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Abstract: The estimation of locations of jump points and corresponding jump sizes

of a density function on a bounded interval of interest by the kernel method is con-

sidered. Strong convergence rates (SCR) and limiting distributions for the proposed

estimators are obtained. The order of the SCR for estimators of locations for jump

points is immune to the smoothness conditions imposed on the density function, but

that for estimators of jump sizes is not. The limiting distributions are used to test

the continuity of the density function and give asymptotic con�dence intervals for

locations of jump points and corresponding jump sizes. For applications of these es-

timators, the choices of bandwidths and kernel functions are considered. In the case

that the number of jump points on a bounded interval of interest is known in ad-

vance, an approach is proposed to recover the density function on the interval such

that the performance of the resulting density function estimate is not a�ected by these

jump points. Simulations demonstrate that the asymptotic results hold for reasonable

sample sizes.
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1. Introduction

The problem of detecting and measuring discontinuity of an unknown density

function arises in many statistical applications in science and technology, such as

image processing, pattern recognition, tomography, etc. In X-ray transmission

tomography, Johnstone and Silverman (1990) investigate discontinuities, in the

form of sharp jumps, in the tissue density across the boundaries of various regions.

It is noted in their work and the references cited therein that a di�culty with such

practical examples is the assessment of the adequacy of a mathematical model

for the physical process encountered. In essence, discontinuity detection together

with density function estimation aims at an approximate image construction in

practice.

So far in the statistics literature, most theoretical studies have considered an-

alyzing discontinuity in the 1-dimensional marginal densities as a basic starting

point. In this connection, the method of nonparametric kernel density estimation
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(cf. Silverman (1986) and H�ardle (1990)) is a reasonably useful tool for exploit-

ing the density structure, and is often simpler and more e�ective than using a

seemingly correct parametric modeling. When discontinuities are involved, their

e�ects on the asymptotic behavior of the kernel density estimator and, in partic-

ular, on an optimally chosen bandwidth have been studied by van Eeden (1985),

Cline and Hart (1991), and van Es (1992). Rigorous theoretical analyses, by ker-

nel density estimation, for locations and jump sizes of the discontinuities are yet

unavailable. Lee (1990) has proposed algorithms for estimating an input signal

density together with �nding the discontinuity locations. In the related �eld of

nonparametric regression, the problem of estimating the regression curve admit-

ting jump discontinuities has been discussed by Yin (1988), Qiu et al: (1991),

M�uller (1992), and Wu and Chu (1993), but it is di�erent from the problem of es-

timating the image intensity. The method considered here for the latter problem

is similar to those applied for the former.

The limited goal of this study is to demonstrate that kernel density esti-

mation can be skillfully employed in analyzing locations and jump sizes of the

discontinuities of a 1-dimensional density. It is plausible that an extension of

our method disigned in Section 2 would provide us with a rough idea of where

the discontinuity edges or curves in a 2-dimensional image density are, although

we feel that a carefully designed semiparametric approach could generate bet-

ter insights and results in practice; the latter still demands further research (cf.

Silverman et al: (1990)).

The organization of this paper is as follows. Section 2 describes the mo-

tivation and the precise formulation of the proposed estimators of locations of

jump points and corresponding jump sizes of a density function. Section 3 gives

strong convergence rates (SCR) and limiting distributions for these estimators.

The order of the SCR for estimators of locations of jump points can be made

close to n�1. It is immune to the smoothness conditions imposed on the density

function, but that for estimators of jump sizes is not. The limiting distributions

are used to test the continuity of the density function and give asymptotic con�-

dence intervals for locations of jump points and corresponding jump sizes of the

density function on a bounded interval of interest. For applications of the pro-

posed estimators, the choices of bandwidths and kernel functions are considered.

In the case that the number of jump points on a bounded interval of interest is

known in advance, an approach is proposed to recover the density function on

the interval. The performance of the resulting density function estimate is not

a�ected by these jump points. Section 4 contains simulation studies which sup-

port our theoretical �ndings. Finally, sketches of the proofs are given in Section

5.
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2. The Proposed Estimators

Suppose without loss of generality that the density function f de�ned on the

real line R has a few points of discontinuity on the bounded interval say, [0; 1].

We are interested in estimating locations and jump sizes of the jump points in

[0; 1] based on a random sample X1; : : : ;Xn from f . Note that f might have

points of discontinuity outside of [0; 1], but we are not interested in detecting

these jump points.

