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Abstract: We consider the performance of a diagnostic test based on continuous mea-

surements in its ability to distinguish between healthy and diseased individuals. For

a performance criterion we use Youden's (1950) index which is essentially the sum

of the sensitivity and speci�city. Based on available training set data, two types of

nonparametric estimators for the optimal cuto� level and for the index are proposed.

The �rst type is constructed from empirical distribution functions, the other from ker-

nel smoothed density estimates. We compare their asymptotic properties, including

rates of convergence. Finite sample properties are investigated by means of a small

simulation study. Finally, the methods are applied to results of a glucose tolerance

test for diabetes in a sample of 578 individuals from the NHANES-II study.
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1. Introduction

A diagnostic test giving a measurement on a continuous scale is used to

classify patients into either \healthy" or \diseased" categories. Typically, a cuto�

point, c, is selected, and patients with test results greater than this are classi�ed

as \diseased", otherwise as \healthy". The test score of a healthy patient is

represented as a real random variable X with distribution function F and density

f . Similarly a diseased patient's score will be denoted by Y with distribution

function G, density g. Typically the supports of X and Y will overlap, but we

assume that:

(A1) there exists a value � such that g(�) = f(�), g(t) < f(t) for t < �, and

g(t) > f(t) for t > �.

This is satis�ed if, for example, the likelihood ratio is monotone. The assumption

implies that X is stochastically smaller than Y , i.e. F (t) � G(t) for all t.

The sensitivity of the test is de�ned as SE(c) = 1 � G(c), which is the

probability of correctly classifying a diseased individual when cuto� point c is

used. Similarly we de�ne the test's speci�city SP (c) = F (c) as the probability of

correctly classifying a healthy patient. Clearly these are the complements of the
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familiar Type I and Type II errors. A simple measure of the merit of a diagnostic

test is the sum SP (c) + SE(c), which under assumption (A1) is maximized by

choosing c = �. We have

max
c
[SE(c) + SP (c)] = SE(�) + SP (�) = 1 + F (�)�G(�)

= 1 +max
c
[F (c) �G(c)]: (1)

Youden (1950) proposed � = F (�)�G(�) = maxc[F (c)�G(c)] as an index of

performance of the diagnostic test and he listed a number of its desirable features.

This index or measure assumes false positives and false negatives are equally

undesirable. Gail and Green (1976) discussed a generalization whereby the index

is a weighted sum of sensitivity and speci�city. For simplicity we consider only

Youden's original unweighted index, although our results can easily be extended.

In any case, the relative cost of a false positive to a false negative is often di�cult

to ascertain. Brownie, Habicht and Cogill (1986) have used Youden's index for

rating indicators of nutritional status (e.g. skin fold thickness, arm circumference,

weight/height etc.) for a population of rural Bangladeshi children. The value

� is also clearly of interest as the value that yields the maximum in (1). In

certain circumstances, � also approximates the optimal choice of cuto� value for

estimating the prevalence of the disease in a population (cf. Habicht and Brownie

(1982), Brownie and Habicht (1984)).

When the distributions F and G are unknown, we wish to estimate the value

of Youden's index � and the optimal cuto� value �. We suppose that a training

data set X1; : : : ;Xm of readings from the healthy population is available as is

a set Y1; : : : ; Yn, from the diseased population. Our approach will be nonpara-

metric and in the next section we consider estimators of � and � , based on

empirical distribution functions Fm and Gn for F and G, respectively. We will

be concerned about asymptotic properties of the estimators as m; n! 1 with

m=n ! �2, say, with � > 0. In particular we give a theorem about the conver-

gence in distribution of these estimators (�̂; �̂, say) with rates n�1=2 and n�1=3,

respectively. In Section 3, we discuss alternative \smoothed" estimators, ~�; ~� say,

based on kernel density estimates of f and g and demonstrate their consistency

and convergence properties. The rate of convergence of ~� is shown to be the same

as that of the density estimate and depends on the smoothness of the underlying

densities, f and g. The estimator ~� is shown to be
p
n mean square consistent

and has considerably lower mean square error than the empirical estimator �̂.

