution of�

(n)

f (a)

given in Proposition 4.1 (ii): Q̂
(n)

f then is asymptotically non central chi-square,

still with one degree of freedom, and with noncentrality parameter

�2[(
m4

�4
)g +

a2

1� a2
� (

m3

�3
)2g(1� a2)]I2g (f; g)(Ig(f))

�1:

The explicit local power �nally results from expressing the distribution function

of the noncentral chi-square variable with one degree of freedom in terms of the

standard normal one �.

Note that the local power (5.4) is a complicated function of a2=(1� a2),

(m3=�
3)2g, (m4=�

4)g and Ig(f; g)(Ig(f))
�1=2. For given �2 and g, bilinearity is

more easily detected as a2 gets closer to one. Under Gaussian f , and under

the assumption that (m3=�
3)g = 0 and (m4=�

4)g = 3, we retrieve Gu�egan and

Pham's (1992) noncentrality parameter �2[3 + a2=(1� a2)]:

5.2. The Gaussian (Lagrange multiplier) test

A popular method for deriving locally optimal tests is the Lagrange multi-

plier method applied to Gaussian likelihood functions. This approach has been

considered (in the present context of testing against bilinear dependence) by

Saikkonen and Luukkonen (1988, 1991) and Gu�egan and Pham (1992). The

resulting test asymptotically coincides with the optimal test (associated with

Gaussian densities f) described here when the stronger assumption is made that

â(n) is a Gaussian maximum likelihood or least square estimate (see Part (iv) of

Proposition 5.1).

The traditional derivation of Lagrange multiplier tests relies on the analytical

expression of Gaussian likelihoods, so that special attention has to be given to
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the matrices involved in the quadratic forms: if (5.3) and (2.7) are based on the

asymptotic covariance matrix (3.14), the much simpler test statistic indeed is

obtained:

Q
(n)

G
(â(n)) = (1� (â(n))2)=(3 � 2(â(n))2)(�

(n)

G
(â(n)))22

=
h
(1 � (â(n))2)=(3� 2(â(n))2)(�̂(n))3

i

�

 
n�1X
i=1

(â(n))i�1(n� i)�1=2

nX
t=i+1

ẐtẐt�1Ẑt�i

!2

;

with Ẑt = Xt � â(n)Xt�1. Clearly, Q
(n)

G
(â(n)) is asymptotically chi-square under

AR(1) dependence with Gaussian innovation process, but not (in view of (3.15))

under arbitrary innovation densities g (as soon as g either is skew, or has kurtosis

(m4=�
4)g 6= 3). The resulting Lagrange multiplier test is not (even asymptoti-

cally) valid under arbitrary densities. In order to avoid this, Gu�egan and Pham

(1992) make the rather restrictive assumptions that (m3

�3
)g = 0 and (m4

�4
)g = 3.

The test statistic proposed by Saikkonen and Luukkonen (1988), however, avoids

this defect and, after simple algebra, easily reduces to the particular form given

in part (iv) of Proposition 5.1.
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Appendix A: Proof of Proposition 3.2

All limits and expectations are taken under H
(n)

f (a; 0), as n ! 1. For

simplicity, we omit the superscript n in X
(n)
t and Z

(n)
t . It follows from the

invertibility results of Pham and Tran (1981) that, for n su�ciently large, the

log-likelihood �
(n)

�(n) (with �
(n) = (�(n); �(n))0) decomposes into

�
(n)

�(n);f
=

nX
t=1

h
log f(Zt � Y

(n)
t )� log f(Zt)

i
+ oP (1);

with

Y
(n)
t = n�

1
2 (�(n) + ��1�(n)Xt�1)Xt�1

+

t�1X
j=2

(�n�
1
2��1�(n))j�1(a+ n�

1
2 (�(n) + ��1�(n)Xt�j))

jY
k=1

Xt�k

� (�n�
1
2��1�(n))t�1

 
t�1Y
k=1

Xt�k

!h
(a+ n�

1
2�(n))X0 + n�

1
2��1�(n)X0�0

i
:
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Since �f is di�erentiable, for some sequence �
(n)
t 2 (0; 1),

�
(n)

�(n);f =
nX
t=2

�f (Zt)Y
(n)
t �

1

2

nX
t=2

(Y
(n)
t )2 _�(Zt � �

(n)
t Y

(n)
t ) + oP (1)