Let the density function f(x), for x 2 [0; 1], be expressed by

f(x) = �(x) +  (x): (2:1)

Here the function �(x) is de�ned and Lipschitz continuous on [0; 1], and  (x) is

de�ned by  (x) =
Pp

j=1 djI[tj ;1)(x), for x 2 [0; 1]. Note that p is a nonnegative

integer representing the number of jump points of f on [0; 1], tj are locations of

jump points, tj 2 [�; 1 � �], and dj are nonzero real numbers representing jump

sizes of f at tj . Here � is an arbitrarily small positive constant. If p = 0, then

f is continuous. For simplicity of presentation, let dp+1 = 0 and jdj j > jdj+1j,

for j = 1; 2; : : : ; p. Also, assume that the distance between any two of these tj is

greater than �.

To construct the estimators t̂j and d̂j of tj and dj , respectively, for j =

1; 2; : : : ; �, the kernel density estimator is considered. Here � is a given positive

integer since the true value of p is unknown. Given the bandwidth h and the ker-

nel function K as a Lipschitz continuous probability density function supported

on the interval [�1; 1], the kernel density estimator f̂(x) for f(x) is given by

f̂(x) = n
�1

nX
i=1

Kh(x�Xi); (2:2)

for x 2 R, where Kh(�) = h
�1
K(�=h). The rest of this section is devoted to

formulating the proposed estimators t̂j and d̂j , for j = 1; 2; : : : ; �.

To estimate tj, we �rst consider the magnitude of f̂(x), for x 2 [0; 1]. By

(2.1) and (2.2), through a straightforward calculation, we have

f̂(x) = E[f̂(x)] + f̂
�(x);

for x 2 [0; 1], where

E[f̂(x)] = �(x) +

pX
j=1

dj

Z (x�tj)=h

�1

K +O(h);

f̂
�(x) = f̂(x)�E[f̂(x)]:
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Lemma 2.1.2 of Prakasa Rao (1983) shows that f̂�(x) converges to 0 uniformly

with probability one, in both cases of p = 0 and p > 0. This implies that f̂�(x) is

of small order in magnitude, for all x 2 [0; 1], asymptotically. Thus, the e�ect of

jump points on the magnitude of f̂(x) will only appear in the value of E[f̂(x)].

Also, to consider the magnitude of f̂(x), it is enough to consider that of E[f̂(x)].

Accordingly, to discover tj by kernel density estimation, we construct a function

J(x) de�ned by

J(x) = f̂1(x)� f̂2(x);

for x 2 [0; 1]. Here f̂1(x) and f̂2(x) are kernel density estimators for f(x) with

di�erent kernel functions K1 and K2, respectively, and the same bandwidth h.

From the above results, we �nd that the magnitude of jJ(x)j can be asymp-

totically expressed by

jJ(x)j = jE[f̂1(x)� f̂2(x)]j +Op(n
�1=2

h
�1=2)

=
���

pX
j=1

dj

Z (x�tj)=h

�1

(K1 �K2)
���+O(h) +Op(n

�1=2
h
�1=2); (2:3)

for x 2 [0; 1]. To �nd locations of jump points tj , some basic conditions imposed

on K1 and K2 would be bene�cial. Let K1 and K2 satisfy K2(z) = K1(�z),R
K1 =

R
K2 = 1, and

R 0
�1
(K1 � K2) 6= 0. Given these K1 and K2, through a

straightforward calculation, two results for the asymptotic value of jJ(x)j easily

follow. It is symmetric about tj and convex downward on some neighborhood of

tj , for each j = 1; 2; : : : ; p. The widths of these neighborhoods of tj correspond

to those of the intervals where K1h and K2h are supported. On the other hand,

it is zero outside of the union of these neighborhoods of tj.

Based on the above characteristics of the magnitude of jJ(x)j, we propose to

take local maximizers of jJ(x)j as estimators of locations of jump points. Since

K1 and K2 are supported on [�1; 1], the widths of the above neighborhoods of tj
are not greater than 2h. Combining this result with the fact that jdj j > jdj+1j,

for j = 1; 2; : : : ; p, we take t̂j as maximizers of jJ(x)j over the sets Aj , where

Aj = [0; 1] �

j�1[
k=1

[t̂k � 2h; t̂k + 2h];

for j = 1; 2; : : : ; �.

We now give the formulation of d̂j . To estimate dj , based on the above t̂j , a

direct method is to take the rescaled J(t̂j) as d̂j , for j = 1; 2; : : : ; �. By (2.3), the

scale factor c
J
for J(t̂j) is cJ = [

R 0
�1
(K1�K2)]

�1. However, there is a drawback to

this simple approach. To address this drawback, consider the case t̂j = tj + �h,

for some j and � 6= 0. Then, based on the above arguments, the value of d̂j is
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asymptotically equal to c
J
dj

R
�

�1
(K1�K2) which is not equal to dj for 0 < j�j < 1

and is equal to 0 for j�j � 1. By this, the drawback to the simple approach is

that, even though t̂j is close to tj , dj can not be estimated well.

