
Statistica Sinica 6(1996), 63-78

KERNEL ESTIMATION OF DISTRIBUTION FUNCTIONS

AND QUANTILES WITH MISSING DATA

P. E. Cheng and C. K. Chu�

Academia Sinica, National Dong Hwa University and

National Tsing Hua University�

Abstract: A distribution-free imputation procedure based on nonparametric kernel

regression is proposed to estimate the distribution function and quantiles of a ran-

dom variable that is incompletely observed. Assuming the baseline missing-at-random

model for nonrespondence, we discuss consistent estimation via estimating the con-

ditional distribution by the kernel method. A strong uniform convergence rate com-

parable to that of density estimation is proved. We derive asymptotic normality

for estimating the cdf and the quantile via establishing the mean square consistency

and the asymptotically optimal bandwidth selection. A simulation study compares

the proposed nonparametric method with the naive pairwise deletion method and a

linear regression method under a parametric linear model.
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1. Introduction

Consider statistical inference with a basic pattern of incomplete data:

(Xi; Yi; �i); i = 1; : : : ; N; (1:1)

where �i = 1 if Yi is observed, otherwise �i = 0 and Yi is missing. Missing

data of form (1.1) naturally arises from the double sampling scheme proposed by

Neyman (1938), and extensively discussed by Cochran (1963). It also occurs in

some longitudinal studies where follow-up records may be missing for a variety

of reasons. Outpatients may miss the second medical examination, students may

miss a follow-up test and survey interviewers often miss unit responses. Such

common phenomena generate data with various missing patterns, among which

the basic form (1.1) is usually termed fragmentary or monotone. Readers are

referred to Little and Rubin (1987) for examples and the background history of

parametric statistical inference with missing data.

To estimate the mean of Y with the missing data (1.1), Cheng andWei (1986)

utilized the Nadaraya-Watson (1964) kernel regression estimate to substitute for
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each missing value of Y (see M�uller (1988) and H�ardle (1990) for properties

and practical examples of kernel estimator). This idea parallels the notion of

the Horvitz-Thompson (1952) estimate, incorporating continuous covariates. By

this method of mean imputation together with an empirical assessment of the

dependence of the missing mechanism on the covariate X, asymptotic normality

for estimating the mean of Y was characterized (Cheng (1994)). For data of

form (1.1), Titterington and Mill (1983) considered nonparametric estimation of

the joint density of (X;Y ), utilizing random imputations to generate empirical

versions of the joint density. Both approaches were based on nonparametric es-

timation of the mean of a conditional distribution. The former assumed that

data are missing at random (MAR), which is comparable with the notion that

the missing mechanism is ignorable. The latter provided analyses when the data

are missing completely at random (MCAR, see Rubin (1976) for elaborate def-

initions). It is well known that MAR fails to hold when missing (or censoring)

occurs entirely over certain intervals, or when information of the background

demographic factors, or a follow-up validation sample indicates that the missing

mechanism is truly nonignorable. Nevertheless, the MAR assumption has been

widely used as a baseline model for nonrespondence among many plausible para-

metric models, because the problem of model sensitivity is often a di�cult issue

in practice.

The goal of this study is to complement the theory developed in Cheng

(1994) by establishing more precise asymptotic properties via estimating the cdf

of Y when the data are MAR. A Glivenko-Cantelli type theorem with a uniform

convergence rate is proved in Section 2. The rate is also valid for estimating

the individual sample quantile. The corresponding asymptotic normality results

are derived in Section 3. Remarks on the asymptotic minimum mean squared

error and the associated optimal bandwidth selection are also addressed. The

proofs are given for scalar-valued X, and the extension to vector-valued X is

brie
y remarked. Section 4 presents a simulation study which shows that the

proposed nonparametric scheme could obtain more satisfactory bias performance,

compared with the pairwise deletion method and a standard linear regression

method, under an MAR data model. In terms of variance performance, our

method can be inferior to the linear regression method when a parametric linear

model holds. For an improvement over this preliminary study, one might consider

the idea of multiple imputation (cf. Rubin (1987); Efron (1994)). In addition,

methods with nonignorable missing data certainly merit further study.

2. Estimation of Distribution Function

Assume the missing data pattern (1.1), where both X and Y are continuous

scalar-valued random variables. Suppose all theXi's are observed, and the binary

indicator variable �i = 1, if Yi is observed, otherwise �i = 0. The assumption
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of an ignorable missing mechanism (essentially, MAR) will be imposed in the

sequel. Speci�cally, it assumes that � and Y are conditionally independent given

X, i.e.