= �
(n)
1 �

1

2
�

(n)
2 + oP (1):

The �rst term in this latter expression in turn decomposes into

�
(n)
1 = n�

1
2

nX
t=2

�f (Zt)
h
(�(n) + ��1�(n)Xt�1)Xt�1 � ��1a�(n)Xt�1Xt�2

i

� (n�)�1

nX
t=2

�f (Zt)
h
(�(n) + ��1�(n)Xt�2)Xt�1Xt�2

i

+
nX
t=2

�f (Zt)

8<
:

t�1X
j=3

(�n�
1
2��1�(n))j�1(a+n�

1
2 (�(n)+��1�(n)Xt�1))

jY
k=1

Xt�k

9=
;

+

nX
t=2

�f (Zt)(�n
�
1
2��1�(n))t�1

t�1Y
k=1

Xt�k

h
(a+n�

1
2�(n))X0+n

�
1
2��1�(n)X0�0

i

= �
(n)
11 +�

(n)
12 +�

(n)
13 +�

(n)
14 ; say.

The identity Xt =
Pt�1

i=0 a
iZt�i + atX0 and some algebra yield

�
(n)
11 = n�

1
2

nX
t=2

�f (Zt)

(
�(n)

t�2X
i=0

aiZt�i�1

+��1�(n)

2
4
 

t�2X
i=0

aiZt�i�1

!2

�

 
t�2X
i=0

aiZt�i�1

! 
t�3X
i=0

ai+1Zt�i�2

!3
5
9=
;+oP (1)

= n�
1
2

nX
t=2

�f (Zt)

(
�(n)

t�2X
i=0

aiZt�i�1 + ��1�(n)

t�2X
i=0

aiZt�1Zt�i�1

)
+ oP (1)

= �(n)

n�1X
i=1

ai�1(n� i)�
1
2

nX
t=i+1

�f1

�
Zt

�̂(n)

�
Zt�i

�̂(n)

+ �(n)

n�1X
i=1

ai�1(n� i)�
1
2

nX
t=i+1

�f1

�
Zt

�̂(n)

�
Zt�1

�̂(n)

Zt�i

�̂(n)
+ oP (1)

= (�(n))0�
(n)

f (a) + oP (1):
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The remaining terms �
(n)
12 , �

(n)
13 and �

(n)
14 all are oP (1)'s. Considering for instance

�
(n)
13 ,

�
(n)
13 = a(�(n))2(n�2)�1

nX
t=2

�f (Zt)Xt�1Xt�2Xt�3

+ a
nX
t=2

t�1X
j=4

(�n�
1
2��1�(n))j�1�f (Zt)

jY
k=1

Xt�k

+ �n�
1
2

nX
t=2

nX
j=3

(�n�
1
2��1�(n))j�1�f (Zt)

jY
k=1

Xt�k

�

nX
t=2

nX
j=3

(�n�
1
2��1�(n))j�f (Zt)

jY
k=1

Xt�k

= �
(n)
131 +�

(n)
132 +�

(n)
133 � �

(n)
134:

The �rst term �
(n)
131 clearly converges in probability to E[�f (Z4)X3X2X1] = 0.

Since j
Qj

k=1Xt�kj
�j converges a.s. to exp[E log jX1j], j�

(n)
132j is a.s. bounded by

jaj
nX
t=2

X
j�4

(n�
1
2��1

j�(n)
j)j�1

j�f (Zt)j[exp(E log jX1j+C)]j

which in turn converges to zero almost surely. The third and fourth terms are

handled similarly, as well as �
(n)
12 , �

(n)
13 and �

(n)
14 . Details are left to the reader.