Due to space limitations, only heuristic outlines of the proofs of the results will

be presented here. The detailed proofs, which are somewhat lengthy and techni-

cal in nature, are available from the authors upon request | Hsieh and Turnbull

(1992). In Section 4, simulation results for comparing estimators discussed in
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Section 2 and 3 are reported. Also we apply our methods to a glucose tolerance

test for the diagnosis of diabetes based on data from the Second National Health

and Nutrition Examination Survey (NHANES-II, 1976-1980).

There have been other approaches to the problem of assessment of the

merit of a diagnostic test. Altham (1973) used a weighted sum of di�erencesP
uj [F (�j) � G(�j)] for given rating levels �j and weights uj , 1 � j � r for

what she terms a measure of \signal discriminability". Greenhouse and Mantel

(1950) proposed that a test be acceptable if there existed a cuto� point c such

that SE(c) > � and SP (c) > � for some prespeci�ed fractions � and � . They

went on to describe a hypothesis testing approach for determining whether a

diagnostic test was acceptable under this criterion given an available training

data set. Sch�afer (1989) described a procedure where the cuto� value is chosen

to be a speci�ed sample quantile from the X sample or, alternatively, an upper

con�dence limit for F�1(p), for speci�ed p. He illustrated his method with an

application to a marker for bone marrow metastases in patients with small cell

lung cancer. Miller and Siegmund (1982) estimated the cuto� point � by choos-

ing that value � that maximized the Pearson chi-square statistic based on the

2�2 table formed when the healthy and diseased individuals in the training data

set are classi�ed as having test values either above or below �. Halpern (1982)

presented simulation results comparing this maximum chi-square-based statistic,

one based on the maximum square of a standardized log cross-product ratio, and

the statistic proposed by Gail and Green (1976). Yet another approach involves

measures based on the receiver operating characteristic (ROC) curve, given by

1 � G(F�1(1 � t)) . For recent papers, see Swets (1988), Wieand et al. (1989),

Goddard and Hinberg (1990).

Statistical evaluation of diagnostic tests has been important in many �elds,

including medicine, nutrition, epidemiology, psychology, electrical engineering

and polygraph testing. We shall not attempt to give a review of the large amount

of literature on the subject; much of it relates to binary or discrete responses

rather than ones on a continuous scale, which is our concern. The reader is

referred to the book by Swets and Pickett (1982), also the paper by Gastwirth

(1987) with accompanying discussion.

2. An Empirical Estimate of � and �

A natural estimate of � is obtained by replacing cdf's F and G in the de�-

nition by their empirical distribution functions, Fm and Gn, i.e.

�̂ = max
x

(Fm(x)�Gn(x)): (2)

Analogously we can use the location of the maximum of (2) as an estimate of �.
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Since this may not be unique, we de�ne the empirical estimator, �̂, by

�̂ = medianfx0 j Fm(x0)�Gn(x0) = max
x

(Fm(x)�Gn(x))g: (3)

(Alternatively, in the de�nition (3), we could use the maximum or minimum value

instead of the median.) These estimators �̂ and �̂ are nonparametric generalized

maximum likelihood estimators in the sense of Kiefer and Wolfowitz (1956).

The problem of estimating � is similar to that of estimating the mode of

a density function. Cherno� (1964) provided an estimator of the mode of a

density with an Op(n
�1=3) rate of convergence, whose distribution was expressed

by means of a functional of Brownian motion with quadratic drift. More general

development on this cube root asymptotics via functional limit theorems for

empirical processes indexed by a class of functions can be found in Kim and

Pollard (1990).

We will assume that � is unique in the following sense:

(A10) For any � > 0, there exists " (> 0) , such that

sup
jx��j>�

[F (x)�G(x)] < F (�)�G(�)� ":

Note that (A10) is slightly weaker than (A1). We shall be concerned with the

asymptotic properties of our estimators, �̂ and �̂, as de�ned in (2) and (3). We

assume that the sample sizes are increasing such that m=n! �2(> 0), say.