P (� = 1jY;X) = P (� = 1jX) = p(X): (2:1)

It is intuitively clear that the MAR assumption (2.1) may be practically justi�ed

by the nature of the experiment when it is speculated that missing a value of

Y depends mainly on the covariate X, but not on the values of Y (Little and

Rubin (1987) p.14). Following Cheng and Wei (1986), we consider the method

of nonparametric mean imputation based on the well known Nadaraya-Watson

kernel regression estimator. To estimate the cdf of Y , G(y) = P (Y � y), without

completely observed Y in forming the usual empirical cdf, we will make use of

the extra X values as follows. For each real value y, and each Xi with �i = 0,

construct an estimate of the conditional distribution function G(yjXi) by

bG(yjXi) =
X
j 6=i

Wj(Xi)I(Yj � y); (2:2)

where Wj(Xi) = Kb(Xj � Xi)�j=
P

j 6=iKb(Xj � Xi)�j with Kb(Xj � Xi) =

b�1K((Xj � Xi)=b). Here K is a kernel function that integrates to 1 on the

real line, and b = b(N) is the so-called bandwidth sequence which decreases

toward 0 as N increases. An obvious estimate of G(y) is given by

bG(y) = N�1

NX
i=1

f�iI(Yi � y) + (1� �i) bG(yjXi)g: (2:3)

The aim of this section is to show that the proposed bG obtains strong uniform

consistency. A standard condition in the literature of nonparametric regression

is that X has compact support where the pdf f of X is bounded away from 0,

because the ratio weights Wj(Xi) could yield unstable estimates bG(yjXi) at the

tail of f . For a uniform property, we shall impose this condition throughout

this section. A few terminologies are now de�ned. Let g(x) = f(x)p(x), and let

�2(yjX) = Var(I[Y � y]jX) = G(yjX) � G2(yjX) be the conditional variance,

where G(yjx) = P (Y � yjx). Assume that P (� = 1) = E[p(X)] = p is a constant

strictly between 0 and 1, excluding the trivial case p = 1. In the sequel the

following conditions are assumed:

(1) g(x) � 2c > 0, where c is arbitrarily small, and g has bounded �rst derivative

g0 within the compact support of X;

(2) the kernel K is a �nite-valued (or Lipschitz continuous), symmetric pdf with

compact support, say [�1; 1];

(3) the bandwidth sequence b is such that b! 0, Nb5 ' logN as N !1;

(4) @

@x
G(yjx), denoted by G0(yjx), is bounded in both x and y.



66 P. E. CHENG AND C. K. CHU

Condition (1) implies that missing Y entirely over any subinterval of X is

disallowed, which is intuitively necessary for a purely nonparametric approach.

The e�ect of the smoothness of g is however less crucial; and this will be ex-

plained in the simulation study of Section 4. Conditions (3) and (4) are used

in deriving the speci�c uniform convergence rate in the Glivenko-Cantelli type

theorem below, although it su�ces to require that Nb= logN ! 1 as N ! 1
in (3).

Theorem 2.1. Assume (2:1) and conditions (1) to (4). Then almost surely

lim sup
N!1

(Nb= logN)1=2 sup
y2R

j bG(y)�G(y)j � (jjKjj=c)1=2 + C=c; (2:4)

where C � supx;y jG
0(yjx)j supx jg

0(x)j(
R
1

�1
u2K(u)du), and jjKjj = supu jK(u)j.

The proof of Theorem 2.1 is based on three lemmas given below. ExpressbG(y)�G(y) as the sum of the following four terms:

QN(y) = N�1

NX
i=1

fI(Yi � y)�G(y)g; (2:5)

RN(y) = N�1

NX
i=1

(1� �i)fG(yjXi)� I(Yi � y)g; (2:6)

SN(y) = N�1

NX
i=1

(1� �i)
nX

j

Wj(Xi)[I(Yj � y)�G(yjXj)]
o
; (2:7)

TN(y) = N�1

NX
i=1

(1� �i)
nX

j

Wj(Xi)[G(yjXj)�G(yjXi)]
o
: (2:8)

We �rst note that conditioned on all the Xi, (2.6) is a weighted empirical dis-

tribution function of independent summands with mean zero. It follows by a the-

orem of Singh (1975) that a logarithmic upper inequality holds for supy jRN(y)j
via an exponential bound that is independent of the distribution of Xi. This,

together with the classical law of the iterated logarithm, implies the �rst lemma

below.

Lemma 2.1. The classical LIL applies to supy jQN(y)j. Further, assume (2:1);

then for some positive constant C, lim supN!1(N= logN)1=2 supy jRN (y)j � C

wp 1.

