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Abstract: A decisive question in nonparametric smoothing techniques is the choice of

the bandwidth or smoothing parameter. The present paper addresses this question

when using local polynomial approximations for estimating the regression function and

its derivatives. A fully-automatic bandwidth selection procedure has been proposed

by Fan and Gijbels (1995a), and the empirical performance of it was tested in detail

via a variety of examples. Those experiences supported the methodology towards a

great extend. In this paper we establish asymptotic results for the proposed variable

bandwidth selector. We provide the rate of convergence of the bandwidth estimate,

and obtain the asymptotic distribution of its error relative to the theoretical optimal

variable bandwidth. These asymptotic properties give extra support to the proposed

bandwidth selection procedure. It is also demonstrated how the proposed selection

method can be applied in the density estimation setup. Some examples illustrate this

application.

Key words and phrases: Assessment of bias and variance, asymptotic normality, bin-

ning, density estimation, local polynomial �tting, variable bandwidth selector.

1. Introduction

Primary interest of this paper focuses on exploring the regression relation-

ship between two variables X and Y . Various nonparametric techniques can be

used to detect the underlying regression structure, but each of them involves

the decisive choice of a smoothing parameter or bandwidth. In this paper we

discuss how to choose a bandwidth when local polynomial �tting is used. It has

been shown extensively in the literature that the local polynomial approximation

method has various nice features, among which, nice minimax properties, sat-

isfactory boundary behavior, applicability for a variety of design-situations and

easy interpretability. (See, for example, Stone (1977), Cleveland (1979), Fan and

Gijbels (1992), Fan (1993) and Ruppert and Wand (1994), among others.)

Assume that the bivariate data (X1; Y1); : : : ; (Xn; Yn) form an i.i.d. sample

from a certain population. The objective is to estimate the regression function

m(x) = E(Y jX = x) and its derivatives. If the (p + 1)th-derivative of m(x) at
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the point x0 exists, we then approximate m(x) locally by a polynomial of order

p:

m(x) � m(x0) +m0(x0)(x� x0) + � � �+m(p)(x0)(x� x0)
p=p!; (1:1)

for x in a neighborhood of x0, and do a local polynomial regression �t

min
�

nX
i=1

�
Yi �

pX
j=0

�j(Xi � x0)
j

�2
K

�
Xi � x0

h

�
; (1:2)

where � = (�0; : : : ; �p)
T . Here K(�) denotes a nonnegative weight function and h

is a smoothing parameter | determining the size of the neighborhood of x0. Let

f�̂�(x0)g denote the solution to the weighted least squares problem (1.2). Then

it is obvious from the Taylor expansion in (1.1) that �!�̂�(x0) estimates m(�)(x0),

� = 0; : : : ; p.

For convenience we introduce some matrix notation. Let W be the diagonal

matrix of weights, with entries Wi � K((Xi � x0)=h). Denote by X the design

matrix whose (l; j)th element is (Xl � x0)
j�1 and put y = (Y1; : : : ; Yn)

T . Then,

the weighted least squares problem (1.2) reads as follows:

min
�

(y�X�)TW(y�X�):

The solution vector is provided via ordinary least squares and is given by

�̂ = (XT
WX)�1XT

Wy: (1:3)

An important issue for the performance of the estimator �̂�(x0) is the choice

of the smoothing parameter h. A constant bandwidth can be su�cient if the

unknown regression function behaves quite smoothly. In other situations a local

variable bandwidth (which changes with the location point x0) is a necessity.

The problem of choosing a smoothing parameter has received much attention in

the literature. See for example, M�uller, Stadtm�uller and Schmitt (1987), Vieu

(1991), Brockmann, Gasser and Hermann (1993), Jones, Marron and Sheather

(1992) and the references therein.

Automatic procedures for selecting constant and local variable bandwidths

in local polynomial regression have been developed recently by Fan and Gijbels

(1995a). This operablemethod is di�erent from Fan and Gijbels (1992) in that the

bandwidth varies with locations. The basic idea for their procedure is to assess

the conditional Mean Squared Error (MSE) of the estimators via deriving good

�nite sample estimates of this theoretical conditional MSE. (See also Section 2.)