Turning to �
(n)
2 , it follows from assumption A3 that

��� nX
t=2

(Y
(n)
t )2 _�(Zt � �

(n)
t Y

(n)
t )�

nX
t=2

(Y
(n)
t )2 _�(Zt)

��� � Af

nX
t=2

jY
(n)
t j

3

� 16

nX
t=2

(n�
1
2 (j�(n)

j+ ��1
j�(n)Xt�1j)

3

+ 16

nX
t=2

n t�1X
j=2

(n�
1
2��1

j�(n)
j)j�i(jaj+ n�

1
2 (j�(n)

j+ j�(n)Xt�1j)

jY
k=1

jXt�kj

o3

+ 16

nX
t=2

n
(n�

1
2��1j�(n)

j)t�1
t�1Y
k=1

jXt�kj(jaj+n
�
1
2 j�(n)

j)jX0j+n
�

1
2��1j�(n)

jjX0�0j)
o3

= 16
�
�

(n)
21 +�

(n)
22 +�

(n)
23

�
:
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Clearly, �
(n)
21 is oP (1); �

(n)
22 and �

(n)
23 can be treated along the same lines as �

(n)
13 ,

and also are oP (1)'s. Up to oP (1) terms, �
(n)
2 thus reduces to

nX
t=2

(Y
(n)
t )2 _�f (Zt)

=

nX
t=2

_�f (Zt)fn
�

1
2 (�(n) + ��1�(n)Xt�1)Xt�1

+

t�1X
j=2

(�n�1=2��1�(n))(a+ n�1=2(�(n) + ��1�(n)Xt�j))

jY
k=1

Xt�kg
2

+

nX
t=2

_�f (Zt)
n
(�n�

1
2��1�(n))t�1((a+n�

1
2�(n))X0+n

�
1
2��1�(n)X0�0

jY
k=1

Xt�k

o2

+ 2

nX
t=2

_�f (Zt)
n
n�

1
2 (�(n) + ��1�(n)Xt�1)Xt�1

+

t�1X
j=2

(�n�
1
2��1�(n))j�1(a+ n�

1
2 (�(n) + ��1�(n)Xt�j)

jY
k=1

Xt�k)

� (�n�
1
2��1�(n))t�1

t�1Y
k=1

Xt�k((a+ n�
1
2�(n))X0 + n�

1
2��1�(n)X0�0)

o

= �
(n)
21 +�

(n)
22 +�

(n)
23 :

The �rst term �
(n)
21 decomposes into

�
(n)
21 = n�1

nX
t=2

_�f (Zt)f�
(n)Xt�1 + ��1�(n)X2

t�1 � a��1�(n)Xt�1Xt�2g
2

+

nX
t=2

_�f (Zt)f�n
�1��1�(n)(�(n) + ��1�(n)Xt�2)Xt�2Xt�1

+

t�1X
j=3

(�n�
1
2��1�(n))j�1(a+ n�

1
2�(n) + ��1�(n)Xt�j))

jY
k=1

Xt�kg
2

+ 2n�
1
2

nX
t=2

_�f (Zt)
n
[(�(n) + ��1�(n)Xt�1)Xt�1 � a��1�(n)Xt�1Xt�2]

� [�n�1��1�(n)(�(n) + ��1�(n)Xt�2)Xt�1Xt�2

+
t�1X
j=3

(�n�
1
2��1�(n))j�1(a+ n�

1
2 (�(n) + ��1�(n)Xt�j))

jY
k=1

Xt�k]
o

= �
(n)
211 +�

(n)
212 + 2�

(n)
213;

with
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�
(n)
211 = n�1

nX
t=k+1

_�f (Zt)
n
�(n)

k�1X
i=0

aiZt�i�1 + ��1�(n)(
k�1X
i=0

aiZt�i�1)
2

� a��1�(n)

k�1X
i=0

aiZt�i�1

k�2X
i=0

aiZt�i�2

o2

+R
(n)

k + n�1L
(n)

k

= n�1

nX
t=k+1

�
(k;n)
t +R

(n)

k + n�1L
(n)

k :

It is easily seen that R
(n)

k converges to zero (in L1 norm), as k ! 1, uniformly

in n, that n�1L
(n)

k (k �xed) converges to zero (in L1 norm) as n!1, and that,

the �
(k;n)
t 's being k-dependent (�xed k), n�1

Pn

t=k+1 �
(k;n)
t �E(�

(k;n)
t ) = oP (1) as

n!1. Now,

E(�
(k;n)
t ) = I(f1)

n
(�(n))2(1 +

a2

1� a2
(1� a2k�3))

+ 2�(n)�(n)(
m3

�3
)f + (�(n))2((

m4

�4
)f +

a2

1� a2
(1� a2k�3))

o
;

which in turn is asymptotically equivalent, as k !1, to

I(f1)

