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Abstract: In kernel density estimation, a crucial step is to select a proper smoothing

parameter (bandwidth). The bandwidth considerably a�ects the appearance of the

density estimate. The most studied procedure is cross-validation. It is well known that

cross-validation is subject to large sample variation and often selects smaller band-

width. Recently, some procedures have been proposed to remedy the di�culties. The

implementation, the asymptotic properties and the empirical performance of several

bandwidth selectors are investigated. Based on the sample characteristic function, it

is shown that these bandwidth selectors have a similar form. The main di�erence is in

the selection of a second bandwidth to estimate the mean integrated squared errors.

Our simulation study indicates that the selection of the second bandwidth greatly

a�ects the performance of the procedures.

Key words and phrases: Bandwidth selection, characteristic function, cross-valida-

tion, kernel density estimation.

1. Introduction

Given a random sample X1; :::; Xn from a distribution with the density func-

tion f(x), one is often interested in estimating f(x). Silverman (1986) dis-

cussed many important applications of density estimation. The most commonly

used nonparametric method is the kernel estimate f̂�(x) = (n�)�1
P

n

j=1 wf(x �
Xj)=�g; (see Rosenblatt (1956)) where the kernel function w(x) is assumed to

be a symmetric probability density function and � is the bandwidth. The band-

width controls the smoothness of the density estimate and greatly a�ects its

appearance. Selecting a proper � is a crucial step in estimating f(x). Although

in practice, one may choose the bandwidth subjectively, there is a great demand

for automatic (data-driven) bandwidth selection procedures. Some reasons for

using automatic procedures were given in Silverman (1985). In Section 2, we give

a brief background on automatic bandwidth selection.

The most studied automatic bandwidth selector is the least squares cross-

validation (henceforth CV) proposed by Rudemo (1982) and Bowman (1984).

It is well recognized that the bandwidth estimate has a very slow convergence

rate, and is subject to large sample variation. In simulation studies, it is also
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observed that the selector chooses smaller bandwidth much more frequently than

predicted by asymptotic results. The di�culties of cross-validation severely limit

its practicability.

Recently, several procedures have been proposed to remedy the di�culties

of CV. In this paper, we compare the procedures of Scott & Terrell (1987), Park

& Marron (1990), Chiu (1991b, 1992), Hall, Marron & Park (1992) (henceforth

HMP), Sheather & Jones (1991), Hall, Sheather, Jones & Marron (1991) (hence-

forth HSJM) and Jones, Marron & Park (1991) (henceforth JMP). Except for

the biased cross-validation (henceforth BCV) of Scott & Terrell (1987), these

bandwidth estimates have a faster convergence rate. In particular, the proce-

dures of Chiu (1991b, 1992), HSJM (1991), and JMP (1991) give
p
n consistent

estimates. Although the new procedures are asymptotically better than CV, it

was found in simulation studies that some procedures perform much worse than

CV.

The main purpose of this paper is to investigate the theoretic properties, the

implementation, and most importantly, the actual performance of the procedures

under various situations. We show similarities and point out di�erences between

the procedures. We also explain why some procedures do not perform as well as

indicated by the asymptotic results.

Based on Fourier transforms, we show that all the procedures have a similar

form. Roughly speaking, the new procedures use another kernel to estimate the

bias term in the mean integrated squared error (MISE). The high frequency

components of the sample characteristic function are downweighted to reduce

their e�ects. Some practical recommendations are also given in Section 5.

2. Background

A commonly used measure of the performance of f̂�(x) is the mean integrated

squared error MISEn(�) = EfISEn(�)g, where ISEn(�) =
R ff̂�(x) � f(x)g2dx:

Unless indicated otherwise, the integration is over the whole real line throughout

the paper. Under some smoothness assumptions, An(�) = n4=5MISEn(n
�1=5�)

converges to

A(�) = ��1 s w2(x)dx+ 4�1�4fs x2w(x)dxg2 sff 00(x)g2dx (2:1)

which has a unique minimum at �0, where �50 = s w2(x)dx=[fs x2w(x)dxg2
sff 00(x)g2dx]:

In the following discussion, let �0n denote the optimal bandwidth that mini-

mizes MISE(�). We also let �0 = n�1=5�0 be the asymptotic optimal bandwidth.