To address the above drawback to the simple approach, we propose taking

the rescaled S(t̂j) as d̂j , for j = 1; 2; : : : ; �. The function S(x) is de�ned by

S(x) = f̂3(x)� f̂4(x);

for x 2 [0; 1]. Here f̂3(x) and f̂4(x) are kernel density estimators for f(x) with

di�erent kernel functions K3 and K4, respectively, and the same bandwidth g.

Note that K3 and K4 satisfy the above conditions given on K1 and K2, respec-

tively, and the value of g is of larger order than that of h. Based on the above

arguments, the scale factor c
S
for S(t̂j) is taken as c

S
= [

R 0
�1
(K3 �K4)]

�1.

We now give the e�ect of the order of magnitude of g on the performance of

the proposed d̂j . Consider the above case t̂j = tj + �h, for some j and � 6= 0.

Following the same arguments, the value of d̂j is roughly equal to cSdj
R
�h=g

�1
(K3�

K4) which approaches dj as h=g approaches 0, for each � 6= 0. Combining this

result with the fact that the value of g is of larger order than that of h, the

proposed d̂j does not have the above drawback.

Finally, the asymptotic behaviors of the proposed estimators t̂j and d̂j of tj
and dj , respectively, will be studied in Section 3. For applications of the proposed

estimators, the choices of bandwidths and kernel functions will be considered in

Remark 2 of Section 3.

3. Results

In this section, we shall study the asymptotic behaviors of t̂j and d̂j , for

j = 1; 2; : : : ; �. For these, we impose the following assumptions:

(A.0) X1; : : : ;Xn are independence random variables with density function f(x)

as given in (2.1).

(A.1) The qth derivative � (q) of � in (2.1) is Lipschitz continuous on the interval

[0; 1], where q � 2. Here and throughout this paper, the notation m(j) denotes

the jth derivative of the given function m, for some integer j � 0.

(A.2) The kernel function K1 is supported on the interval [�1; �], � 2 [0; 1], and

of order q. Recall that a kernel function G is said to be of order q if it satis�esR
G = 1,

R
z
`
G = 0, for 1 � ` < q, and

R
z
q
G 6= 0. Also, K

(1)
1 is Lipschitz

continuous, K
(1)
1 (0) 6= 0, and K

(`)
1 (�1) = K

(`)
1 (�) = 0, for ` = 0; 1. The kernel

function K2 is de�ned by K2(z) = K1(�z), for all z. Finally,
R 0
�1
(K1 �K2) 6= 0

and there is a constant � > 0 such that j
R cn
0
(K1 �K2)j > �c

�

n
, for some � � 2

and any sequence cn of positive real numbers converging to 0 as n!1.
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(A.3) The kernel function K3 is supported on the interval [�1; !], ! 2 [0; 1], Lip-

schitz continuous, and of order q. The kernel function K4 is de�ned by K4(z) =

K3(�z), for all z. The kernel functions K3 and K4 satisfy
R 0
�1
(K3 �K4) 6= 0.

(A.4) The total number of observations in this density estimation setting is n,

with n ! 1. The bandwidths h = hn and g = gn satisfy h ! 0 with nh ! 1,

and g ! 0 with ng !1, as n!1.

Theorems 1 and 2 below will give the asymptotic behaviors of t̂j and d̂j in

the cases p � � � 1 and � > p � 0, respectively. The proofs of these theorems

are given in Section 5. To state these theorems, we need the following notation.

Let � = 2[q=2] + 1, �j = ((n=h)1=2(t̂j � tj), (ng)
1=2(d̂j � dj))

T , for j = 1; 2; : : : ; �,

� a positive constant, where � 2 (0; �=�), and � an arbitrarily small positive

constant. Here the notation [x] denotes the largest integer which is smaller than

x, and T the transpose of a vector. In these theorems, some conditions on the

values of n, h, g, �, and � include:

n
�1+�

h
�1�2�� = o(1);(B.1)

n
1��

g
�1
h
2+2� = o(1);(B.2)

n
1��

g
1+2� = o(1);(B.3)

n h
1+2� = o(1);(B.4)

n g
�1
h
2+2� = o(1);(B.5)

n g
1+2� = o(1);(B.6)

h g
�1 = o(1):(B.7)