The performance of this selection method was investigated in detail via simulation

studies. In the present paper we provide further theoretical foundations for
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the proposed bandwidth selection rule. More precisely, we establish the rate

of convergence of the bandwidth selector as well as the asymptotic distribution

of its error relative to the theoretical optimal variable bandwidth. Furthermore,

we show how to convert a density estimation problem into a regression problem.

This inner connection makes it possible to apply the regression techniques for

density estimation. See Wei and Chu (1994) for another way of converting a

density estimation problem into a regression problem.

The organization of the paper is as follows. In the next section, we explain

briey the bandwidth selection rule and present the asymptotic results for the

estimated optimal bandwidth. In Section 3 we discuss how the bandwidth selec-

tion procedure can be applied in density estimation. Some examples illustrate the

application in this setup. The last section contains the proofs of the theoretical

results established in Section 2.

2. Bandwidth Selection Method and Main Results

Let �̂ be the vector of the local polynomial regression estimates, de�ned in

(1.3). Clearly, its bias and variance, conditionally upon X
~
= fX1; : : : ;Xng, are

given by

Bias(�̂jX
~
) = E(�̂jX

~
)� � = (XT

WX)�1XT
W(m�X�);

Var(�̂jX
~
) = (XT

WX)�1(XT�X)(XT
WX)�1; (2:1)

with m = (m(X1); : : : ;m(Xn))
T , and � = diag(K2((Xi � x0)=h)�

2(Xi)), where

�2(�) denotes the conditional variance of Y given X.

Note that the expressions in (2.1) give the exact conditional bias and variance

of the local polynomial �t. We next study asymptotic expansions of this bias

vector and variance matrix. These expansions serve as a gateway to prove the

asymptotic normality of the selected bandwidth. Let fX(�) denote the marginal

density of X. The following assumptions will be needed.

Assumptions:

(i) The kernel K is a continuous density function having bounded support;

(ii) fX(x0) > 0 and f 00
X
(x) is bounded in a neighborhood of x0;

(iii) m(p+3)(�) exists and is continuous in a neighborhood of x0;

(iv) �2(�) has a bounded second derivative in a neighborhood of x0;

(v) m(p+1)(x0) 6= 0 and the kernel K is symmetric.

In the sequel we use the following notations. Let �j =
R
ujK(u)du and

�j =
R
ujK2(u)du and denote

Sp = (�i+j�2)1�i;j�(p+1) ;
~Sp = (�i+j�1)1�i;j�(p+1);

S�
p
= (�i+j�2)1�i;j�(p+1) ;

~S
�

p
= (�i+j�1)1�i;j�(p+1):
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Further, set cp = (�p+1; : : : ; �2p+1)
T and ~cp = (�p+2; : : : ; �2p+2)

T .

The asymptotic expansions for the conditional bias and variance are provided

in the next theorem.

Theorem 1. Under Assumptions (i)�(iv), the bias vector and variance matrix

of �̂ have the following expansions:

Bias(�̂jX
~
) = hp+1H�1

�
�p+1S

�1
p
cp + h b�(x0) +OP

�
h2 +

1p
nh

��
(2:2)

and

Var(�̂jX
~
) =

�2(x0)

fX(x0)nh
H�1

�
S�1
p
S�
p
S�1
p

+ h V �(x0) +OP

�
h2 +

1p
nh

��
H�1;

(2:3)

where H = diag (1; h; : : : ; hp),

b�(x0) =
f 0
X
(x0)�p+1 + �p+2fX(x0)

fX(x0)
S�1
p
~cp � f 0

X
(x0)

fX(x0)
�p+1S

�1
p

~SpS
�1
p
cp;

and

V �(x0) =
2�0(x0)fX(x0) + �(x0)f

0

X
(x0)

�(x0)fX(x0)
S�1
p

~S
�

p
S�1
p

� f 0
X
(x0)

fX(x0)

�
S�1
p

~SpS
�1
p
S�
p
S�1
p

+ S�1
p
S�
p
S�1
p

~SpS
�1
p

�
:

We would like to mention that the \OP -terms" in Theorem 1 hold uniformly

in n�b < h < n�a for 0 < a < b < 1, if they are replaced by OP

�
h2 + log n=

p
nh
�
.