In the discussion about theoretic properties, we should assume that the density

function and the kernel satisfy the assumptions set in Chiu (1992).
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Rudemo (1982) and Bowman (1984) proposed the least squares CV

CVn(�) =

Z
f̂ 2
�
(x)� n�1

nX
j=1

f̂�;j(Xj);

where f̂�;j(x) is the kernel density estimate without using the jth observation.

The asymptotic properties of the bandwidth estimate were established in Scott

& Terrell (1987) and Hall & Marron (1987). It was shown that the bandwidth

estimate is consistent and is asymptotically normal. The estimate has a very

slow relative convergence rate n�1=10. In the simulation studies of Scott & Ter-

rell (1987) and Chiu (1991b), it was found that CV often selects a very small

bandwidth, and the resulting density estimate is very rough and shows too many

false feathers.

As demonstrated in Rice (1984) and Chiu (1990, 1991a, 1991b, 1992), Fourier

analysis is a powerful tool in the study of bandwidth selection. Following this

approach, we use characteristic functions to compare bandwidth selection proce-

dures. Let �(�) =
R
exp(i�x)f(x)dx be the characteristic function of f(x), and

~�(�) = (1=n)
P

exp(i�Xj) be the sample characteristic function. In the following

discussing, we borrow the terminology \frequency" for � in time series analysis.

For smooth f , j�(�)j decays quickly, and Varf~�(�)g � 1=n at high frequencies.

The information about f is concentrated at the low frequencies.

By Parseval's formula, ISEn(�) can be written as

ISEn(�) =

Z
ff̂�(x)� f(x)g2dx =

1

2�

Z
j�(�) � ~�(�)W (��)j2d�: (2:2)

Let ~�d(�) = ~�(�) � �(�) denote the noise part of ~�(�). Note that j~�d(�)j2
is approximately an exponential random variable with mean f1 � j�(�)j2g=n.
Expand (2.2) to obtain

ISEn(�) =
1

2�

Z
j�(�)j2f1�W (��)g2d�+ 1

2�

Z
j~�d(�)j2W 2(��)d�

� 2

2�

Z
�(�) ~�d(��)W (��)f1 �W (��)gd�: (2:3)

Letting w2(x) = w � w(x), we have from (2.3)

MISEn(�) =
1

2�

Z
j�(�)j2f1 �W (��)g2d�+ 1

2�

Z
W 2(��)f1 � j�(�)j2g=n d�

� 1

2�

Z
j�(�)j2f1 �W (��)g2d�+ w2(0)

n�
: (2:4)

Since W (�) � 1� �2
R
x2w(x)dx=2 for � near the origin,

Z
j�(�)j2f1�W (��)g2d� � �4

8�
fs x2w(x)dxg2

Z
�4j�(�)j2d�: (2:5)
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From (2.5), we could obtain the asymptotic MISE given in (2.1).

Silverman (1986) shows that CV can be approximately expressed by

CV(�) � 1

2�

Z
fj~�(�)j2 � 1=ngfW 2(��)� 2W (��)gd� + w2(0)

n�
: (2:6)

Comparing (2.4) and (2.6), we see that CV uses the �rst term in (2.6) to

estimate the bias term in MISEn(�). Applying a Taylor series expansion yields

�̂CV � �0n = fCV0(�̂CV)�MISE0
n
(�CV)g=MISE00

n
( ~�)

for some ~� between �̂CV and �0n. Simple computation shows that �̂CV � �0n is

proportional to

�
Z
[j~�d(�)j2 �Efj~�d(�)j2g]V (�0n�)=�0nd�� 2

Z
�(�)~�(��)V (�0n�)=�0nd�

(2:7)

plus some negligible terms, where V (�) = W (�)W 0(�)�. The �rst term in (2.7)

is the dominant one. Note that the amplitude of V (�0n�) is signi�cant only

at � = O(n1=5). However, relative to the noise level in ~�(�), the characteristic

function of a smooth density is negligible at � = O(n�1=5). From this, we see that

the di�culty of CV is caused by including too much ~�(�) at high frequencies,

which do not contain much information about f . Figure 1 shows j~�(�)j2 of a data
set (n = 100) simulated from the standard normal distribution. The heights of

the horizontal lines are 3=100 and 1=100, respectively. The sidelobes around

� = 4 and � = 10 are due to the sample variation. The characteristic function

of the normal density has no sidelobes. The sidelobe around � = 10 causes CV

to select a very small bandwidth 0.181, while the optimal bandwidth is 0.445.