Theorem 1. In the case p � � � 1, under the above assumptions (A.0) through

(A.4), if (B.1) holds, then

P (jt̂j � tjj > h
1+�

i:o:) = 0; (3:1)

for j = 1; 2; : : : ; �. Also, if (B.1) through (B.3) hold, then

n
(1=2)��

g
1=2
jd̂j � dj j ! 0 a:s:; (3:2)

for j = 1; 2; : : : ; �. Furthermore, if (B.1) and (B.4) through (B.7) hold, then

�j ) N

�
(0; 0)T ;

�
d
�2
j
FjU 0

0 FjV

� �
; (3:3)

for j = 1; 2; : : : ; �, and these �j are asymptotically independent, where

Fj = (1=2)[f(t�
j
) + f(t+

j
)];
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U = [

Z
(K

(1)
1 �K

(1)
2 )2] = [2K

(1)
1 (0)]2;

V = [

Z
(K3 �K4)

2] = [

Z 0

�1

(K3 �K4)]
2
:

Theorem 2. In the case � > p � 0, under the above assumptions (A.0) through

(A.4), if (B.1) through (B.3) hold, then

n
(1=2)��

g
1=2
jd̂j � dj j ! 0 a:s: (3:4)

for j = 1; 2; : : : ; �. Here dj = 0, for j > p.

The following Theorem 3 will give a con�dence band for jJ(x)j. Using this

con�dence band, the test of the null hypothesis H0 : p = 0 against the alternative

hypothesis H1 : p > 0 on the interval [a; b] can be performed. Theorem 3 is

obtained directly from (1.2) of Bickel and Rosenblatt (1973). Hence its proof is

omitted.

Theorem 3. Under the above assumptions (A.0) through (A.4), if f (q) is Lips-

chitz continuous on the interval [a; b] and h = n
�
, where 
 2 (1=3; 1) for q = 0

and 
 2 ((2q + 1)�1; 1) for q � 1, then

P ( sup
z2[a;b]

jJ(z)j < an + bnx)! exp(�2 exp(�x) );

where

an = wn

h
hab + h

�1
ab

log( (2�)�1(

Z
(K

(1)
1 �K

(1)
2 )2=

Z
(K1 �K2)

2)1=2)
i
;

bn = wnh
�1
ab
;

and

wn =
h
n
�1
h
�1
f̂1(x)

Z
(K1 �K2)

2
i1=2hZ 0

�1

(K1 �K2)
i
�1

;

hab = [2 log((b� a)=h)]1=2:

We now close this section by the following remarks.

Remark 1. By (3.1) and (B.1), if � = 2, � = �, and h = �1n
�1+5�, �1 > 0, then

the order of the SCR for t̂j is n
�1+4�. This order of the SCR for t̂j is independent

of the value of q. Hence the smoothness condition imposed on the continuous

part � of f does not e�ect this order of the SCR for t̂j . On the other hand, by

(3.2) and (B.1) through (B.3), if g = �2n
(�1+�)=(1+2�), �2 > 0, and the above

values of �, �, and h are given, then the order of the SCR for d̂j is n
��=(1+2�)+�.
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Since the value of � in (B.3) depends on q, the smoothness condition imposed on

� has di�erent e�ects on the order of the SCR for d̂j .

Remark 2. In the case p � � � 1, to estimate tj and dj , for j = 1; 2; : : : ; �,

a possible approach for practical choice of bandwidths and kernel functions is

now given. Van Es (1992) has shown that the magnitude of the least squares

cross-validated bandwidth produced in the case p > 0 is of order n�1=2. By virtue

of this, to estimate tj , we suggest taking h as the least squares cross-validated

bandwidth. Theoretically, given this value of h, � = 2, and � = (1=4)��, then the

SCR of t̂j to tj is of order n
(�5=8)+�. To choose K1 and K2, by (5.8), (A.2), and

(B.1), t̂j have asymptotic mean square errors n�1hd�2
j
FjU(1 + o(1)). According

to this, we suggest taking K1 and K2 to satisfy the conditions given in (A.2)

and minimize the value of U over the class of (q+4)-th degree polynomials. For

example, in the case q = 0,

K1(x) = (0:4857�3:8560x+2:8262x2+19:1631x3+11:9952x4)I[�1;0:2012](x) (3:5)

and K2(x) = K1(�x), for all x. The reason for choosing K1 in the class of

(q+4)-th degree polynomials is that, by (A.2), it must satisfy the following q+4

conditions
R
K1 = 1,

R
z
`
K1 = 0, for 1 � ` � q � 1, and K1(�1) = K

(1)
1 (�1) =

K1(�) = K

(1)
1 (�) = 0. The same remark applies toK2. To estimate dj , we suggest

choosing g as the least squares cross-validated bandwidth produced from the data

in some subinterval [a; b] of [0; 1] on which the hypothesis test given in Theorem