Indeed, this can be shown using the same arguments as in the proof of Theo-

rem 1 and the fact that (nhj+1)�1
P

n

i=1(Xi � x0)
jK((Xi � x0)=h) = fX(x0)�j +

hf 0
X
(x0)�j+1 +OP

�
h2 + log n=

p
nh
�
, uniformly in h 2 [n�b; n�a].

Remark 1. For a symmetric kernel K, we show in the proof of Theorem 2 that

the (� +1)th-diagonal element of V �(x0) and the (� +1)th-element of b�(x0) are

zero when p� � is odd. In other words, if p� � is odd, the second leading terms

in the expansions of the bias and variance of �̂� are zero. The requirement for

odd p � � is natural, since the odd order approximations outperform the even

order ones, as demonstrated in Ruppert and Wand (1994) and Fan and Gijbels

(1995b).

Based on Theorem 1, we can derive the rate of convergence for bandwidth

selection. We need the following simple lemma.

Lemma 1. Suppose that a function M(h) has the following asymptotic expan-

sion:

M(h) = ch2(p+1��)
�
1 +OP (h

2 +
log np
nh

)

�
+

d

nh2�+1

�
1 +OP (h

2 +
log np
nh

)

�
;
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uniformly in h 2 [n�b; n�a]. Let hopt be the minimizer of M(h). Then

hopt =

�
(2� + 1)d

2(p+ 1� �)c n

� 1
2p+3 �

1 +OP

�
n�

2
2p+3 logn

��
;

and

M(hopt) = c1�sds(2p+3)(2�+1)�(1�s) [2(p+1��)]�sn�s
�
1 +OP

�
n�

2
2p+3 log n

��
;

with s = 2(p+ 1� �)=(2p+ 3), provided that c; d > 0. If further p > 1, the

log n factor does not have to appear in the \OP -terms".

We now study the theoretical optimal variable bandwidth for estimating the

�th-derivative m(�)(x0). Let

MSE�(x0) = b2
p;�
(x0) + Vp;�(x0);

where bp;�(x0) and Vp;�(x0) are respectively the (� + 1)th-element of Bias(�̂jX
~
)

and the (� + 1)th-diagonal element of Var(�̂jX
~
). De�ne

h�;opt = argmin
h

MSE�(x0):

The quantity MSE�(x0) is, in a sense, an ideal assessment of the conditional MSE

of �̂� , and h�;opt is the ideal bandwidth selector.

We have the following expression for this ideal optimal bandwidth.

Theorem 2. Under Assumptions (i)�(v),
h�;opt � h�;o

h�;o
= OP (n

�
2

2p+3 log n)

provided that p�� is odd, where, with e�+1 the (p+1)�1 unit vector containing

1 on the (� + 1)th-position,

h�;o =

 
(2� + 1)�2(x0)e

T

�+1S
�1
p
S�
p
S�1
p
e�+1

2(p+ 1� �)fX(x0)(�p+1e
T
�+1S

�1
p
cp)2 n

! 1
2p+3

: (2:4)

Hence the ideal optimal bandwidth h�;opt behaves in �rst order like h�;o, the

asymptotical optimal bandwidth.

We next briey motivate a natural estimator for assessing the bias and the

variance in (2.1). Using a Taylor expansion around the point x0, we have

m�X� � ��p+1(Xi � x0)
p+1
�
1�i�n

; and �(Xi) � �(x0):
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Substituting this into (2.1) leads to

Bias(�̂jX
~
) ��p+1S�1n

(sn;p+1; : : : ; sn;2p+1)
T
;

Var(�̂jX
~
) ��(x0)S�1n

(XW2
X)S�1

n
; (2:5)

where

sn;j =
nX
i=1

(Xi � x0)
jK

�
Xi � x0

h

�
and Sn = X

T
WX = (sn;i+j�2)1�i;j�(p+1):

A natural estimate of the bias and the variance is obtained by estimating �p+1
and �2(x0) in (2.5) from another least squares problem.