The Glivenko-Cantelli theorem guarantees the strong uniform convergence

of Fm and Gn to F and G, respectively. Then it can easily be shown that �̂ ! �

and �̂ ! � almost surely. Details are given in Hsieh and Turnbull (1992).

Now we de�ne a functional H by H(H1; H2; x; �) = (H1(x) � H2(x)) �
(H1(�)�H2(�)) for any two functions H1 and H2 . Let C(k)(C) denote the class
of functions with a continuous k-th derivative on interval C; C � <. From the

strong approximation of empirical processes (Cs�org�o and R�ev�esz (1981), Theorem

4.41), we have, almost surely:

H(Fm; Gn; x; �)�H(F;G; x; �)

=
1p
m

[B1(F (x)) �B1(F (�))]�
1p
n
[B2(G(x)) �B2(G(�))] +O(n�1 log n): (4)

Here fB1g and fB2g are two independent Brownian bridge processes on [0,1].

Further, we assume F and G satisfy (A2) and (A3) below:

(A2) F and G are in C(2)(a0; b0), for some a0; b0, with � 2 (a0; b0). F and G have

connected intervals as their supports with intersection containing (a0; b0).

(A3) jf 0(�)� g0(�)j = a; a > 0.

From (A2), if x is close to �, we see that (4) is approximately distributed as
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n�
1
2 [��2f(�) + g(�)]

1
2Z((x� �)); (5)

where Z(�) is a two-sided standard Brownian motion, i.e. Brownian motion on

(�1;1) with Z(0) = 0 (Cherno� (1964, page 35)). Also, the assumptions imply

H(F;G; x; �) � 1

2
(f 0(�)� g0(�))(x� �)2: (6)

From (4),(5) and (6), we have

max
x

(H(Fm; Gn; x; �)) = max
x

(H(Fm; Gn; x; �)�H(F;G; x; �) +H(F;G; x; �))

converges in distribution to

max
x
f 1p

n
[��2f(�) + g(�)]

1
2Z(x� �)� a

2
(x� �)2g = Cn�

2
3 max

z
(Z(z)� z2); (7)

where z = (x� �)=
 with 
 = ( 4K
na2

)
1
3 ; K = (��2f(�) + g(�)), C = a

2
( 4K
a2
)
2
3 and a

is as de�ned in (A3). As above, Z(z) is de�ned as a two-sided standard Brownian

motion process. Hence we have that

p
n(�̂ � �) =

p
n[Fm(�)�Gn(�)� (F (�)�G(�))] + max

x
fpnH(Fm; Gn; x; �)g

converges in distribution to

��1B1(F (�))�B2(G(�)) +Op(n
�

1
6 ); (8)

where B1 and B2 are two independent Brownian bridges.

The above results are summarized in the Theorem 2.1 below. A rigorous

proof may be obtained by a modi�cation of the proof of the main theorem in

Kim and Pollard (1990).

Theorem 2.1. Let F and G satisfy (A10), (A2) and (A3). Then we have

1. �̂ converges to � almost surely and
p
n(�̂ � �) converges in distribution to

��1B1(F (�))�B2(G(�)) +Op(n
�

1
6 ).

2. �̂ converges to � almost surely and ( a
2

4K
)
1
3n

1
3 (�̂��) converges in distribution to

the distribution of the random variable which maximizes process (Z(z)�z2); z 2
<.
Remark 1. From (7), it is clear that

Bias(�̂)
:
= Cn�

2
3Efmax

z
(Z(z)� z2)g
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is always positive. Hsieh (1991) considered nonsmoothed bootstrap estimates of

� which can reduce the bias, but the bootstrap bias-correction introduces extra

variation and the simulation results given there indicate that bootstrapping does

not lower the mean square error (MSE).