�
(�(n))2(1� a2)�1 + 2�(n)�(n)(

m3

�3
)f + (�(n))2((

m4

�4
)f +

a2

1� a2
)

�

= (�(n))0W2
f�

(n):

It follows that �
(n)
211 = (�(n))0W2

f�
(n) + oP (1). Consider now �

(n)
212:

j�
(n)
212j � 2��2(�(n))2n�2

nX
t=2

j _�f (Zt)jj(�
(n) + ��1�(n)Xt�2)Xt�1Xt�2j

2

+ 2

nX
t=2

j _�f (Zt)j
���t�1X
j=3

(�n�1=2��1�(n))j�1

� (a+ n�1=2(�(n) + ��1�(n)Xt�j))

jY
k=1

Xt�k

���2:
The two terms in this upper bound can be treated in the same way as �

(n)
12 and

�
(n)
13 , respectively. The case of �

(n)
213 is entirely similar to that of �

(n)
212. As for �

(n)
22

and �
(n)
23 , they can be handled along the same lines as �

(n)
21 ; details are left to the

reader.

This completes the proof of Part (i) of Proposition 3.2. Part (ii) readily

follows from Proposition 3.1 and the de�nition of the central sequence �
(n)

f in

terms of autocorrelation and cubic autocorrelation coe�cients.

Appendix B: Proof of Proposition 4.2

We concentrate on the proof of (4.6); the derivation of (4.5) is very similar

to that of Part (iii) of Proposition 5.1 in Hallin and Puri (1994), of which (4.4)

is a particular case.
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UnderH(n)
g (a), the process Z

(n)
t =Zt(a+n

�1=2�(n))=Xt�(a+n
�1=2�(n))Xt�1,

t 2 Z, is ARMA (1,1), so that Lemmas 5.2, 5.3 and 5.4 of Hallin and Puri (1994)

hold. For simplicity, put Z0
t = Zt(a) = Xt � aXt�1, and write F1 � F2(�) instead

of F1(F2(�)). Also, de�ne

F�1
[m](u) =

8<
:
F�1
1 (u�m); if u < u�m,

F�1
1 (u); if u�m � u < 1� u+m,

F�1
1 (1� u+m); if 1� u+m � u,

u 2 (0; 1);

where u�m + u+m = 2=(n+ 1) are such that

Z u�
m

0

F�1
1 (u)du +

Z 1

1�u
+
m

F�1
1 (u)du = 0;

which implies
R 1

0
F�1
[m](u)du =

R 1
0
F�1
1 (u)du = 0. Then (all limits and expectations

are taken under H(n)
g (a))

n
1
2 (Ig(f))

1
2 (q

(n)

i;f (a+ n�1=2�(n))� q
(n)

i;f (a))

= n�
1
2

nX
t=i+1

f[�f1 � F
�1
[m] � F (Z

(n)
t )][F�1

[m] � F (Z
(n)
t�1)][F

�1
[m] � F (Z

(n)
t�i)]

� [�f1 � F
�1
[m] � F (Z

0
t )][F

�1
[m] � F (Z

0
t�1)][F

�1
[m] � F (Z

0
t�i)]g

�E

(
n�

1
2

nX
t=i+1

[�f1 � F
�1
[m] � F (Z

(n)
t )][F�1

[m] � F (Z
(n)
t�1)][F

�1
[m] � F (Z

(n)
t�i)]

)

+R
(n)

[m] + oP (1)

= �
(n)

[m] +R
(n)

[m] + oP (1); (B.1)

where

R
(n)

[m] = n�
1
2

nX
t=i+1

n
[�f1 � F

�1
1 � F (Z

(n)
t )][F�1

1 � F (Z
(n)
t�1)][F

�1
1 � F (Z

(n)
t�i)]

� [�f1 � F
�1
1 � F (Z0

t )][F
�1
1 � F (Z0

t�1)][F
�1
1 � F (Z0

t�i)]
o

� n�
1
2

nX
t=i+1

n
[�f1 � F

�1
[m] � F (Z

(n)
t )][F�1

[m] � F (Z
(n)
t�1)][F

�1
[m] � F (Z

(n)
t�i)]