Let �p+1 be estimated by using a local polynomial regression of order r

(r > p) with a bandwidth h�. Further, estimate �2(x0) by the standardized

residual sum of squares:

�̂2(x0) =
1

tr(W�)� tr
�
(X�T

W
�
X
�)�1X�

W
�2

X
�

� nX
i=1

(Yi � Ŷi)
2K

�
Xi � x0

h�

�
;

where X
� = ((Xi � x0)

j)
n�(r+1)

is the design matrix, W� = diag(K((Xi �
x0)=h�)) is the matrix of weights and ŷ = X

�(X�
T

WX
�)�1X�

T

W
�
y is the vec-

tor of \predicted" values after the local rth-order polynomial �t. The estimated

conditional MSE of �̂� = �̂�(x0) is naturally de�ned by

[MSE�(x0) = b̂2
p;�
(x0) + V̂p;�(x0);

where b̂p;�(x0) and V̂p;�(x0) are respectively the (� + 1)th-element of the bias

vector and the (� + 1)th-diagonal element of the variance matrix in (2.5), with

�p+1 and �(x0) being estimated. More precisely, b̂p;�(x0) refers to the (� + 1)th-

element of �̂p+1S
�1
n

(sn;p+1; : : : ; sn;2p+1)
T
and V̂p;�(x0) is the (� + 1)th-diagonal

element of �̂2(x0) S
�1
n

(XT
W

2
X) S�1

n
.

De�ne the estimated optimal bandwidth as

ĥ� = argmin
h

[MSE�(x0):

We now study the sampling properties of ĥ� . Using the arguments provided

in Theorems 1 and 2 on the set fj�̂p+1j � c; j�̂(x0)j � cg, where c is a large

constant, we �nd that

ĥ� � ĥ�;o

ĥ�;o
= OP (n

�
2

2p+3 log n); (2:6)
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where ĥ�;o is de�ned similarly as h�;o in equation (2.4), but now with �p+1, �
2(x0),

replaced respectively by �̂p+1, �̂
2(x0).

Using equation (2.6) and Theorem 2, we obtain

ĥ� � h�;opt

h�;opt
=
ĥ�;o � h�;o

h�;o
+OP (n

�
2

2p+3 logn):

If further the estimators �̂p+1 and �̂2(x0) are stochastically bounded away from

zero and in�nity, then we have for the relative error

ĥ� � h�;opt

h�;opt
=

(�̂2(x0)=�
2(x0))

1
2p+3 � (�̂2

p+1=�
2
p+1)

1
2p+3

(�̂2p+1=�
2
p+1)

1
2p+3

+OP (n
�

2
2p+3 log n): (2:7)

In order to discuss the asymptotic distribution of (ĥ��h�;opt)=h�;opt, we make

some further assumptions.

Assumptions:

(vi) E(Y 4jX = x) <1 for x in a neighborhood of x0.

(vii) The bandwidth h� satis�es n
�

1
2p+3 << h� << n

�
2p�1

(2p+3)2 (log n)�
2

2p+3 .

Note that �̂2(x) converges to �2(x) much faster than �̂p+1 to �p+1. (See the

proof of Theorem 3.) Thus, it follows from (2.7) that the behavior of �̂p+1 dictates

that of the relative error. For this reason, we introduce the following notation.

Let � be the (p+2)th-element of the vector S�1
r
cr and  be the (p+2)th-diagonal

element of the matrix S�1
r
S�
r
S�1
r
. Note that � and  are the constant factors in

the asymptotic bias and variance expressions of �̂p+1 using the local rth-order

polynomial regression.

Theorem 3. Suppose that p� � is odd. Then, under Assumptions (i) { (vii),

q
nh

2p+3
�

 
ĥ� � h�;opt

h�;opt
+

2��r+1

(2p+ 3)�p+1
hr�p
�

!
D�!N

 
0;

4�2(x0)

(2p+ 3)2�2p+1fX(x0)

!
:

(2:8)

Remark 2. The asymptotic distribution of the relative error is independent of �.

When r = p+2 and h� � n�1=(2r+3), the relative error is of order OP (n
�2=(2r+3)).

Speci�cally the relative error is of order OP (n
�2=9) when p = 1.