The new bandwidth selectors downweight the high frequency components to

reduce their e�ects. According to the targets to be estimated, the bandwidth

selectors can be classi�ed into three groups. The �rst group includes the CV,

the smoothed cross-validation (henceforth SCV) of HMP (1992), the stabilized

selector of Chiu (1991b, 1992), and the procedure of JMP (1991). The bias term

in MISEn(�) is estimated by

1

2�

Z
fj~�(�)j2 � 1=ngf1 �W (��)g2U(��)d�; (2:8)

where U(�) is a real and symmetric weighting function, and � is another smooth-

ing parameter. To improve the convergence rate of the bandwidth estimate, the

smoothing parameter � must converges to zero slower than �0n. The procedure

of JMP (1991) does not subtract 1=n from j~�(�)j2, and sets � proportional to

��2 to make the leading bias term independent of �.
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Figure 1. The plot of j~�(�)j2 of a data set of size 100 simulated from the
standard normal distribution.

The second group comprises the plug-in estimates which estimate the optimal

bandwidth �0n or �0 by replacing the unknown quantities in AMISE(�) (cf: (2.1))

with estimates. The estimate of
R ff 00(x)g2dx has the form

1

2�

Z
�4fj~�(�)j2 � 1=ngU(��)d�: (2:9)

By replacing
R ff 00(x)g2dx in (2.1) with a

p
n-consistent estimate, we obtain ap

n-consistent estimate of �0. In order to obtain a
p
n-consistent estimate of

the optimal bandwidth �0n, we need to expand the approximation one more

term, which depends on
R ff 000(x)g2dx. (See HSJM (1991) for more details). The

estimate of
R ff 000(x)g2dx is obtained in a similar way.

The third group includes the conventional plug-in methods: the BCV of Scott

& Terrell (1987), and the procedures of Park & Marron (1990) and Sheather

& Jones (1991). These procedures use 2��1
R
�4fj~�(�)j2 � 1=ngW 2f�(�)�gd�

to estimate
R ff 00(x)g2dx. Here W 2f�(�)�g is used as the weighting function,

and � is a function of �. The estimate replaces
R ff 00(x)g2dx in AMISE(�) or

AMISE0(�). The procedure of Sheather & Jones (1991) does not subtract 1=n

from j~�(�)j2.
From the discussion above, it can be seen that all selectors have a similar

form. A weighting function U(��) is used to reduce the variation caused by the
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high frequency components of ~�(�). The main di�erence between the procedures

is in the selection of U(�) and the smoothing parameter �.

As we shall see later, it is critical to select a proper �. There are two major

approaches. One approach �gures out the asymptotic optimal value of �. But

since the optimal value depends on the unknown density, it is suggested to set

� according to some \reference density". The main di�culty here is that the

procedures would not perform well unless the true density is quite similar to the

reference density. Also, in order to make the procedures scale equivariant, the

approach needs a scale estimate of the density. We should point out that Sheather

& Jones (1991) used two kernel estimates to estimate �, whose bandwidths are set

according to the reference density. As shown in the simulation study in Section

5, this additional step greatly improves the performance of the procedures using

this approach.

Noting that the variation in the CV is mainly caused by the high frequency

components, Chiu (1991b, 1992) suggested another approach which cuts o� the

high frequency components in estimating
R ff 00(x)g2dx and MISE. The practical

issue here is the selection of the cut-o� frequency.

3. Bandwidth Selectors

In this section, we express some bandwidth selectors using (2.8) and (2.9).

From (2.6), suppose we treat
R fj~�(�)j2 � 1=ngd� (which is unde�ned and inde-

pendent of �) as a �nite constant, and add it to (2.6), then

CVn(�) � 1

2�

Z
fj~�(�)j2 � 1=ngf1 �W (��)g2d�+ w2(0)

n�
:

Thus, we obtain the form (2.8) with U(�) � 1.

The BCV of Scott & Terrell (1987) replaces
R ff 00(x)g2dx in AMISE(�) by

the estimate (2�)�1
R
�4fj~�(�)j2 � 1=ngW 2(��)d�. The bandwidth estimate is

the minimizer of

BCV(�) =
�4

8�
fs x2w(x)dxg2

Z
�4fj~�(�)j2 � 1=ngW 2(��)d�+

w2(0)

n�
;

such that U(�) =W 2(�) and � = �.