The rate in Lemma 2.1 may not apply to (2.7) and (2.8); however, we will

show that a slower uniform convergence rate can be obtained also via Singh's

theorem. A useful preliminary fact is �rst explained here. De�ne bg(Xi) =P
j 6=iKb(Xj�Xi)�j=(N�1), and writeWj(Xi) = Kb(Xj�Xi)�j=((N�1)bg(Xi)).
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A standard proof, using Bernstein's inequality (Ser
ing (1980) p.95) and Con-

ditions (1) to (3), in the literature of kernel density estimation (cf. Cheng and

Cheng (1990) for Lipschitz-continuous kernels, and H�ardle, Janssen and Ser
ing

(1988) for step function kernels) asserts that

X
N�1

(N 2=b)P [sup
x
jbg(x)�E[bg(x)]j > a(logN=(Nb))1=2] <1;

for some a > 1. On the other hand, it routinely follows from Condition (1)

that jE[bg(x)] � g(x)j � Cb wp 1, for x 2 T , the region interior to the support

of X; but this fails for x 2 B, the boundary region, which is within distance b

from the endpoints of the support of X. However, for x 2 B, it can be checked

that E[bg(x)]� g(x) � �jjg0jjbK+

0
� g(x)=2, where jjg0jj = supx jg

0(x)j and K+

0
=

j
R
1

�1
uK(u)duj. Therefore, by Condition (1) and the fact that bg(x) = fbg(x) �

E[bg(x)]g + fE[bg(x)] � g(x)g+ g(x), we have

bg(X) � �a(logN=(Nb))1=2 � jjg0jjbK+

0
+ g(X)=2 � c+ o(1) (2:9)

wp 1, since g(X) � 2c. Thus, SN(y) and TN(y) are almost surely evaluated over

the set \ifbg(Xi) � c + o(1)g eventually. This preliminary fact will be used to

establish the following two lemmas concerning the strong uniform consistency of

SN and TN .

Lemma 2.2. Assume Conditions (1) to (4); then each summand of (2:7) satis-

�es (2:4), and so does SN .

Proof. Consider the ith summand of (2.7). Given Xi = x, it is clear that

NX
j=1

W 2

j (x) � max
j

Wj(x)I[bg(x) � c] � jjKjj=(cNb) (2:10)

wp 1, since
PN

j=1Wj(x) = 1 over the set [bg(x) � c] by (2.9). On the other hand,

there is a set of positive measure where K is greater than some positive constant

by Condition (2). Thus, we may assume, without loss of generality, that K is

unimodal and that K(u) � K(l) > 0 for all u, 0 < juj � l, for some 0 < l < 1.

Then, an opposite inequality

NX
j=1

W 2

j (x) � (N=b)
n 1

Nb

NX
j=1

K2

�Xj � x

b

�
�jI[jXj � xj � l]

o
=(N 2jjbgjj2) � C=(Nb)

(2:11)

holds wp 1 as N large. This is due to the classical strong law that the brace in

the middle of (2.11) converges to
R
juj�l

K2(u)g(x+ bu)du � 2c
R
juj�l

K2(u)du wp
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1, and that jjbgjj2 � jjgjj2+o(1) <1 wp 1, eventually. As a consequence of (2.10)

and (2.11), we �nd, by Singh's (1975) theorem, that

P
n
sup
y2R

j
X
j

Wj(Xi)[I(Yj � y)�G(yjXj)]j > tjXi = x
o

� C(Nb logN)1=2 expf�2c(Nb)t2=jjKjjg;

where C � 4e2(jjKjj=c)1=2, t ' (jjKjj logN=(cNb))1=2. Obviously, the r.h.s.

above is also an upper bound to the r.h.s. of the following inequality:

P
n
sup
y2R

j
X
j

Wj(Xi)[I(Yj � y)�G(yjXj)]j > t
o

� Ex

�
P
n
sup
y2R

j
X
j

Wj(Xi)[I(Yj � y)�G(yjXj)]j > tjXi = x
o�
;

which is summable in N by Condition (3). This proves Lemma 2.2.

By analogous arguments, we shall prove that each term in the braces of (2.8)

satis�es (2.4).

Lemma 2.3. Assume Conditions (1) to (4). Then lim supN!1(1=b
2) supy

jTN(y)j � C=c wp 1, where the constant C is de�ned by (2.4).

Proof. It su�ces to show that wp 1

lim sup
N!1

(1=b2) sup
y

���X
j

Wj(Xi)[G(yjXj)�G(yjXi)]
��� � C=c: (2:12)

By (2.9), it su�ces to establish the bound C for the numerator of the l.h.s. of

(2.12). By Condition (4), this numerator is, ignoring the remainder term in a

Taylor's expansion, bounded by

sup
y

jG0(yjx)j jN�1
X
j 6=i

Kb(Xj �Xi)�j(Xj �Xi)j;

where the �rst factor is bounded due to Condition (4). Next, conditioned on the

Xi, the second factor is an average of i.i.d. bounded r.v.'s, which by the classical

strong law converges almost surely to E[Kb(Xj � Xi)�j(Xj � Xi)]. This mean

is bounded by b2jjg0jj
R
1

�1
u2K(u)du in view of Conditions (1) and (2). By the

bandwidth choice of Condition (3), (2.12) is veri�ed, and so is Lemma 2.3. The

proof of Theorem 2.1 is now complete.