Remark 2. The MSE of �̂ can be obtained by squaring (8) and taking the

expectation.

nE(�̂ � �)2 = ��2F (�)(1� F (�)) +G(�)(1�G(�)) +O(n�
1
3 ): (9)

Theorem 2.1 shows that �̂ is �rst order e�cient in estimating �, doing as

well asymptotically as if the true � were known. However, in Section 3, we show

that, under stricter smoothness conditions on F and G, another estimator of �

can be constructed which yields a lower mean square error. Theorem 2.1 shows

that �̂ converges to � at rate n�1=3. Also in Section 3 we show that a better rate

of convergence can be obtained if a smoother condition than (A2) is assumed.

However under (A2), Hsieh and Turnbull (1995) have shown that n�1=3 is the

best rate in the sense of being local asymptotically minimax.

3. Smoothed Estimators of � and �

The estimators of � and �, ~� and ~� say, considered here are obtained by sub-

stituting kernel smoothed estimates in their de�nitions (2), (3). Their properties

are compared with those of the estimators in Section 2; in particular, we show

that ~� has an asymptotic mean square error which is smaller than that of �̂.

3.1. Estimation of �

We now de�ne kernel density estimates fm and gn of f and g, respectively

and we will show that the estimator, ~�, de�ned as a solution of fm(x)�gn(x) = 0,

converges to � at a certain rate.

First suppose 
 > 2, let � be the largest integer less than 
 and set � = 
�� .

De�ne F(
; 
1) to be the class of distribution functions Q(x) of H�older continuity
of order 
. That is, they satisfy the following conditions:

(i) There exists (a0; b0), such that Q(x) 2 C(�)(a0; b0) with � 2 (a0; b0).

(ii) sup jx1 � x2j��jQ(�)(x1)�Q(�)(x2)j < 
1; over (x1; x2) 2 (a0; b0).

From here on, we assume that

(A20) F and G are in F(
; 
1), for some 
1 and 
(> 2):

In order to construct smooth density estimators of f and g, we need to

introduce the kernel function k(�). This function can be taken to satisfy the

following conditions:

(B1) k(�) is bounded and has a bounded continuous �rst derivative of bounded

variation. Also, for some � (> 0); jk(�)j2+� is integrable, and R k(z)dz = 1, I(k) =
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R
k2(z)dz <1 and H(r; k) =

R jzj
�1jk(z)jdz <1. If not speci�ed otherwise all

integrals are over the domain (�1;1). Finally, for any � > 0,

1

h
j
n

Z
fz:jzj>�=hng

jk(j)jdz ! 0 for j = 0; 1 as hn ! 0:

(B2) k(�) is an �th-order kernel. That is

Z
zjk(z)dz = 0; j = 1; 2; : : : �� 1 and

Z
z�k(z)dz 6= 0:

Kernel density estimates, fm(x) and gn(x), of f(x) and g(x) are given by

fm(x) =
1

m

mX
1

1

hm
k(
x� xi

hm
); gn(x) =

1

n

nX
1

1

hn
k(
x� yi

hn
)

with bandwidths hm = cm�1=(2
�1) and hn = cn�1=(2
�1) for an appropriate

constant c.

For convenience, we now assume � is the unique solution of the equation

f(x) = g(x) on (a0 b0) and maximizes F (x)�G(x). Under the above convention,

the condition (A10) is equivalent to the following assumption (A100):

(A100) For � > 0, su�ciently small, there exists an " > 0 such that

inf jf(x)� g(x)j > "; for jx� �j > � and x 2 (a0; b0):

We de�ne the estimator ~� as follows:

~� = medianfxjx 2 (a0; b0); and fm(x0) = gn(x0)g: (10)

We now have the following theorem.

Theorem 3.1. Let F and G satisfy (A100) and (A20), and kernel k(�) satisfy

(B1). Then ~� converges to � almost surely. Further if (A3) is assumed, the

equation fm(x) = gn(x) has a unique solution almost surely as m;n �!1.

The proof of this strong consistency of ~� is given in Hsieh and Turnbull

(1992). Recall that, for our asymptotic theory, m=n ! �2. The next theorem

shows that the rate of convergence of ~� is n�(
�1)=(2
�1).