Instead of using the same bandwidth �, Park & Marron (1990) use a di�erent

bandwidth to estimate
R ff 00(x)g2dx in the AMISE0(�). The bandwidth estimate

is the root of

�3

2�
fs x2w(x)dxg2

Z
�4fj~�(�)j2 � 1=ngW 2f�(�)�gd� � w2(0)

n�2
= 0:
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The bandwidth � is set as �(�) = CPM�̂
3=13�10=13; where CPM is a constant and

�̂ is the sample standard deviation. The normal density is used as the reference

density to set CPM. There is a type error in the formula of CPM, but we will use

the correct constant in the simulation study of Section 5. The approach of using

a reference density is also suggested in Sheather & Jones (1991), HMP (1992),

HSJM (1991), and JMP (1991).

Sheather and Jones (1991) proposed a modi�cation to Park &Marron (1990).

Their estimate is the root of

�3

2�
fs x2w(x)dxg2

Z
�4j~�(�)j2Wf�(�)�gd� � w2(0)

n�2
= 0:

Note that 1=n is not subtracted from j~�(�)j2. By setting � properly, the e�ect

of the leading bias terms would be cancelled. The bandwidth � is set as �(�) =

��5=7ĈSJ: There is a major di�erence between this and other procedures that

use a reference density. At the �rst stage, the constant CSJ is estimated instead

of being set according to the reference density. The reference density is used

in the second stage to obtain the bandwidths for estimating CSJ. The sample

inter-quartile is used as the scale estimate.

The next group of selectors estimates MISE(�). HMP (1992) propose the

SCV,

SCV(�) =
1

2�

Z
fj~�(�)j2 � 1=ngf1 �W (��)g2U(��)d� + w2(0)

n�
:

They discuss some theoretic properties of the general procedure. For the imple-

mentation, they consider the case U(�) = W 2(�) with w(x) the normal kernel,

and � set as � = �̂CHMPn
�2=13; where �̂ is the sample standard deviation. The

constant CHMP is obtained by using the normal density as the reference density.

JMP (1991) suggested the bandwidth estimate that minimizes

1

2�

Z
j~�(�)j2f1�W (��)g2W 2f�(�)�)gd� +

w2(0)

n�
:

Note that the procedure does not subtract 1=n from j~�(�)j2. The e�ects of the
leading bias terms would cancel when � is set as �(�) = ��2n�23=45CJMP; where

CJMP is a constant obtained by using N(0; �̂2) as the reference density, and �̂ is

some scale estimate.

Noting that the di�culties of CV are caused by including too much ~�(�) at

high frequencies, Chiu (1991b) suggests that ~�(�) be ignored at high frequencies,
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and proposes the stabilized criterion,

S(�) =
1

2�

Z �

��

fj~�(�)j2 � 1=ngf1 �W (��)g2d�+ w2(0)

n�
:

For the stabilized procedure, U(�) = 1[�1;1](�), and � = 1=�. Here 1[�1;1] is

the indicator function on [�1; 1]. Chiu (1991b) proposes to selecting the cut-o�

frequency � as the �rst frequency such that j~�(�)j2 > c=n for some constant

c. Since, at high frequencies, j~�(�)j2 is approximately exponentially distributed

with mean 1=n, it is suggested setting c between 2 and 3. The procedure works

well when j�(�)j2 decays monotonically. However, when j�(�)j has signi�cant
sidelobes, the procedure may ignore the sidelobes, and seriously overestimate the

bandwidth.

To overcome this di�culty, Chiu (1992) proposes selecting � as the minimizer

of

CV1
n
(�) = �(2�)�1

Z �

��

j~�(�)j2d�+ 4�

2�n
: (3:1)

Similar to the di�culties in CVn(�), CV
1

n
(�) also selects large � occasionally. In

order to reduce this chance, Chiu (1992) also suggests a modi�cation. The basic

idea of the modi�ed procedure is to select the cut-o� frequency as a smaller local

minimizer of CV1
n
(�) unless we are sure that the higher frequency components

contain signi�cant information about f . The modi�ed estimate is the global

minimizer of

CVm
n
(�) = CV1

n
(�) + 1:65f2max(0;� � �̂1) s f 2(x)dx=�g1=2=n: (3:2)

The constant 1.65 is used because it is the 95th percentile of the standard normal

distribution. Figure 2 compares CV1
n
(�) and CVm

n
(�) for the data set used in

Figure 1. The stabilized procedures are scale equivariant and do not need a scale

estimate. Note that the rate of � is not �xed, and is adaptive to the smoothness

of the density f .