Remark 2.1. When X is Rd-valued, d > 1, it is routinely de�ned in (2.2)

that Kb(Xk � Xi) = b�dK((Xk � Xi)=b). In this case, it can also be checked

that Lemmas 2.2 and 2.3 are valid, if Conditions (1) to (4) are modi�ed to be

Conditions (10) to (40), respectively.
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(10) g is bounded away from 0, and has bounded partial derivatives (within the

compact support of X) up to order k � 1, where k is even and 2 � k � d;

(20) K is a kernel of order k, e.g. K =
Qd

i=1K0, and the one-dimensional sym-

metric kernel K0 satis�es
R
1

�1
ulK0(u)du = 1, if l = 0; = 0, if 1 � l � k � 1; 6= 0

for l = k;

(30) Nbd+2k ' logN as N !1, where d < 2k;

(40) G(yjx) has bounded partial derivatives with respect to x (within the support

of X) up to order k � 1.

Remark 2.2. Suppose we wish to estimate the quantiles of the distribution of

the incomplete data Y . Let �q be the unique solution y satisfying G(y�) � q �
G(y), 0 < q < 1. Assume all the conditions of Theorem 2.1. Then it follows from

(2.4) that for some positive constant C

lim sup
N!1

(Nb= logN)1=2j bG�1(q)� �qj � C wp 1; (2:13)

where bG�1 is the left-continuous sample quantile function derived from bG. For

R
d-valued X, the conditions of Remark 2.1 can be e�ectively employed. The

proof is fairly routine and consequently omitted.

3. Mean Square Consistency and Asymptotic Normality

This section aims at establishing two asymptotic properties for the estimatebG(y) in a more general setting. We noted in Section 2 that the stringent part

of Condition (1) (the function g is strictly greater than a positive constant over

the compact support of X) was imposed only for the strong uniform convergence

property. Indeed, this condition excludes possible radical 
uctuations of the

weights Wj(Xi) by trimming o� the events [bg(Xi) < c], for any small c > 0, in

order to apply the inequality (2.9). A similar trimming method, using the events

[ bf(X) < c] with compactly-supported X, has been discussed by H�ardle and

Stoker (1989), and H�ardle, Hart, Marron and Tsybakov (1992) in the study of a

semiparametric model. In contrast to their trimming technique in the complete

data case, it is remarkable that Condition (1) can be relaxed when the goal

is to obtain mean square consistency and the asymptotic distribution for the

incomplete data (2.1). Allowing noncompact support of X, we relax Condition

(1) but simply retain its smoothness requirement;

Condition (1�): g has bounded partial derivatives up to the order speci�ed by

(10).

For ease of exposition, we consider only scalar-valued X. Let c = c(n) � bt,

0 < t � 1=4, be a decreasing sequence of constants such that the corresponding

sets fx : g(x) < cg have small probability contents that tend to zero as n in-

creases. De�ne the sets Ac = fg(X)�cg, the trimming events bAic = fbg(Xi)�cg,
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and the associated events Aic = fg(Xi) � cg. To implement the trimming, ten-

tatively multiply each summand of SN and TN (in (2.7) and (2.8)) by I( bAic),

and set the remaining ones with factors f1 � I( bAic)g equal to zero. For nota-

tional simplicity, let us rede�ne SN of (2.7) to be the trimmed version SN(y) =

N�1
PN

i=1 'i(y)=bg(Xi) just speci�ed, and let S�N(y) = N�1
PN

i=1 'i(y)=g(Xi) be

the untrimmed counterpart, where

'i(y) = (1� �i)
nX

j

1

(N � 1)
�jKb(Xj �Xi)[I(Yj � y)�G(yjXj)]

o
: (3:1)

Analogous terms TN and T �N are likewise de�ned as in (2.8). Clearly, it su�ces

to justify our modi�ed trimming method by establishing the asymptotic mean

square equivalence between SN and S�N . The analogous proof for TN and T �N
will be omitted. We begin with the basic Lemma 3.1, from which the mean

square consistency of bG follows. The proof of Lemma 3.1 will be sketched in

the Appendix. Here, we need to impose a natural condition that is void in the

complete data case;

Condition (5): E[�2(yjX)=p(X)] <1, and E[f1�p(X)gfG0(yjX)=g(X)g2 ] <1.