� [�f1 � F
�1
[m] � F (Z

0
t )][F

�1
[m] � F (Z

0
t�1)][F

�1
[m] � F (Z

0
t�i)]

o

+E
n
n�

1
2

nX
t=i+1

[�f1 � F
�1
[m] � F (Z

(n)
t )][F�1

[m] � F (Z
(n)
t�1)][F

�1
[m] � F (Z

(n)
t�i)]

o

= R
(n)

[m;1] �R
(n)

[m;2] +E
(n)

[m]:

Hence,
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�
(n)

[m] +E
(n)

[m] = n�
1
2

nX
t=i+1

[�f1 � F
�1
[m] � F (Z

0
t )]
n
[F[m] � F (Z

(n)
t�1)][F[m] � F (Z

(n)
t�i)]

� [F�1
[m] � F (Z

0
t�1)][F[m] � F (Z

0
t�i)]

o

+ n�
1
2

nX
t=i+1

h
�f1 � F

�1
[m] � F (Z

(n)
t )� �f1 � F

�1
[m] � F (Z

0
t )
i

� [F�1
[m] � F (Z

(n)
t�1)][F

�1
[m] � F (Z

(n)
t�i)]�E

(n)

[m] +E
(n)

[m]

= D
(n)

[m;1] +D
(n)

[m;2];

so that (B.1) reduces to D
(n)

[m;1] +D
(n)

[m;2] + R
(n)

[m;1] � R
(n)

[m;2] + oP (1). Lemma 5.4 in

Hallin and Puri (1994) and the fact that

max
i+1�t�n

[F�1
[m] � F (Z

(n)
t )][F�1

[m] � F (Z
(n)

t�i+1)]� [F�1
[m] � F (Z

0
t )][F

�1
[m] � F (Z

0
t�i+1)]

is oP (1) as n ! 1, and remains uniformly bounded by (F�1(1 � u+m))
2
�

(F�1(u�m))
2, imply that D

(n)

[m;1] is oP (1) (as n ! 1, for �xed m). Turning to

D
(n)

[m;2], let

�D
(n)

[m;2] =n
�

1
2

nX
t=i+1

n
�f1 � F

�1
[m] � F (Z

(n)
t )� �f1 � F

�1
[m] � F (Z

0
t )
o

� [F�1
[m] � F (Z

0
t�1)][F

�1
[m] � F (Z

0
t�i)]:

Clearly, D
(n)

[m;2] is oP (1) under H
(n)
g (a) i� �D

(n)

[m;2] is oP (1) under H
(n)
g (a+n�1=2�(n))

(still, as n!1). Examining the variance of �D
(n)

[m;2], we obtain

Cov(k)

=Cov
�n

[�f1 �F
�1
[m]�F (Z

(n)
t )]�[�f1 �F

�1
[m]�F (Z

0
t )]
o
[F�1

[m]�F (Z
0
t�1)][F

�1
[m]�F (Z

0
t�i)];n

[�f1 �F
�1
[m]�F (Z

(n)

t�k)]�[�f1 �F
�1
[m]�F (Z

0
t�k]

o
[F�1

[m]�F (Z
0
t�1)][F

�1
[m]�F (Z

0
t�i)]

�
:

It then follows from Lemma 5.3 in Hallin and Puri (1994) that

Var( �D
(n)

[m;2]) � 4A2
f (F

�1(1� u+m))
4Ef[F�1

[m]�F (Z
(n)
t )]� [F�1

[m]�F (Z
0
t )]g

2

+4A2
f (F

�1(1 + u+m))
4Ef[F�1

[m]�F (Z
(n)
t )]� [F�1

[m]�F (Z
0
t )]g

2

1X
k=1

(�(k))1=2;

where Af denotes the Lipschitz constant in Assumption A3, and �(k) is the

mixing rate associated with Z
(n)
t as an absolutely regular process. It follows

from Lemma 5.3 in Hallin and Puri (1994) that �(k) is decreasing exponentially

in k, which ensures the convergence of �k�(k). Again, the continuity of F�1
[m]�F

and the fact that max1�t�n jZ
(n)
t �Z0

t j is oP (1) imply that Var(D
(n)

[m;2]) converges

to zero as n!1.
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Finally, in view of Lemmas 5.6 and 5.7 of Hallin and Puri (1994), R
(n)

[m;1] and

R
(n)

[m;2] also are oP (1) as m ! 1, uniformly in n. Application of Theorem 7.7.1

of Anderson (1971) completes the proof.
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