Theorem 3.2. Assume that the underlying distribution functions F and G

satisfy conditions (A100), (A20) and (A3), kernel function k(�) satis�es conditions
(B1) and (B2). Then

(nhn)
1
2 (~� � �)! Z + c� (in distribution)
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as n!1, where Z is normally distributed with mean 0 and variance �2 given

by

�2 = [(�
4


2
�1 )f(�) + g(�)]I(k)=(f 0(�)� g0(�))2;

and

c� = (�
2(2
�2)

2
�1 )[C(
; f; �)� C(
; g; �)]c
2
�1

2 H(
; k)=[g0(�)� f 0(�)]:

Here I(k) and H(
; k) are as in Assumption (B1) and C(
; f; �) is de�ned by

C(
; f; �)h�
m

Z
jz jr�1j k(z)j dz (1 + o(1))

=
(�1)��1

(�� 1)!

Z
z(��1)(f (��1)(� � hmz)� f��1(�))k(z)dz

and similarly for C(
; g; �).

The detailed proof is given in Hsieh and Turnbull (1992). From Theorem

3.2, it follows that the rate of convergence n�(
�1)=(2
�1) of ~� is the same as the

optimal rate for estimation of the density function under the same smoothness

conditions (see e.g. Farrell (1972)). It is shown in Hsieh and Turnbull (1994) that

this rate is indeed optimal in the sense of being local asymptotically minimax for

estimating � as well.

3.2. Estimation of �

To estimate �, we need �rst to construct kernel smoothed estimates, ~Fm and
~Gn, say, of the distribution functions F and G. Because we are now estimating

distribution functions rather than densities as in Section 3.1, we use a kernel

function ~k(�) of order �+ 1, rather than � as above. (This can be seen from the

Taylor expansion of the bias in (11) below.) De�ne kernel distribution ~K(z) =R z
�1

~k(u)du. Now we construct kernel smoothed estimates of F and G with

bandwidths hm = cm�1=(2
�1) and hn = cn�1=(2
�1),

~Fm(t) =
1

m

mX
i=1

~K(
t� xi

hm
) and ~Gn(t) =

1

n

nX
j=1

~K(
t� yj

hn
):

Then, we have the expectations

E( ~Fm(t)) = F (t) + (�1)�h
�

m

�!

Z
z�[F (�)(t� hmz)� F (�)(t)]~k(z)dz

= F (t) + C1(
; F; t)h



m
(1 + o(1)); say; (11)
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and similarly, E( ~Gn(t)) = G(t) +C1(
;G; t)h



n
(1 + o(1)). Variances are given by

Var( ~Fm(t)) =
1

m
F (t)(1 � F (t))� hm

m
f(t)d0(1 + o(1)); (12)

Var( ~Gn(t)) =
1

n
G(t)(1 �G(t)) � hn

n
g(t)d0(1 + o(1)); (13)

where

d0 = 2

Z
z~k(z) ~K(z)dz: (14)

From the above expressions, we choose the kernel ~K such that d0 de�ned above

is positive in order that the variances in (12) and (13) are reduced. This we list

as Assumption (B3).

(B3) ~K is chosen so that d0 in (14) is positive.

From (11) and (12) and by choosing suitable bandwidth constants in con-

structing the smoothed distribution estimators, it follows that the MSE of ~Fm(t)

is

E( ~Fm(t)� F (t))2 =
1

m
(F (t)(1 � F (t))) � d�

hm

m
(1 + o(1)); (15)

where d� > 0 depends on d0 and the bandwidth constant. That is, the smoothed

distribution function, ~Fm(t), has a MSE smaller than that of Fm(t) by an amount

of orderm�2
=(2
�1). (In fact, this rate of improvement upon Fm(t) can be shown

to be the optimal one by using the argument of Hsieh and Levit (1991).)

We can now de�ne the smoothed estimator, ~�, as follows:

~� = ~Fm(~�)� ~Gn(~�); (16)

where ~� is de�ned in (10). We might expect that ~� will improve upon �̂ by a

term that is of the same magnitude as the improvement upon MSE of ~Fm(t) and
~Gn(t) over Fm(t) and Gn(t). The following theorem says just this. Again the

detailed proof can be found in Hsieh and Turnbull (1992).