Lemma 3.1. Assume Conditions (1�) and (2) to (5). Then E(S�N)
2 = 4�1=N +

O(1=N 2b) and E(T �N )
2 = O(b4), where �1 = E[f1 � p(X)g2�2(yjX)=p(X)]=4 +

O(b).

We now establish the asymptotic mean square equivalence between the

trimmed SN and S�N (suppressing a similar argument for TN and T �N) so as to

justify the trimming method. In the derivation of E(S�N)
2 (Lemma 3.1, see also

Appendix), we �nd, by inserting the factor [I(Ac)� 1] into the expectation of �1,

that

E
n 1

N

NX
i=1

(1� �i)
h NX
j 6=i

�Kb(Xj �Xi)�j"j

(N � 1)g(Xi)

�i
� [I(Aic)� 1]

o2
! 0; (3:2)

where "j � I(Yj � y)�G(yjXj). Referring to the proof of (2.9), it follows that

for some a > 1

1X
N=1

(N 2=bt)P [ sup
x2Ac

jbg(x)�E[bg(x)]j > a(logN=Nb1+t)1=2] <1: (3:3)

Then, by the uniform integrability of S�N (due to Lemma 3.1), (3.3), supx jE[bg(x)]
�g(x)j � Cb wp 1, and [g(X)I( bAc)=bg(X) � I(Ac)] ! 0 wp 1 (indeed, I( bAc) �
I(Ac)! 0 wp 1), it is seen that

E
n 1

N

NX
i=1

(1� �i)[
NX
j 6=i

�Kb(Xj �Xi)�j"j

(N � 1)g(Xi)

�
] � [

g(Xi)bg(Xi)
I( bAic)� I(Aic)]

o2
! 0; (3:4)
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where we have used the condition 0 < t � 1=4 together with a condition yet

unspeci�ed;

Condition (3�): logN = O(Nb2).

It follows from (3.2) and (3.4) that the contribution to the asymptotic mean

square (AMS) by the part with factors f1� I( bAic)g (being trimmed o�) actually

converges to 0, and the complementary part with factors I( bAic) (being kept)

eventually contributes the total AMS. The asymptotic mean square equivalence

between the trimmed SN and S�N , and hence the modi�ed trimming, is now

justi�ed.

As a result of the mean square consistency, we have the following asymptotic

normality.

Theorem 3.1. Assume (2:1), conditions (1�), (2), (3�), (4), and (5). Assume

also Nb4 ! 0 as N ! 1. Suppose that the weights of bG are de�ned by a

trimming sequence c(n) ' bt, 0 < t � 1=4. Then, for each scalar y, N 1=2[ bG(y)�
G(y)] converges to a normal distribution with mean 0 and variance

�2(y) = E[�2(yjX)=p(X)] +E[G2(yjX)] �G2(y): (3:5)

Proof. By (2.5) to (2.8), Lemma 3.1 and the foregoing mean square equiva-

lence, it su�ces to consider bG(y) � G(y) ' QN + RN + S�N + T �N , suppressing

the arguments y. First, it is straightforward that N 1=2QN and N 1=2RN con-

verge to the normal distributions with means 0, and variances G(y) � G2(y)

and E[f1 � p(X)g�2(yjX)], respectively. Clearly, 2Cov(N 1=2QN ; N
1=2RN) =

�2E[f1 � p(X)g�2(yjX)]. It remains to consider the sum of

S�N = N�1

NX
i=1

(1� �i)
nX
j 6=i

�jKb(Xj �Xi)[I(Yj � y)�G(yjXj)]
o.

g(Xi);

and

T �N = N�1

NX
i=1

(1� �i)
nX
j 6=i

�jKb(Xj �Xi)[G(yjXj)�G(yjXi)]
o.

g(Xi):

By analogy with (5.1) in the appendix, it follows from Lemma 3.1 that N 1=2S�N
converges to a normal distribution with mean 0 and variance E[f1� p(X)g2�2

(yjX)=p(X)]. Likewise, for T �N , we �nd by standard U -statistics arguments that

E[N 1=2(T �N � bTN)]2 = O(1=N), where the projection bTN satis�es that bTN =

O(b2) = o(1=N 1=2) wp 1 by Condition (3�). Consequently, N 1=2T �N ! 0 in

probability. To compute the covariances between S�N and QN+RN , it su�ces, by

the proof of Lemma 3.1, to consider the projection bUN = 2
PN

i=1H1(Zi)=N , noting
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that H1(Zi) = Vif1� p(Xi)g=(2p(Xi)) +O(b) with Vi = �i[I(Yi � y)�G(yjXi)].