3 has been performed and the null hypothesis accepted. The magnitude of the

resulting g is of order n�1=(1+2q). For this, see, for example, Hall and Marron

(1987). Theoretically, given this value of g and the above values of h, �, and �

chosen for estimation of tj , the SCR of d̂j to dj is of order n
(�q=(1+2q))+�. This

order is close to the optimal rate of uniformly strong consistency of f̂ to f in

the case p = 0 given in H�ardle (1991). Unfortunately, we do not know how to

optimally choose K3 and K4. Finally, the performance of t̂j and d̂j derived by

this approach needs further study.

Remark 3. We now consider the estimation of the density function f(x), for

x 2 [0; 1], when the value of p in (2.1) is known in advance. For this, using the

results of Theorem 1 and Remark 2 in Section 3, the loctions of jump points can

be estimated accurately, in the sense of SCR. In this case, we propose to estimate

the density function by a kernel density estimator on subintervals separated by

these estimates of locations of jump points. To avoid boundary e�ects on the

kernel density estimator, the boundary modi�cation method given in Gasser and

M�uller (1979) is applied. Through a straightforward calculation, the performance

of the resulting kernel density estimate is the same as that given in H�ardle (1991)
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for the case that the density function has q Lipschitz continuous derivatives, in

the sense of the mean integrated square error over the interval [0; 1].

Remark 4. We now consider an intuitively simple estimation idea compared

to the approach proposed above. If K1 and K2 are taken as the uniform kernel

functions K1(x) = I[�1;0](x) and K2(x) = I[0;1](x), then t̂j are simply constructed

by comparing the number of data points within an interval of length h to the

left of a location and that within a similar interval to the right. In this case,

(3.1) still holds. Note that these rectangular kernel functions K1 and K2 exhibit

jump points at endpoints of their support. In general, kernel functions with

jump points will lead to bad �nite sample behaviors of kernel estimators (see

for example, Section 2.1 of H�ardle (1991)). By this, the resulting jJ(x)j might

have more local maximums (or sparks) than that using smooth kernel functions.

The former will more often produce incorrect estimates of tj than the latter.

Simulation results given in Section 5 demonstrate that such particular t̂j are

inferior to the ones using other proper choices of K1 and K2, in the sense of

having larger minimum sample mean square error over h.

4. Simulations

To investigate the practical implications of the asymptotic results of the pro-

posed estimators of locations of jump points presented in Section 3, an empirical

study was carried out. The simulation settings were as follows. The sample size

was n = 100. Three density functions with the same location of jump point x = 0

were considered. The density functions were f�(x) = ��(x)I[x�0] + �0:5(x)I[x>0],

where � = 2; 1, and 2=3. The corresponding jump sizes of f�(x) at x = 0 are

d(2�)�1=2, where d = 3=2; 1, and 1=2. Here �z(x) denotes the probability density

function of Normal(0; z2). For each density function, 100 independent sets of ob-

servations Xi were generated. Two sets of the kernel functions K1 and K2 were

used. The �rst were those given in (3.5). The second were the uniform kernel

functions given in Remark 4. The resulting estimates of the location of the jump

point are denoted by t̂1 and t̂
�

1, respectively.

We now describe the calculation of t̂. Here t̂ stands for t̂1 and t̂
�

1. For

each data set, the location of the jump point was searched for on the inter-

val [�6; 2]. This interval was chosen arbitrarily. For this, 6 values of h, h =

0:03; 0:1; 0:2; : : : ; 0:5, were chosen. For each data set and each value of h, the val-

ues of jJ(x)j were calculated on an equally spaced grid of 801 values on [�6; 2].

The maximizer t̂ of jJ(x)j over [�6; 2] was calculated. After evaluation on the

grid, a one-step interpolation was done, with the result taken as t̂.

Figure 1 shows jJ(x)j with the kernel functionsK1 and K2 given in (3.5) and

h = 0:03 (solid curve) and h = 0:3 (dashed curve) derived from the simulated
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data from f� with � = 2 (stars at the bottom). Given a small value of h = 0:03,

the maximizer of jJ(x)j over the interval [�6; 2] shows the location of jump

point incorrectly. On the other hand, increasing the value of h as h = 0:3, the

maximizer of jJ(x)j over [�6; 2] shows the location of the jump point x = 0

accurately in this example. Based on this simulated data, we might consider

that the underlying density has a peak to the right of 0, a bump in [�2;�1], a

long-left tail, and a short-right tail. It is di�cult to distinguish visually from the

simulated data alone that the underlying density function has a jump point at

x = 0.