The above result informs us about the asymptotic behavior of ĥ� in the case

that m(p+1)(x0) 6= 0 (see Assumption (v)). The asymptotic behavior of ĥ� when

m(p+1)(x0) = 0 has not been established yet. In order to derive such a result a

higher order expansion of the conditional bias of the estimator is needed. Indeed

in that case both leading terms in the asymptotic expression for the conditional
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bias are zero for p � � odd. We do not investigate the selection of ĥ� when

p � � is even since, as mentioned before, these polynomial approximations are

unfavorable.

To illustrate Theorem 3 let us consider the special case of estimating the

regression function (� = 0) using a local linear �t (p = 1). Taking for example

r = 3 we �nd, via straightforward calculations, that � = (�6 � �2�4)=(�4 � �22)

and  = (�22�0 � 2�2�2 + �4)=(�4 � �22)
2. Then, if the bandwidth h� satis�es

n�1=5 << h� << n�1=25(log n)�2=5, Theorem 3 provides the following asymptotic

normality result for ĥ0:

q
nh5

�

 
ĥ0 � h0;opt

h0;opt
+
�m(4)(x0)

30m00(x0)
h2
�

!
D�!N

�
0;

16�2(x0)

25(m00(x0))2fX(x0)

�
:

A data-driven procedure for choosing h� is provided in Fan and Gijbels

(1995a) via a RSC (Residual Sum of Squares)-criterion. See that paper for the

criterion, as well as its implementation. There the reader can also �nd simulation

studies illustrating the behavior of the relative error (ĥ� � h�;opt)=h�;opt.

3. Application to Density Estimation

The bandwidth selection procedure for the regression problem can also be

applied to the density estimation setup. Let X1; : : : ; Xn be independent iden-

tically distributed random variables. The interest is to estimate the common

density f(x) and its derivatives on an interval [a; b]. Partition the interval [a; b]

into N subintervals fIk; k = 1; : : : ; Ng. Let xk be the center of Ik and yk be

the proportion of data fXi; i = 1; : : : ; ng, falling in the partition Ik, divided

by the bin length. Then, we use a local polynomial of order p to �t the data

f(xk; yk); k = 1; : : : ; Ng. Let �̂0; : : : ; �̂p be the solution of the local polynomial

regression problem:

NX
k=1

(yk �
pX

j=0

�j(xk � x)j)2K

�
xk � x

h

�
:

Then, the estimator for the �th derivative is f̂ (�)(x) = �!�̂� .

In order to have the same asymptotic properties for f̂ (�)(x) as those available

for the kernel density estimator, we require that Nh �! 1 (see Cheng, Fan,

and Marron (1993)). Now, the bandwidth selection procedure discussed in the

previous section can also be applied to this setting. We would expect the resulting

bandwidth selector to have the following property (compare with (2.8)):
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q
nh2p+3�

 
ĥ� � h�;opt

h�;opt
+

2�(p+ 1)!f (r+1)(x)

(2p+ 3)(r + 1)!f (p+1)(x)
hr�p
�

!

D�! N

�
0;

4

(2p+ 3)2(f (p+1)(x)=(p+ 1)!)2

�
:

We now illustrate the data-driven density estimation procedure via four sim-

ulated examples. These four densities were chosen from the 15 normal mixture

densities discussed in Marron and Wand (1992). They were recommended by J.S.

Marron in a private conversation, on the grounds that they range from densities

easy to estimate to densities very hard to estimate. In the implementation, we

took N = n=4 and used Anscombe's (1948) variance-stabilizing transformation

to the bin count ck = n yk� length(Ik): y
�

k
= 2(ck + 3=8)1=2.

Let �̂�0 be the local linear regression smoother for the transformed data.

Then the density estimator is obtained by considering the inverse of Anscombe's

transformation:

f̂(x) = C

 
(�̂�0 (x))

2

4
� 3

8

!
+

;

where the constant C is a normalization constant such that f̂(x) has area 1. This

transformation step stabilized our simulation results somewhat, but did not re-

sult in a signi�cant improvement. The variable bandwidth is, as described above,

selected by using the techniques developed in Fan and Gijbels (1995) for the re-

gression setup. Another possible, but more complicated, way of converting the

density estimation problem into a regression problem is given in Wei and Chu

(1994). We have no intention to recommend that the scienti�c community use

regression techniques for density estimation. Here, we only point out the inner

connection between nonparametric regression and density estimation. This con-

nection indicates that nonparametric regression techniques such as data-driven

bandwidth selection are also available for density estimation.