Finally, we review the plug-in estimates. Chiu (1991b) used
R �
��

�4fj~�(�)j2�
1=ngd� to estimate

R ff 00(x)g2dx, where � is selected in the same way as the

stabilized procedure above. HSJM (1991) proposed the estimate
R
�4fj~�(�)j2 �

1=ngU(��)d�; where U(�) is the Fourier transform of a 14th order polynomial,

and � = n�1=11(�̂=1:349)CHSJM; with �̂ the sample inter-quartile range and CHSJM

being set by using the standard normal density as the reference. The above

estimates of �0 are
p
n consistent. To obtain

p
n consistent estimates of n1=5�0n,

we need an estimate of
R ff 000(x)gdx, which can be obtained in a similar fashion.

Table 1 provides a summary of the implementation of the procedures.
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Figure 2. Comparison of CV1n (�) CVm

n (�) for the data set used in Figure 1.

Table 1. A comparison of the implementation of the procedures. In each

column, \
p
" means that the procedure needs to set the item, and \-"

means that the procedure does not need the item.

Requires

Reference Scale Preset

Procedure u(x) � density estimate constant

CV - - - - -

BCV w � w(x) � - - -

PM w � w(x) c�
10=13

p p
-

SJ w(x) ĉ�
�5=7

p p
-

HSJM 14th order poly. cn
�1=11

p p
-

HMP, SCV w � w(x) cn
�2=13

p p
-

JMP w � w(x) c�
�2
n
�23=45

p p
-

CS Inf. order kernel Estimated - -
p

CSI Inf. order kernel Estimated - - -

CSM Inf. order kernel Estimated - -
p

4. Asymptotic Properties

In this section, we compare the asymptotic properties of the bandwidth se-

lectors discussed in the previous section. To reduce some technical details, we use

c as a generic constant, the meaning of which depends on the context in which
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it is used. By a Taylor expansion, R̂0(�̂) � MISE0(�) = �(�̂ � �0n)MISE00( ~�)

for some ~� lies between �̂ and �0n. Similar expressions can be obtained for the

procedures that estimate AMISE(�) or AMISE0(�). The asymptotic behavior

of �̂ is dominated by R̂0(�0n) � MISE0(�0n). For each bandwidth selector, we

indicate, below, the dominant terms in R̂0(�)�MISE0(�) when � = O(n�1=5).

Except for the procedures of Scott & Terrell (1987), Sheathers & Jones (1991)

and JMP (1991), the dominant terms are

A = c�3
Z
�4[j~�d(�)j2 �Efj~�d(�)j2g]U(��)d� = O(n�1�3��9=2); (4:1)

B = c�3
Z
�4j�(�)j2f1� U(��)gd� = O(�3�2k);

and

C = c�3fs x2w(x)dxg2
Z
�4�(�) ~�d(��)U(��)d� = O(n�1=2�3) = O(n�11=10):

Here 2k is the order of the kernel w(x). In the following discussion, we use the

same notation to denote similar terms.

The CV has no bias, and the dominant variation term is A, which is of order

n�1��3 = O(n�2=5). The term C de�nes the lower bound of the variance of

nonparametric bandwidth estimates. (see Fan & Marron (1992)). For su�ciently

smooth f(x), C becomes dominant when � = o(n�1=9) and k � 3. Since C is

the dominant term for the procedures of Chiu (1991b, 1992), and HJMP (1991),

these procedures are asymptotically optimal.

For the procedures of Park & Marron (1990) and HMP (1992) (with U(�) =

W 2(�) and k = 1), the dominant terms are B and A with the rate n�59=65.

The dominant term in the BCV is

A = c

Z
�4[j~�d(�)j2�Efj~�d(�)j2g]f�3W 2(��)+�4W (��)W 0(��)�)=2gd�: (4:2)

The order of (4.2) is n�2=5, which is of the same order as the term for the CV.

The procedure of Sheather & Jones (1991) does not subtract 1=n from j~�(�)j2,
and thus has an additional bias term D = n�1�3c

R
�4W (��)d�; which is of the

order n�1�3��5 with � = CSJ�
�5=7. They attempt to set CSJ to cancel out the

bias term B and D. The term A (4.1) becomes the dominant term when the bias

terms could be cancelled.