1:5

1:1

0:7

0:3

�0:1

�6 �4 �2 0 2

x

Figure 1. Plot of jJ(x)j with h = 0:03 (solid curve) and h = 0:3 (dashed

curve) derived form the simulated data set (stars at the bottom).

For each density function f�(x), Table 1 gives the sample bias, standard

deviation, and mean square error of t̂1 and those of t̂�1 in parentheses. For each

f�(x), when h increased from 0.03 to 0.4, there is a tendency that t̂1 moved

from the right to the left. But t̂�1 does not show this tendency. For each f�(x),

Table 1 also shows the minimum absolute sample bias, minimum sample standard

deviation, and minimum sample mean square error of t̂1 and those of t̂�1 in the

last row. These values show the performance of the estimators with the ideal

choice of the optimal bandwidth. It is clear that t̂1 has smaller minimum sample
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mean square error over h than t̂�1, for each f�(x).

Table 1. The sample bias, standard deviation (SD), and mean square error

(MSE) of t̂1 and those (given in parentheses) of t̂�1.

f�(x) h value Bias SD MSE

� = 2

0.03 0.129( 0.064) 0.266(0.307) 0.087(0.098)

0.1 0.090( 0.070) 0.224(0.231) 0.058(0.058)

0.2 0.068( 0.037) 0.158(0.128) 0.029(0.018)

0.3 0.011( 0.008) 0.159(0.127) 0.025(0.016)

0.4 �0.004( 0.014) 0.107(0.147) 0.011(0.021)

0.5 �0.008( 0.052) 0.128(0.191) 0.016(0.039)

min abs 0.004( 0.008) 0.107(0.127) 0.011(0.016)

� = 1

0.03 0.028( �0.060) 0.330(0.386) 0.109(0.151)

0.1 0.055( 0.006) 0.293(0.334) 0.088(0.110)

0.2 0.007( �0.043) 0.365(0.344) 0.132(0.119)

0.3 �0.076( �0.112) 0.384(0.342) 0.152(0.128)

0.4 �0.083( �0.003) 0.384(0.372) 0.153(0.137)

0.5 0.034( 0.124) 0.416(0.397) 0.173(0.171)

min abs 0.007( 0.003) 0.293(0.334) 0.088(0.110)

� = 2=3

0.03 �0.004( �0.127) 0.276(0.316) 0.075(0.115)

0.1 �0.026( �0.040) 0.343(0.330) 0.117(0.109)

0.2 �0.077( �0.098) 0.395(0.363) 0.160(0.140)

0.3 �0.123( �0.156) 0.391(0.377) 0.167(0.165)

0.4 �0.165( �0.170) 0.429(0.457) 0.210(0.236)

0.5 �0.064( �0.062) 0.498(0.505) 0.250(0.256)

min abs 0.004( 0.040) 0.276(0.316) 0.075(0.109)

5. Sketches of the Proofs

The following notation will be used throughout this section. Set �h =

n
(1=2)��

h
1=2 and �g = n

(1=2)��
g
1=2. Let E[S(t̂j)] = E[S(x)]jx=t̂j , and E[J

(1)(t̂j)] =

E[J (1)(x)]jx=t̂j , for j = 1; 2; : : : ; �. Let zi, i 2 Z, denote partition points of



90 C. K. CHU AND P. E. CHENG

[0; 1] satisfying zi � zi�1 = n
�(1+q), 	 the interval [0; 1], 
 = fi : zi 2 	g,

	j = fx : x 2 Aj , I[jx�tjj>h1+�] = 1g, and uj the partition point satisfying

juj � tj j = minfjzi � tj j : i 2 
g, for j = 1; 2; : : : ; p.

To prove Theorem 1 and 2, we require the following lemma.

Lemma 1. In the case p � 0, under (2.1), (A.0), and (A.1), if K is compactly

supported on [�1; 1], Lipschitz continuous, and of order q, then the kernel density

estimator f̂(x) of (2:2) has the following properties:

E[f̂(x)] = �(x)+

pX
j=1

dj

Z (x�tj)=h

�1

K+hq(�1)q� (q)(x)

Z
z
q
K=(q!)+O(hq+1); (5:1)

uniformly on 	,

�h sup
x2	

jf̂(x)�E[f̂(x)]j ! 0 a:s: (5:2)

Proof. The proof of (5.1) follows through straightforward calculation. Hence it

is omitted. We now give the proof of (5.2). For this, let f̂�(x) = f̂(x)�E[f̂(x)].