Theorem 3.3. We impose the same conditions on F , G and kernel k(�) as

assumed in Theorem 3:2. Let ~k be a kernel function of order � + 1, uniformly

continuous and of bounded variation. Also assume ~K is bounded and satis�es

(B3). Then, choosing a bandwidth of order n�1=(2
�1) with appropriate bandwidth

constants for kernels k and ~k, the MSE expansion of ~� is;

nE(~� � �)2 = ��2F (�)(1� F (�)) +G(�)(1�G(�))� d�0hn(1 + o(1));

where d�0 > 0 also depends on d0 and the bandwidth constant.

Comparing this expression to (9) we see that the improvement in MSE by

using ~� over �̂ can be substantial. Using the same methods mentioned above

(Hsieh and Levit (1991)) it can be proved that this rate is optimal under the

assumed conditions on F and G. It is also clear from (12) and (13) that a

\good" kernel ~k will be the one that gives a large value of d0.
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4. Simulations

Here we report the results of a small simulation study comparing the bias and

mean square error (MSE) of various estimators of � and � to see how they perform

with �nite samples. Simulated training sets of m = 200 X-values and n = 200

Y -values were generated where X is distributed as N (0; 1) and Y as N (2�; 1).

Four values of � were chosen, namely � = 0:5; 1:0; 1:5 and 2:0. Table 1 shows the

mean values (with mean square errors in parentheses) for �ve di�erent estimators

of � based on 1000 simulations. The �rst estimator is �̂1 = Fm(�)�Gn(�), where

� = 1

2
(Xn+Y n). This estimator is a natural one to use if f and g are symmetric

and di�er only by a translation, as is the case simulated here. Of course, in

practice, typically we would not know this. However, � serves as a convenient

\gold standard" by which to judge the nonparametric estimators. The second

estimator �̂2 = �̂ = max(Fm(x) � Gn(x)) is that based on the empirical cdf's,

as described in Section 2. The remaining estimators all require speci�cation of a

bandwidth constant c. A large number of values for c were investigated, but here

we display results for only three choices, namely c = 1:06; 0:5; 1:5:. The value

1.06 was chosen following the suggestion by Silverman (1986, page 45), noting

that the standard deviation � is 1 here. The other two values straddle this value.

The next two estimators are of the form ~� = ~Fm(~�) � ~Gn(~�). In both cases

the argument ~� is de�ned as in (10) with bandwidth h = cn�1=5 and Gaussian

kernels k for fm and gn. For the estimates of functions ~Fm, ~Gn, a Gaussian kernel
~k was also used. However, for �̂3 we use bandwidth h = cn�1=5, while for �̂4, the

bandwidth is h = cn�1=3. Here of course n = 200. The �nal estimator, �̂5, is

de�ned as max( ~Fm(x) � ~Gn(x)) using a Gaussian kernel ~k for ~Fm and ~Gn with

bandwidth h = cn�1=3.

Table 2 shows results from the same simulation study for three estimators of

the crossing point �. The �rst estimator is � = 1

2
(Xn + Y n), as discussed above.

The second estimator is �̂ = arg max(Fm(x)�Gn(x)) as given in Section 2. The

third estimator is argmax( ~Fm(x)� ~Gn(x)) using the same Gaussian kernel with

bandwidth h = cn�1=3. The last estimator is ~� as de�ned in Theorem 3.1 as the

solution to fm(x) = gn(x).