The four simulated examples concern a Gaussian density, a Strongly Skewed

density, a Separated Bimodal density and a Smooth Comb density. These cor-

respond with Densities #1, #3, #7 and #14 respectively in Marron and Wand

(1992). For each of the simulated examples we used the Epanechnikov kernel and

estimated the density using a local linear regression, based on samples of size 200

and 800. The number of simulations was 400. For each estimated curve we cal-

culated the Average Squared Error over all grid points in which the curve was

evaluated. We then ranked the 400 estimated curves according to this global mea-

sure. As representatives of all estimated curves we took the curves corresponding

to the 10th%, the 50th% and the 90th% among those rank-observations. Each

of the presented pictures contains the true density function (the solid line) and

three typical estimated curves (other line types).
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x x
Figure 1.1. Ex 1: Estimated curves, n=200 Figure 1.2. Ex 1: Estimated curves, n=800

x x

Figure 2.1. Ex 2: Estimated curves, n=200 Figure 2.2. Ex 2: Estimated curves, n=800

x x
Figure 3.1. Ex 3: Estimated curves, n=200 Figure 3.2. Ex 3: Estimated curves, n=800
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x x
Figure 4.1. Ex 4: Estimated curves, n=200 Figure 4.2. Ex 4: Estimated curves, n=800

Figures 1-4: True densities (solid curve) and three typical estimated curves

(dashed lines), based on n = 200, n = 800 respectively.

The Gaussian density in Example 1 and the Separated Bimodal density in

Example 3 are easiest to estimate, and hence estimates based on samples of size

200 show a good performance. The densities in Examples 2 and 4 (i.e. the

Strongly Skewed density and the Smooth Comb density) form a more di�cult

task. Estimates based on samples of size 200 do not succeed in capturing the

sharp peaks appearing in the densities. Samples of size 800 result in better

estimated curves.

4. Proofs

Proof of Theorem 1. Recall the notation after equation (2.5). We �rst remark

that

sn;j = nhj+1 (fX(x0)�j + hf 0
X
(x0)�j+1 +OP (an)) ; (4:1)

where an = h2 + 1=
p
nh. Thus

Sn = nhH
�
fX(x0)Sp + hf 0

X
(x0) ~Sp +OP (an)

�
H: (4:2)

It follows from equation (2.1) and Taylor's expansion that

Bias(�̂jX
~
) = S�1

n

�
�p+1cn + �p+2~cn +OP (nh

p+4)
�
; (4:3)

where cn = (sn;p+1; : : : ; sn;2p+1)
T and ~cn = (sn;p+2; : : : ; sn;2p+2)

T . Combining

Equations (4.2) and (4.3) and using the fact that

(A+ hB)�1 = A�1 � hA�1BA�1 +O(h2); (4:4)
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we obtain the bias expression (2.2) via some simple algebra.

For the variance matrix note from (2.1) that

Var(�̂jX
~
) = S�1

n
S�
n
S�1
n
; (4:5)

where S�
n
= (s�

n;i+j�2)1�i;j�(p+1), with s�
n;j

=
P

n

i=1(Xi � x0)
jK2

�
Xi�x0

h

�
�2(Xi).

Following similar arguments as in (4.1) we �nd that,

s�
n;j

= nhj+1 (g(x0)�j + hg0(x0)�j+1 +OP (an)) ; (4:6)

where g(x0) = fX(x0)�
2(x0). From (4.5), (4.6) and (4.2) we obtain

Var(�̂jX
~
) =

nhg(x0)

(fX(x0)nh)2
H�1

�
Sp +

hf 0
X
(x0)

fX(x0)
~Sp +OP (an)

��1

�
�
S�
p
+h

g0(x0)

g(x0)
~S
�

p
+OP (an)

��
Sp+

hf 0
X
(x0)

fX(x0)
~Sp+OP (an)

��1
H�1:

The conclusion in (2.3) now follows from equation (4.4) and some simple algebra.