The procedure of JMP (1991) uses some interesting tricks. Noting that the

leading bias term in R̂(�) � MISE(�) is of order �4�2, they set � = cn�
�2

to make the leading bias term be independent of �, and thus does not a�ect,

asymptotically, the bandwidth estimate. Now the leading bias term becomes
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E = c�3�4
R ff (4)(x)g2dx; which is of order n�47=45 with � = CJMPn

�23=45��2.

They claim that by selecting CJMP to o�set the bias terms D and E, the bias

becomes negligible, and the dominant terms are

A = c�3
Z
�4[j~�d(�)j2 �Efj~�d(�)j2g]f2W 2(��) +W (��)W 0(��)��gd�

and

C = c�3
Z
�4�(�)~�d(��)f2W 2(��) +W (��)W 0(��)��gd�:

The order of the terms above are n�11=10. We should point out that, in general,

the constant CJMP is di�erent from the constant obtained from the reference

density, and the bias terms D and E would not cancel.

In Table 2, we provide a summary to compare the convergence rates and the

dominant terms of the procedures.

Table 2. Theoretic comparison of the procedures; the procedures are

arranged in the order of the relative convergence rate of �̂. The cross-

validation does not use �. In the \Bias" column, \-" means that the bias

term is negligible.

Convergence Dominated

Procedure Target Rate of � Rate of �̂ Bias Variance

CS,CSI,CSM MISE Adaptive n
�1=2 - C

CPI
R ff 00g2 Adaptive n

�1=2 - C

HSJM [1]
R ff 00g2 n

�1=11
n
�1=2 - C

JMP [2] MISE n
�1=9

n
�1=2

B �D A+ C

SJ [3] AMISE n
�1=7

n
�5=14

B �D A

PM AMISE n
�2=13

n
�4=13

B A

HMP, SCV [4] MISE n
�2=13

n
�4=13

B A

BCV AMISE n
�1=5

n
�1=10 - A

CV MISE - n
�1=10 - A

[1] Another bandwidth of order n�1=9 is used in estimating
R ff 000g2.

[2] The convergence rate holds when CJMP(f) is the same as the

constant based on the reference density. Otherwise, B and D does not

cancel, and the convergence rate is n�4=9.

[3] The convergence rate holds when a consistent estimate of CSJ(f) is

available, otherwise B �D is not negligible and the convergence rate

is n�2=7.

[4] The authors also discussed using a higher order kernel and an other

setting of �, but provided no suggestion for the implementation.
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5. Simulation and Remarks

As mentioned earlier, the new bandwidth selection procedures have better

asymptotic properties. But the empirical evidence is quite di�erent. It is ob-

served in simulation studies that most of these procedures perform much worse

than the CV. We will provide some explanation for the inconsistency.

In this section, we summarize the results from an extensive simulation study.

We consider 11 densities to cover various situations. The �rst four densities are

(1) the standard normal density, (2) the Cauchy density, (3) the normalized �24:

(�24 � 4)=
p
8 and (4) the log-normal density. We also consider seven mixtures of

normal distributions.

(1) 0:75N(0; 1) + 0:25N(2; 1=9)

(2) 0:5N(0; 1) + 0:5N(8; 1)

(3) 0:9N(0; 1) + 0:1N(0; 100)

(4) 0:25N(�2; 1=16) + 0:5N(0; 1) + 0:25N(2; 1=16)

(5) 0:25N(�4; 1=16) + 0:5N(0; 1) + 0:25N(4; 1=16)

(6) 0:25N(�2; 1=16) + 0:5N(0; 1) + 0:25N(1; 0:01)

(7) 0:25N(�2; 1=16) + 0:5N(0; 1) + 0:25N(1; 1=16)

For the �rst four densities, the amplitude of �(�) decays monotonically. The

Cauchy density has heavy tails. The �24 and the log-normal densities are not very

smooth. The log-normal density also has a very sharp peak. For the mixtures,

the characteristic functions have sidelobes.

Three sample sizes 100, 400, and 1600 were considered. For each case, 200

samples were simulated by using FORTRAN on a Sun-Spark computer. We

applied the procedures on each sample to obtain the bandwidth estimates. For

each procedure, we followed the simulation setting or the suggestion given by the

authors. In particular, we used the normal reference density for the procedures

that require a reference density. For all cases, the kernel w is the standard

Gaussian density and the bandwidth is the standard deviation.