Consider the inequality

�h sup
x2	

jf̂
�(x)j � '1 + '2;

where

'1 = �h sup
i2


jf̂
�(zi)j; '2 = �h sup

i2


sup
jx�zij�n

�(q+1)

jf̂
�(x)� f̂

�(zi)j:

The proof of (5.2) is complete by showing that 'i ! 0 a.s: for i = 1; 2. To

check the strong consistency of '1, using the result that E[f̂
�(x)2k] = O(n�kh�k)

uniformly on 	, for any integer k � 1, and taking � > 0, then, for any k = 1; 2; : : :,

there is a constant ak such that

1X
n=1

P (�h sup
i2


jf̂
�(zi)j > �) �

1X
n=1

ak�
�2k

n
(1+q)�2k�

:

According to this result, the strong consistency of '1 follows by using the Borel-

Cantelli lemma and the fact that there is a su�ciently large k such that (1 +

q) � 2k� < �1. The strong consistency of '2 is a consequence of the Lipschitz

continuity of K. Hence, the proof of (5.2) is complete, i.e: the proof of Lemma 1

is complete.

Proof of Theorem 1.

We �rst give the proof of (3.1). The proof for t̂1 is complete by showing

P ( sup
x2	1

jJ(x)j � jJ(u1)j i.o.) = 0: (5:3)
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To check (5.3), by (5.1), (A.1), (A.2), jdj j > jdj+1j, for j = 1; 2; : : : ; p, and the

fact that � 2 (0; �=�), through straightforward calculation, then

jE[J(u1)]j � sup
x2	1

jE[J(x)]j =
���d1

Z
h
�

0

(K1 �K2)
���+O(h�) � 2C +O(h�);

where

C = (1=2)jd1j�h
��
:

Using this result, then, through straightforward calculation,

sup
x2	1

jJ(x)j � jJ(u1)j � 2 sup
x2	

jJ(x)�E[J(x)]j � 2C +O(h�):

Combining this inequality with (5.2), (B.1), and the fact that � 2 (0; �=�), we

then have

P (sup
x2	

jJ(x)�E[J(x)]j +O(h�) � C i.o.) = 0:

Hence, the proof for t̂1 is complete.

We now give the proof for t̂2. The proofs for the rest of t̂j follow similarly.

Since the distance between any two of tj , j = 1; 2; : : : ; p, is greater than � and

h = o(1), then, for su�ciently large n, we have ju2 � t1j > 3h. Using this result

and the property of t̂1 in (3.1), we have

P (u2 2 [t̂1 � 2h; t̂1 + 2h] i.o.) = 0:

Following essentially the same proof of (5.3), through a straightforward calcula-

tion, it follows,

P ( sup
x2	2

jJ(x)j � jJ(u2)j i.o.) = 0:

According to the property of t̂1 in (3.1) and the fact that

jt̂2 � t1j � jt̂2 � t̂1j � jt̂1 � t1j � 2h� jt̂1 � t1j;

then

P (jt̂2 � t1j < h i.o.) = 0:

Combining these results with the de�nition of 	2, we have

P (jt̂2 � t2j > h
1+� i.o.) = 0:

Hence the proof of (3.1) is complete.
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We now give the proof of (3.2). Here we shall only give the proof for d̂1�d1.

The proofs for the rest of d̂j�dj follow similarly. For this, subtracting and adding

the terms E[S(t̂1)] and E[S(t1)], then

d̂1 � d1 = �1 + �2 + �3;

where �1 = c
S
(S(t̂1)�E[S(t̂1)]), �2 = c

S
(E[S(t̂1)]�E[S(t1)]), �3 = c

S
E[S(t1)]�d1.

By this, the proof that �gjd̂1 � d1j ! 0 a.s: is complete by showing �g�1 ! 0 a.s:

and �2+�3 = o(��1
g
). Note that the strong consistency of �g�1 follows by the result

of (5.2). To check �2+�3 = o(��1
g
), multiplying �2 by I[jt̂1�t1j�h1+�]+I[jt̂1�t1j<h1+�],

and combining the result with (A.3) and (5.1), through a straightforward calcu-

lation, it follows that

�2 + �3 = c
S
(E[S(t̂1)]�E[S(t1)])I[jt̂1�t1j�h1+�] +O(h1+�g�1 + g

�):

Combining this result with (B.2), (B.3), and the property of t̂1 in (3.1), then

�2 + �3 = o(��1
g
). Hence the proof of (3.2) is complete.