Proof of Theorem 2. Since the kernel K is symmetric, �2j+1 = 0, for j =

0; 1; : : : ; (p + 1). Thus , the matrix Sp = (�i+j�2)1�i;j�(p+1) has the following

structure:

Sp =

0
BBB@
� 0 � 0 : : :

0 � 0 � : : :

� 0 � 0 : : :
...

...
...

...
. . .

1
CCCA ;

where \�" denotes any number. It can be shown that S�1
p

will have exactly

the same structure as Sp, by examining the determinant of the accompanying

submatrix: this submatrix contains [(p + 1)=2] rows which each have at most

[(p + 1)=2] � 1 nonzero elements. Thus, these rows are linearly dependent and

the determinant of the accompanying submatrix must be zero. Therefore, each

odd-position (e.g. (3,4))-element is zero. Similar arguments hold for the matrix

~Sp = (�i+j�1)1�i;j�(p+1) =

0
BBB@

0 � 0 � : : :

� 0 � 0 : : :

0 � 0 � : : :
...

...
...

...
. . .

1
CCCA :

Using the sparsity structure of the matrices Sp and ~Sp, and of cp and ~cp, we can

see that the (� + 1)th-element of S�1
p
~cp and of S�1

p
~SpS

�1
p
cp are zero. Thus by

Theorem 1 and the remarks after it,

bp;�(x0) = �p+1h
p+1��eT

�+1S
�1
p
cp

�
1 +OP (h

2 +
log np
nh

)

�
; (4:7)
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uniformly in h 2 [n�a; n�b]. A similar argument shows that the (�+1)th-diagonal

element of V �(x0) in Theorem 1 is zero. Therefore, by Theorem 1,

Vp;�(x0) =
�2(x0)

fX(x0)nh
h�2�eT

�+1S
�1
p
S�
p
S�1
p
e�+1

�
1 +OP (h

2 +
log np
nh

)

�
: (4:8)

Combining equations (4.7) and (4.8) and using Lemma 1, we obtain the result.

Proof of Theorem 3. By Theorem 1 of Fan and Gijbels (1995a),

E(�̂2(x0)jX
~
) = �2(x0) +OP (h

2(r+1)
�

);

and it can be shown that

Var(�̂2(x0)jX
~
) = OP

�
1

nh�

�
:

Thus, using Assumption (vii), we obtain

�̂2(x0) = �2(x0) +OP

�
h2(r+1)
�

+
1p
nh�

�
= �2(x0) + oP ((nh

2p+3
�

)�
1
2 );

and hence �
�̂2(x0)

�2(x0)

� 1
2p+3

= 1 + oP

�
(nh2p+3

�
)�

1
2

�
:

Now, by Theorem 1 of Fan, Heckman and Wand (1995),

�
nh2p+3

�

�2(x0)=fX(x0)

�1=2 �
�̂p+1 � �p+1 � ��r+1h

r�p

�

�
D�! N(0; 1): (4:9)

Note that equation (4.9) can also be proved directly by checking Lindeberg's

condition. Evidently,

 
�̂p+1

�p+1

! 2
2p+3

= 1 +
2(�̂p+1 � �p+1)

(2p+ 3)�p+1
+OP

�
(�̂p+1 � �p+1)

2
�
:

Therefore,

�
nh2p+3

�

�2(x0)=fX(x0)

�1=2
0
@
 
�̂p+1

�p+1

! 2
2p+3

� 1� 2��r+1

(2p+ 3)�p+1
hr�p
�

1
A

D�!N

 
0;

�
2

(2p+ 3)�p+1

�2
!
:
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Hence, it follows from (2.7) that

�
nh2p+3

�

�2(x0)=fX(x0)

�1=2
 
ĥ� � h�;opt

h�;opt
+

2��r+1

(2p+ 3)�p+1
hr�p
�

!

D�!N

 
0;

�
2

(2p+ 3)�p+1

�2
!
;

which completes the proof.
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