Therefore, 2Cov(N 1=2QN ; N
1=2S�N) = 2E[f1�p(X)g�2(yjX)], and Cov(N 1=2RN ,

N 1=2S�N) = 0 because �i(1� �i) = 0 and E[VijXi] = 0. It is then easy to see that

VarfN 1=2(QN +RN + S�N)g = �2(y) given by (3.5). The proof of Theorem 3.1 is

now complete.

Remark 3.1. Since EfN 1=2[ bG(y)�G(y)]g2 is bounded, it follows from condition

(3�) that the optimal choice of the bandwidth b can only be determinded by the

second-order term (of magnitude o(1=N)) of the mean squared error E[ bG(y) �
G(y)]2. Let K1 =

R
1

�1
K2(u)du and recall K2 =

R
1

�1
u2K(u)du for notational

convenience. It follows by Lemma 3.1 that

E[ bG(y)�G(y)]2

=
1

N

n
Var[G(yjX)] +E[�2(yjX)=p(X)]

o
+ (�N)

2 + 2�2=N
2 +O(1=N 2); (3:6)

where the �rst summand on the r.h.s. is equal to �2(y)=N by (3.5); further,

2�2=N
2 = K1e1(N

2b)�1, (�N)
2 = [E bG(y) � G(y)]2 = (K2e2b

2)2, where e1 =

E[f1�p(X)g�2(yjX)=g(X)], and e2 = Ef[p0(X)+(1�p(X))(g0=g)(X)]G0(yjX)g.
Thus, the asymptotic minimum mean squared error is found to be

�2(y)=N + (K1e1)
4=5(K2e2)

2=5
.
(81=5N 8=5) +O(1=N 2); (3:7)

which obtains when the theoretically optimal bandwidth bopt = (K1e1)
1=5

�(2K2e2)
�2=5N�2=5 is implemented. It is remarkable, perhaps surprising, that

the local linear regression smoother discussed by Fan (1992) would lead to the

same formulae (3.6) and (3.7); that is, the advantage of the local linear smoother

in reducing the bias ��N (in fact, e2) directly to a quadratic term, does not apply to

the incomplete data case when the indicators �i are involved. On the other hand,

neither could the well-known Gasser-M�uller (1979) regression estimator yield the

same formulae (in the random design case) due to creating a larger asymptotic

variance compared to the Nadaraya-Watson (1964) estimator (see the discussions

by Mack and M�uller (1988), and Chu and Marron (1991)). Adapting bopt will

involve estimating e1 and e2, that requires estimating p0, f 0 and G0. This extra

task can also be done by using some U -statistics de�ned through some formulae

comparable to (2.2). For brevity, adaptation of bopt is not discussed here because,

it does not yield any particular advantage, as evidenced by the 
exible choices

of b in the simulation study of Section 4.

We conclude this section by complementing Remark 2.2 with the asymptotic

normality of the sample quantile bG�1(q).

Theorem 3.2. Assume in addition to the conditions of Theorem 3.1 that G has

a density G(1) which is positive and continuous at �q. Then N 1=2( bG�1(q) � �q)
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converges to a normal distribution with mean 0 and variance (�(�q)=G
(1)(�q))

2,

where �2(�) is de�ned by (3.5).

Proof. Fix a real t. Let �(t) be the standard normal cdf, and A > 0 be a

normalizing constant to be speci�ed later. Letting �q;N = �q + tAN�1=2 andb�q = bG�1(q), we have

P [N 1=2(b�q � �q)A
�1 � t ] = P (b�q � �q;N) = P [q � bG(�q;N )] (3:8)

= P [N 1=2(q �G(�q;N ))�(�q;N )
�1 � N 1=2( bG(�q;N)�G(�q;N ))�(�q;N )

�1 ]:

By (3.5) and the Lebesgue dominated convergence theorem, �(�q;N ) ! �(�q).

Thus N 1=2fG(�q;N ) � qg=�(�q;N ) converges to tAG(1)(�q)=�(�q) which equals t

if A = �(�q)=G
(1)(�q). Therefore, the limit in N of (3.8) equals 1 � �(�t) by

Theorem 3.1. The proof is complete.

4. A Simulation Study

In this section we carry out a study comparing the performance of three

distribution function estimators bG, Gs and Gp given the missing data pattern

(1.1). Here, bG is the estimator of (2.3), Gs is the basic naive pairwise-deletion

estimator de�ned by

Gs(y) =
NX
i=1

�iI(Yi � y)=
NX
i=1

�i;

and Gp is a standard linear-regression estimator de�ned by

Gp(y) = N�1

NX
i=1

[�iI(Yi � y) + (1� �i)I(Y
�

i � y)];

where Y �

i = Y + (Sxy=Sxx)(Xi �X), and X , Y , Sxx and Sxy denote the sample

averages, variance and covariance, respectively, of the sub-sample of the complete

pairs (cf. Little and Rubin (1987) Chapter 6). It is worth noting that Gs(y) is a

consistent estimate of E[p(X)G(yjX)]=p by assumption (2.1), which is not equal

to G(y) in general unless p(x) identically equals the constant p. For the kernel

estimator bG, we have tested some symmetric pdf kernels in computations, includ-

ing the biweight kernel and the Epanechnikov (1969) kernel K(u) = 3

4
(1 � u2).