We now give the proof of (3.3). Here we shall only give the proof of the

asymptotic normality for �1. The proofs for the rest of �j follow similarly. The

proof of the asymptotic normality for t̂1 � t1 is based on the expansion

0 = J
(1)(t̂1) = E[J (1)(t̂1)] + (J (1)(t̂1)�E[J (1)(t̂1)]): (5:4)

By (A.2), through a straightforward calculation,

E[J (1)(x)] =

pX
j=1

dj(K1h �K2h)(x� tj) +O(h��1);

uniformly on 	. Using this result and replacing x with t̂1, multiplying the result

by I[jt̂1�t1j<h1+�]
+ I[jt̂1�t1j�h1+� ]

, and applying Taylor's theorem to K1h � K2h,

through a straightforward calculation, (5.4) becomes

0 = 2d1h
�2(t̂1 � t1)K

(1)
1 (0)I[jt̂1�t1j<h1+�](1 + o(1))

+

pX
j=1

dj(K1h �K2h)(t̂1 � tj)I[jt̂1�t1j�h1+�] +O(h��1)

+ (J (1)(t̂1)�E[J (1)(t̂1)]): (5:5)

By using partition points zi on 	 and the Lipschitz continuity of K
(1)
1 and

K

(1)
2 , through a straightforward calculation,

sup
jx�t1j�h

1+�

j(J (1)(x)�E[J (1)(x)]) � (J (1)(t̂1)�E[J (1)(t̂1)])j = op(n
�1=2

h
�3=2):
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Combining this result with (5.5) and the property of t̂1 in (3.1), (5.5) becomes

t̂1 � t1 = [(J (1)(t1)�E[J (1)(t1)]) + op(n
�1=2

h
�3=2) +O(h��1)]=

[�2d1h
�2
K

(1)
1 (0)(1 + o(1))]: (5:6)

By the Lindeberg-Levy theorem, through a straightforward calculation,

n
1=2
h
3=2(J (1)(t1)�E[J (1)(t1)])) N(0; Fj

Z
(K

(1)
1 �K

(1)
2 )2):

Combining this result with (5.6) and (B.4), the proof of the asymptotic normality

for t̂1 � t1 is complete.

The proof of the asymptotic normality for d̂1�d1 is now given. By using the

above decomposition of d̂1� d1 and following essentially the same proof of (5.6),

d̂1 � d1 = c!(S(t1)�E[S(t1)]) + op(n
�1=2

g
�1=2) +O(h1+�g�1 + g

�): (5:7)

By the Lindeberg-Levy theorem, through a straightforward calculation,

(ng)1=2(S(t1)�E[S(t1)])) N(0; Fj

Z
(K3 �K4)

2):

Combining this result with (5.7), (B.5), and (B.6), the proof of the asymptotic

normality for d̂1 � d1 is complete.

By (5.6), (5.7), (B.7), and the Cramer-Wold technique, through a straight-

forward calculation, the asymptotic normality of �1 follows.

We now give the proof for the asymptotic independence between �j , for j =

1; 2; : : : ; �. By following essentially the same proofs of (5.6) and (5.7), through a

straightforward calculation,

t̂j � tj = [(J (1)(tj)�E[J (1)(tj)]) + op(n
�1=2

h
�3=2) +O(h��1)]=

[�2djh
�2
K

(1)
1 (0)(1 + o(1))]; (5:8)

d̂j � dj = c!(S(tj)�E[S(tj)]) + op(n
�1=2

g
�1=2) +O(h1+�g�1 + g

�): (5:9)

Using these two results, (B.7), and the Cramer-Wold technique, then, through a

straightforward calculation, �j have joint asymptotic normality, for j=1; 2; : : : ; �.

Also, Cov[t̂j � tj ; t̂k � tk] = O(n�1h2), Cov[t̂j � tj ; d̂k � dk] = O(n�1h), Cov[d̂j �

dj ; d̂k � dk] = O(n�1), for j 6= k. Based on these results, the asymptotic inde-

pendence between �j follows. Hence the proof of (3.3) is complete, i.e: the proof

of Theorem 1 is complete.
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Proof of Theorem 2.

The proof of (3.4), for j = 1; 2; : : : ; p, is the same as that of (3.2). To check

(3.4), for j > p, let A� = [
p

k=1[tk � h; tk + h]. By (3.1),

P (t̂j 2 A
� i.o.) = 0;

for j = p+1; p+2; : : : ; �. Using this result, (2.1), and the result of (5.1), we have

sup
x2A�

E[S(x)] = O(g�):

Combining this result with the fact that

d̂j = c
S
(S(t̂j)�E[S(t̂j)]) + c

S
E[S(t̂j)];

and utilizing (A.3), (5.2), (B.2), and (B.3), then, through a straightforward cal-

culation, (3.4) follows. Hence, the proof of Theorem 2 is complete.
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