It would be expected, in this simple situation where F and G are symmetric

and di�er only by location, that the \gold standard" estimators �̂1, �, which use

this information, perform the best. They did, both in terms of bias and mean

square error (MSE). The non-smoothed estimators �̂2, �̂, generally performed

poorly. On the other hand, the smoothed estimators, with c = 1:06, performed

equally as well as the \gold standard" estimators. However if the smoothing

constant is too large, e.g. c = 1:5, there is \over-smoothing". The estimated
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Table 1. Means and mean square errors (in parentheses) for various esti-

mators of Youden's index � based on a simulation experiment.

bandwidth � � = 0:5 � = 1:0 � = 1:5 � = 2:0

constant c � = max(F (x) �G(x)) 0.38292 0.68269 0.86639 0.95450

�̂1 0.38295 0.68328 0.86738 0.95504

not (0.00214) (0.00139) (0.00060) (0.00023)

applicable �̂2 0.41052 0.70256 0.88004 0.96312

(0.00254) (0.00157) (0.00070) (0.00024)

�̂3 0.36337 0.65372 0.84231 0.94078

(0.00182) (0.00177) (0.00102) (0.00035)

1.06 �̂4 0.38143 0.67762 0.86214 0.95262

(0.00172) (0.00114) (0.00052) (0.00018)

�̂5 0.38300 0.67853 0.86279 0.95310

(0.00168) (0.00112) (0.00051) (0.00018)

�̂3 0.38370 0.67937 0.86344 0.95349

(0.00170) (0.00112) (0.00051) (0.00018)

0.5 �̂4 0.39127 0.68706 0.86915 0.95686

(0.00185) (0.00119) (0.00054) (0.00019)

�̂5 0.39299 0.68836 0.87017 0.95753

(0.00186) (0.00119) (0.00054) (0.00019)

�̂3 0.34226 0.62421 0.81646 0.92411

(0.00299) (0.00431) (0.00293) (0.00108)

1.5 �̂4 0.37248 0.66692 0.85411 0.94769

(0.00187) (0.00137) (0.00066) (0.00021)

�̂5 0.37361 0.66752 0.85455 0.94810

(0.00182) (0.00135) (0.00065) (0.00020)

Notes:

1. �̂1 = max(Fm(x)�Gn(x)), �̂2 = Fm(�)�Gn(�),

2. �̂3 =5
~Fm(~�)�5

~Gn(~�), �̂4 =3
~Fm(~�)�3

~Gn(~�), �̂5 = max(3 ~Fm(x) �3
~Gn(x)).

Normal kernels used with bandwidth constant c.

3. ~� is de�ned in (10) with h = cn
�1=5 and � = 1

2
(Xn + Y n) .

4. k
~Fm and k

~Gn are smoothed distibution functions with bandwidth of order n�1=k.

densities, fm, gn overlap more and so � is underestimated. In the other direc-

tion, if c is too small, e.g: c = 0:5, the estimated densities, fm, gn, become

\rougher". This results in higher variability in the estimate of the crossing point

�, as re
ected in the higher MSE values. Of course, for more general situations
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Table 2. Means and mean square errors (in parentheses) for various esti-

mators of the crossing point � based on a simulation experiment.

bandwidth Estimator � = 0:5 � = 1:0 � = 1:5 � = 2:0

constant c

�� 0.50103 1.00103 1.50103 2.00103

not (0.00243) (0.00243) (0.00243) (0.00243)

applicable �̂ 0.48703 0.98849 1.46092 1.93784

(0.05287) (0.03295) (0.03083) (0.03690)

�� 0.50246 1.00509 1.49818 2.00312

1.06 (0.03384) (0.01577) (0.01256) (0.01595)
~� 0.50109 1.00158 1.50142 2.00008

(0.01795) (0.00725) (0.00589) (0.00772)

�� 0.49992 1.01184 1.49574 2.00528

0.5 (0.04498) (0.02573) (0.02257) (0.02594)
~� 0.49805 1.00507 1.49842 2.00285

(0.03208) (0.01627) (0.01300) (0.01671)

�� 0.50511 0.99779 1.49715 2.00111

1.5 (0.02852) (0.00942) (0.00919) (0.01238)
~� 0.50053 0.99887 1.49827 1.99943

(0.01359) (0.00496) (0.00458) (0.00561)

Notes:

1. � = 1
2
(Xn + Y n).

2. �̂ is the unsmoothed estimator de�ned in (3).

3. �� = location of maximum of 3Fn(x)�3Gn(x) with bandwidth constant c.