Results from the latter kernel, showing no noticeable di�erence from the former,

will be reported below (see Silverman (1986) and M�uller (1988) for discussions on

the choices of multivariate kernels in case of multivariate X). It is worth noting

that we did not use the Gasser-M�uller (1979) estimator as a competitor to the

Nadaraya-Watson (1964) estimator, because the former has larger asymptotic

variance and a comparable bias property (see Remark 3.1, and Chu and Marron,

1991).
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The report below presents a typical simulation study where a parametric

linear regression model holds. Two hundred data sets, each of sample size N =

50, were generated from the bivariate normal distribution ((0; 0), (1; 1), � = 0:8).

The ignorable missing mechanism was generated by p(x) = I(x � 0)+0:3 �I(x >

0) with p = Ep(X) = 0:65, which is specially selected to violate Condition (1�) of

Section 3. Our unreported extensive simulations indicate that a moderate jump

discontinuity of p(x) in the interior of the support of X usually has little e�ect

on the performance of bG. In the sparse data regions, either in the tails of the

joint distribution (of X and Y ) or due to heavy missing, the performance of bG
may be unsatisfactory. A modi�ed version of bG (see (4.1) below) employing the

trimming of Section 3 is suggested for improvement.

The results of the present simulation study are exhibited in Figures 1 and

2, and Table 1. In Figures 1 and 2, plots of the bias and the variance of four

estimators are depicted at values y = �4:0 (0:2) 4:0, respectively. Dotted curves

are for Gs, starred ones for Gp, solid ones for bG using c = 0, and dashed ones for a

modi�ed bG using c = 0:02. The bandwidths tested for bG include b = 0:1 (0:1) 1:2.

The case b = 0:4 is reported, since similar performances are obtained within a

wide range: 0:2 � b � 0:9. Likewise, for the modi�ed bG, values 0:01 (0:01) 0:05

for c also provided similar behavior in the current normal linear regression ex-

ample. Table 1 presents three measurements of sampling variation for the four

estimators in contrast to Figures 1 and 2. They are the means and the variances

of the Kolmogorov-Smirnov distances, and the mean integrated square errors

(MISE) de�ned by, say, MISE( bG) = E[
R1
�1
f bG(y)�G(y)g2dy].

To reduce the e�ect of sparse data, the modi�ed bG above-mentioned goes

one step beyond the trimming of Section 3. Consider the following weighting

design that modi�es (2.2) by

cWj(Xi) =Wj(Xi)I[bg(Xi) � c] +W �

j (Xi)I[bg(Xi) < c]; (4:1)

where equal weights W �

j (Xi) = 1=[c�Nb], for some c� > 0, are assigned to each

member of the set fYj : �j = 1, and the concomitant Xj is one of the [c�Nb]

nearest neighbors to Xig. Intuitively speaking, (4.1) is designed to help reduce

the bias in the sparse data area fg(X) < cg. In this simulation example, proper

values for c� that are relatively larger than c also form a small 
exible range

c� = 0:06 (0:01) 0:15 where stable bias performance is obtained. Thus, we merely

report the value c� = 0:1. However, more study concerning proper combination

choices of the values b, c and c� need to be carried out to make (4.1) or any

analog a more practical method.

In summary, we �nd from the means, the standard deviations, and the MISE

of the Kolmogorov-Smirnov distances in Table 1 that Gp has the least sampling

variation and MISE, Gs is the worst by these measurements, and both bG perform

fairly well. On the other hand, Figures 1 and 2 indicate that both bG still have
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unsatisfactory sample variances in some regions of the y values, whereas the

modi�ed bG has the best bias performance among all. Although it is di�cult, if

not impossible, to cover a wide range of simulations combining general regression

models and missing data patterns, the modi�ed bG appears to be a reasonably

good nonparametric alternative to Gp without assuming a parametric model.

Further study needs to be done for the general cases, especially for nonrandom

missing data.

Table 1. The sample mean and standard deviation (SD) of the Kolmogorov-

Smirnov distance and mean integrated square error (MISE) of Gs(y), of

Gp(y), of Ĝ(y) with b = 0:4 and c = 0, and of Ĝ(y) with b = 0:4, c = 0:02

and c� = 0:1, over the 200 simulated data sets of sample size N = 50. The

MISE of Ĝ is de�ned by MISE(Ĝ) = E[
R
(Ĝ(y) � G(y))2dy], and those of

Gs and Gp are de�ned similarly.