For ease of discussion, here, we list all procedured considered. In the sequel,

w and � are the kernel and the bandwidth for estimating f(x) and u and � are the

kernel and the bandwidth for estimating MISE(�), AMISE(�) or
R ff 00(x)g2dx.

Unless indicated otherwise, the kernels w and u are the standard normal density.

CV The least square cross-validation of Bowman (1984) and Rudemo (1982).

CS The stabilized bandwidth selector Chiu (1991b), based on �̂ with c = 3.

CSI The stabilized bandwidth selector of Chiu (1992), base on �̂
1
, see (3.1).

CSM The modi�ed stabilized bandwidth selector of Chiu (1992), based on �̂m.

CPI The
p
n consistent plug-in bandwidth estimate (Chiu (1991b)) of �0,

with � selected as in SM.
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CPA The
p
n consistent adjusted plug-in bandwidth estimate (Chiu (1991b))

of �0n, with � selected as in SM.

BCV The biased cross-validation of Scott & Terrell (1987).

SCV The smoothed cross-validation of HMP (1992).

JMP The procedure of JMP (1991), with � = Cn�23=45��2.

PM The procedure of Park & Marron (1990).

SJ The procedure of Sheather & Jones (1991).

HSJM The plug-in estimate of HSJM (1991), with u as given in the paper.

For the procedures SCV, JMP, PM, SJ and HSJM that require a scale esti-

mate, we tried both the sample standard deviation and the sample interquartile

range. For CV, CS, CSI, CSM, BCV, SCV and JMP, the minima were searched

inside the interval (0.001, 2). For PM and SJ, the roots were searched inside the

interval (0.001, 2). These functions were evaluated based on the sample charac-

teristic functions, which were obtained by applying the fast Fourier transform to

properly discretized data. The discretization intervals are very small. (See Chiu

(1991b, 1992) for more details about the implementation.)

We now brie
y describe the simulation results. A more detailed report is

available from the author. For the normal density, all new procedures perform

much better than the cross-validation. For the Cauchy density, as one might

expect, using the sample standard deviation as the scale estimate causes serious

problem for SCV, JMP, PM, SJ and HSJM. The procedures HMP, JMP and

HSJM have a sizable bias. For the �24, The biases of HMP, JMP and HSJM

become much larger, and they do not decrease as the sample size increases.

Except for the mixture 0:9N(0; 1)+0:1N(0; 100), the procedures HMP, JMP and

HSJM have a huge bias for all the remaining cases. For the log-normal density,

SCV has a large bias for smaller sample sizes. For the �rst four densities, CS

works exceptionally well. These densities have a monotonically decaying j�(�)j.
The �rst mixture 0:75N(0; 1) + 0:25N(2; 1=9) has been considered in Scott

& Terrell (1987). CSI based on �̂
1

has the best performance for larger sample

sizes. The procedure SJ.sd (SJ using the sample standard deviation as the scale

estimate) has the best performance for smaller sample sizes. Note that j�(�)j2
has weak sidelobes, and so CS ignores the sidelobes and has a large bias. The

procedure CSM sometimes over-estimates the bandwidth. For this density, the

local maximum of the �rst sidelobe of j�(�)j2 is about 0.036. The standard devi-

ation of j~�(�)j2 is about 0.01, and so it is hard to detect the sidelobe. However,

as the sample size increases, the procedure CSM has no trouble to detect the

sidelobes. For the mixtures with higher sidelobes, the procedure CSM always

works very well.

The results for the third mixture is similar to the case of the Cauchy density.
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SJ works well for the �rst three mixtures but is biased for the last four mixtures.

Except for the �rst and the sixth mixtures, the performance of PM is similar to

that of SJ. For the sixth mixture and sample size n = 1600, PM has no root in

(0:001; 2) in about half of the samples. Both SJ and BCV are seriously biased

for the sixth mixture. For the �fth mixture, the procedure BCV almost always

does not have a minimum in (0:001; 2).