4. ~� is de�ned in (10) with h = cn
�1=5.

where F and G were not known to be symmetric nor di�er simply by location,

the estimates, �̂1, �, would be no longer applicable, and the smoothed estimators

would be preferred. This simulation study, though of necessity limited in scope,

does enable us to see the potential bene�ts of using the smoothed estimates.

Hsieh (1991) also carried out simulations to compare a smoothed bootstrap

approach (De Angelis and Young (1992)) to obtain bias corrected estimates of

� and �. Although successful in reducing bias, the mean square errors were

not signi�cantly reduced and so the extra computation needed did not seem

worthwhile when compared to the performance of the smoothed estimators used

in Tables 1 and 2.

5. Application to NHANES Data

In this section, we apply the methods discussed in Sections 2 and 3 to a
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training data set from the NHANES-II survey involving glucose tolerance mea-

surements for the diagnosis of diabetes. For each individual, the data consist of

three responses, namely fasting glucose level L0, one-hour glucose level L1 and

two-hour glucose level L2. These glucose levels are measured in the following

fashion; the fasting glucose level is taken after this subject has been fasting for

12 hours. A 75-gram dose of oral glucose is then administered. The one- and

two-hour glucose measurements are then taken after the corresponding intervals.

For sample sizes we have n = 96 individuals in the diabetic group excluding 6 in-

dividuals with missing responses; for the healthy group we have m = 482, chosen

from the �rst �ve hundred and excluding 18 individuals with missing responses.

The data are available from the authors upon request. Usually, linear combina-

tions of marker values o�er improved performance (Su and Liu (1993)). A fourth

diagnostic response variable L3 can be constructed from a linear combination of

the three glucose levels as given by,

L3 = 0:5(L0 + L2) + L1:

The weights are chosen such that this linear combination is the area under the

polygon connecting the three glucose levels by line segments. (Note that an

interesting problem, which is not addressed here, would be to construct the

optimal way of combining the information from the three responses. However,

the nonparametric methods described in this paper could certainly be used to

evaluate various proposed discriminant functions.)

The nonsmoothed estimators �̂, �̂ and smoothed estimators ~�, ~� for this data

set are displayed in Table 3. For the smoothed estimators in this table ~Fm and
~Gn were constructed using a Gaussian kernel with bandwidths, �̂xm

�1=3 and

�̂yn
�1=3, respectively, where �̂x and �̂y are sample standard deviations. Here ~� is

the solution of equation gn(x) = fm(x) , also constructed with a Gaussian kernel,

but with bandwidth �̂xm
�1=5 and �̂yn

�1=5 respectively.

Table 3. Comparison of diagnostic tests (Youden index and cuto� point)

for diabetes based on NHANES-II Data

Tests Fasting 1-hour 2-hour L3

�̂ 0.4174 0.5469 0.5300 0.5925

�̂ (mg=d`) 160.0 187.0 141.0 306.5

~� 0.4203 0.5298 0.5184 0.5634
~� (mg=d`) 142.2 198.5 145.7 311.5

From Table 3 it can be seen that the diagnostic variable L3 has the highest
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Youden index value �. It is interesting to note the following recommendation for

classi�cation and diagnosis of diabetes from the National Diabetes Data Group

(1979, page 1040).

\8. The diagnosis of diabetes in non-pregnant adults be restricted

to (a) those with the classic symptoms of diabetes and unequivocal

hyperglycemia; (b) those with fasting venous plasma glucose (PG)

concentrations greater than or equal to 140 mg=d` on more than one

occasion; and (c) those who, if fasting plasma glucose is less than

140 mg=d` exhibit sustained elevated venous PG values during the

oral glucose tolerance test greater than or equal 200 mg=d`, both at

2-hours after ingestion of the glucose dose and also at some other

time point between time 0 and 2-hr."

The table shows that the smoothed estimator of � recovers the above rec-

ommendations on fasting and one-hour glucose levels. However, both the non-

smoothed and smoothed method give much lower optimal cuto� values for a

2-hour glucose level than 200 mg=d` as recommended.
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