Mean SD MISE

Ĝ(y); b = 0:4; c = 0 0.1652 0.0515 0.0034

Ĝ(y); b = 0:4; c = 0:02; c� = 0:1 0.1710 0.0558 0.0029

Gs(y) 0.2276 0.0744 0.0067

Gp(y) 0.1502 0.0481 0.0024
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Figure 1. Plot of the sample biases of bG(y) with b = 0:4 and c = 0 (solid

curve), bG(y) with b = 0:4, c = 0:02 and c� = 0:1 (dashed curve), Gs(y)

(dotted curve), and Gp(y) (starred curve) over the 200 simulated data sets

of sample size N = 50.
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Fig. 2. Plot of the sample standard deviations of bG(y) with b = 0:4 and

c = 0 (solid curve), bG(y) with b = 0:4, c = 0:02 and c� = 0:1 (dashed curve),

Gs(y) (dotted curve), and Gp(y) (starred curve) over the 200 simulated

data sets of sample size N = 50.
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Appendix : Proof of Lemma 3.1.

For S�N(y) de�ned by (3.1), let Vi = �i[I(Yi � y) � G(yjXi)] for all i. Set

Zi = (Xi; Yi; �i) and de�ne for all pairs (i; j), H(Zi; Zj) = Kb(Xj � Xi)f(1 �

�j)Vi=g(Xj) + (1 � �i)Vj=g(Xi)g=2, which is a symmetric function by Condi-

tion (2). Thus S�N(y) = N�1
PN

i=1 'i(y)=g(Xi) =
PN

i=1

P
j 6=iH(Zi; Zj)=N

2 =

NUN(y)=(N � 1) (since H(Zi; Zi) = 0), where UN is a standard U -statistic with

a symmetric kernel of order 2.

Now, consider UN(y) for each y. We note that E[H(Zi; Zj)] = 0 = E(Vi),

and that for each i the conditional expectation H1(Zi) � E[H(Zi; Zj)jZi] =

Vif1 � p(Xi)g=(2p(Xi)) + O(b)Vi wp 1. A few useful moments for UN are then

computed:

�1 � VarH1(Zi) = E[f1 � p(X)g2�2(yjX)=(4p(X))] +O(b);

and

�2 � VarH(Zi; Zj) = E[f1 � p(X)g�2(yjX)=g(X)](

Z
1

�1

K2(u)du)=(2b) +O(1):
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The U -statistic projection of UN is bUN = 2
PN

i=1H1(Zi)=N , E( bU 2

N ) = 4�1=N ,

and E(U 2

N) = Var(UN ) = 4(N � 2)�1=(N(N � 1)) + 2�2=(N(N � 1)). Therefore,

E(UN � bUN)
2 = 2�2=(N(N � 1)) +O(1=N 2). It follows by a standard argument

(Ser�ng, (1980) p: 189-192) that

N 1=2UN ! Normal (0; 4�1); (5:1)

which is a useful preliminary result for Theorem 3.1.

Similar analyses for T �N(y) via U -statistic are now sketched. Like (3.1), (omit-

ting the arguments y) we have the expression T �N =
PN

i=1

P
j 6=i L(Zi; Zj)=N

2,

where Zi = (Xi; �i) and

L(Zi; Zj) =
n
g(Xi)

�1(1� �i)�jKb(Xj �Xi)[G(yjXj)�G(yjXi)]=2

+ g(Xj)
�1(1� �j)�iKb(Xi �Xj)[G(yjXi)�G(yjXj)]=2

o
:

Thus T �N is a U -statistic for estimating a bias quantity �N � E[L(Zi; Zj)]. De�nebTN = 2
PN

i=1E[L(Zi; Zj)jZi]=N��N = 2
PN

i=1 L1(Zi)=N��N to be the projection

of T �N , such that E( bTN) = �N . By Conditions (1), (2) and (4), direct computation

using the SLLN like lemma 2.3 leads to the fact that L1(Zi) � Cb2 wp 1, for N

large. A similar proof shows that �N = E[L1(Zi)] � Cb2, and j bTN j � Cb2 wp 1,

for N large.

Further, the bounds for the second moments are easily veri�ed to be �1 �

E[L2

1
(Zi)] � Cb4 and �2 � E[L2(Zi; Zj)] � C. It follows that Var( bTN) = 4(�1 �

�2N)=N = O(b4=N) = o(1=N 2) by Condition (3�) speci�ed in Theorem 3.1, and

Var(T �N � bTN) = E[T �N � bTN ]2 = 2�2=(N(N � 1)). The proof of Lemma 3.1 is

now complete.
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