Table 3. A comparison of the performance of the bandwidth selectors in the sim-

ulation study. The procedures are arranged according to the ability of handling

various densities. In each column, the number is the number of cases (out of 11

cases) in which the ratio of the sample mean of �̂ to �0n is bigger than the head-

ing of the column, but less than the heading of the next column, \-" indicates no

such case. The numbers in the columns with the heading \10" include the cases

that the minimum or the root is outside the interval [0; 2], or when the estimate

of
R ff (k)(x)g2dx is not valid. For the procedures Hall, Jones, Marron, Park and

Sheather, two scale estimates, standard deviation and inter-quartile-range, are

used, \*" indicated the scale estimate used or suggested in their papers.

n = 100 n = 400 n = 1600

Procedure 1.5 2 3 5 10 1.5 2 3 5 10 1.5 2 3 5 10

CSM - - - - - - - - - - - - - - -

CSI - - - - - - - - - - - - - - -

CPI - - - - - - - - - - - - - - -

CV - - - - - - - - - - - - - - -

SJ, IQR* 2 2 - - - 2 - - - - 1 - - - -

SJ, SD 3 2 - - - 2 1 - - - 2 1 - - -

PM, SD* 5 2 - - - 3 2 - - - 2 1 - - -

PM, IQR 3 3 1 - - 2 1 - - - - - 1 - 1

CS - 2 1 3 - - 3 1 2 - - 4 2 - -

BCV 2 1 - 3 2 1 1 - 1 3 - - - - 2

SCV; IQR 1 2 2 3 - - 3 2 2 - 1 2 2 2 -

SCV; SD* 2 2 4 2 - 4 1 3 2 - 3 2 3 - 1

JMP; SD* 2 2 2 2 1 2 2 2 2 1 2 2 1 3 1

JMP; IQR - 2 1 3 1 1 2 1 4 - 1 2 1 4 -

HSJM; IQR* 1 1 1 2 2 - 2 2 2 1 1 2 2 1 1

HSJM; SD 2 1 3 1 2 3 - 3 1 2 2 1 2 2 1

In Tables 3, we provide a brief summary regarding the bias of the bandwidth

selectors. For each sample size, the table lists the number of times, for the 11

densities, that the ratios of the sample average of the bandwidth estimate to the
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optimal bandwidth is between a certain range.

Finally, we make a few remarks about the procedures and provide some

practical suggestions. Although CV provides an unbiased estimate, it has a

large variation and often selects a very small bandwidth. Therefore, we do not

recommend using the CV alone in practice.

Based on the results, the most highly recommended selector is the modi�ed

stabilized procedure of Chiu (1992). The procedure works well for most cases,

but may have some di�culty in detecting weak sidelobes of j�(�)j. In such cases,

it is usually di�cult to tell whether the sidelobes of ~�(�) are real or are due

to the sample variation. We prefer to be more conservative. That is, unless

we are sure that the sidelobes are real, we would ignore them. The stabilized

procedure based on �̂
1

always outperforms the CV. The main concern here is

that the procedure still selects a smaller bandwidth occasionally, although much

less frequently than the CV. We recommend this procedure to the users who

are more aggressive and would not want to miss possible feature in the density.

In practice, we could use both procedures. When they disagree, there are some

marginal sidelobes, and one may prefer to select either procedure.

For densities that are not far di�erent from the normal density, the procedure

SJ performs quite well. It could be used if one is sure that the density is not

much di�erent from the reference density. In the simulation study, we found that

SJ rarely gives very small bandwidths. We also found that SJ does not severely

overestimate the optimal bandwidth. This could be a desired property for the

users who want to avoid selecting a small bandwidth.

As the simulation results indicate, the idea of using a reference density to

set the bandwidth � does not work well when the true density is di�erent from

the reference density. The true optimal constant could be very di�erent from

the optimal one for the reference density. In this case, we could not expect

the procedures HMP, HSJM and JMP to work well. The procedure SJ thus

makes a signi�cant improvement over other similar procedures by estimating the

bandwidth � in the �rst stage. Being a modi�cation of the procedure PM, and

also using a reference density in setting �, SJ still has a better performance. The

improvement shows the importance of using a proper �, which is interesting and

merits further study.

Selecting a proper scale estimate is also a critical issue for the procedures

that use a reference density. The sample standard deviation should not be used

when the density has heavy tails. In other cases, there is no clear indication

about the choice between the two scale estimates.

The BCV of Scott & Terrell (1987) does not work well for smaller sample

sizes. It also fails for some mixtures even when the sample size is quite large.

Finally, we would like to point out that the sample characteristic function is
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a very helpful tool for selecting a bandwidth. It is highly recommended that one

should plot j~�(�)j2 when estimating a density.
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