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Abstract: In this paper, we study, in some new ways, the estimation of unimodal

densities. Several methods for estimating unimodal densities are proposed: plug-in

MLE, pregrouping techniques, linear spline MLE. Based on the maximum likelihood

method, an automatic procedure for estimating a unimodal density as well as its

mode is proposed. We also give asymptotic theory for the proposed estimators. An

important consequence of this study is that having to estimate the location of a

mode does not a�ect the limiting behavior of the proposed unimodal density estimate.

Simulation studies illustrate the proposed methods.
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1. Introduction

Nonparametric density estimation provides a useful technique of examining

the overall structure of a set of data. A commonly used technique is the kernel

method. The behavior of a kernel density estimate relies strongly on the choice

of smoothing parameter (bandwidth). Data-driven bandwidth selection methods

have been studied recently. One tries to minimize the Integrated Square Error

(ISE) or the Mean ISE (MISE) or other related objects, and uses one of them

as a measure of global e�ectiveness of a curve estimate. In practical density

estimation, however, features such as shape and area under modes may be more

interesting. ISE and MISE are not good criteria for these purposes. For example,

the ISE of two curves can be very small, while the shapes of the two curves are

quite di�erent. When shape information is available, an alternative approach

is to estimate a curve under shape restrictions. In this paper, we focus on a

number of approaches to the estimation of a unimodal density with an unknown

mode location. We describe our results and then point to some of the historical

background of our approach.

To estimate a unimodal density, we �rst begin by introducing a plug-in maxi-

mum likelihood method. Let f̂n(x;m) be the nonparametric maximum likelihood

estimate under the restriction that the unknown density is unimodal with the
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mode location parameterized by m. Let m̂ be a consistent estimate of the true

location m0 of the mode. Then, the plug-in version of the estimate is f̂n(x; m̂).

We show, in Section 2, that for all consistent estimates m̂, f̂n(x; m̂) converges

at the same rate n�1=3 with the same asymptotic distribution. The implication

of this is that estimating an unknown density with unknown location of mode

is not appreciably more di�cult than estimating an unknown density with a

known location of mode. This phenomenon was also observed by Birg�e (1987c),

who showed that among other properties, n1=3kf̂n(�; m̂) � f̂n(�;m0)k1 converges

to zero for a particular choice of estimator m̂. However, the current result holds

for any consistent mode estimator although the result is local rather than global.

This conclusion gives more support to Birg�e's notion that the MLE is robust to

mode estimation.

We then propose an automatic method for estimating the mode and the

density based on the maximum likelihood method. A rate of convergence for

the mode estimate is derived. The maximum likelihood estimate of the density

is shown to have the same asymptotic properties as the case where the mode is

known.

The graph of f̂n(x; m̂) is quite spiky near the location m̂. One way of reducing

the spikiness problem is to use a pregrouping technique. The idea is to group the

data into a number of groups �rst, and then to perform a form of MLE. We then

prove that if the grouping is not too crude, the pregrouping version of the MLE

does as well as the plug-in MLE in terms of pointwise weak convergence. This

pregrouping technique also saves computing costs. Another way of reducing the

peaking problem is the maximum penalized likelihood method. (See Woodroofe

and Sun (1993)).

The discontinuity of the plug-in MLE is unsatisfactory. To deal with this

problem, we introduce a maximum likelihood linear spline estimate. We give

explicitly the form of the estimate. The asymptotic distribution of the estimate

is derived when the mode is assumed known. Since not knowing the location

of the mode is not a serious matter in estimating a unimodal density when the

MLE is used, we expect but have not yet shown that such an estimate should

also work well when we do not know the location of mode. A nice feature of such

an estimate is that the location of the mode is determined automatically by the

data. Again, the pregrouping technique can be used to guard against spiking

problems and to reduce computation.

Various related issues are discussed in Section 3. No theory is available as

yet, but we give some heuristics below.

An early work on estimating a density under shape restrictions is Grenan-

der (1956), who estimated a decreasing density by using a maximum likelihood
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approach. The asymptotic distribution of the MLE at a point was found by

Prakasa Rao (1969), and Groeneboom (1985). Recent developments in estimat-

ing a monotone density can be found in Birg�e (1987a,b), who gives the behavior

of nonparametric minimax risks. Wegman (1969, 1970a,b) proposed and studied

the estimation of a unimodal density by �nding the MLE for a modal interval

of length ". In particular, he found the pointwise asymptotic distribution of the

MLE except for the modal interval, on which the MLE is not even consistent. We

give a more natural MLE method, and derive the asymptotic distribution for all

points except the mode itself. Mammen (1991a,b) made an interesting study of

the shape restricted curve estimation in the context of the nonparametric regres-

sion setup. Various applications of the isotonic method can be found in Barlow

and van Zwet (1970), Barlow el al: (1972), Robertson et al: (1988), Wang (1986),

Ramsay (1988), among others.

2. Problems and Main Results

Let f(x;m) be a unimodal density with mode location parameterized by

m. Let X1 < � � � < Xn be order statistics. Suppose that X 0
1; : : : ; X

0
n
are i.i.d.

from f(x;m0), where m0 is the true location of the mode. If m0 is known, the

nonparametric maximum likelihood estimator f̂n(x;m0) is such that when x >

m0, f̂n(x;m0) is the left derivative of the least concave majorant of the empirical

distribution function, and when x < m0, f̂n(x;m0) is the right derivative of the

greatest convex minorant of the empirical distribution. (See Grenander (1956).)

In applications, the true mode m0 is typically unknown. Let m̂ be a consis-

tent estimator of m0. Then, we use the estimator f̂n(x; m̂) as an estimator of the

unknown density f(x;m0). We call such an estimator the plug-in MLE.

Theorem 1. Let m̂ be a consistent estimate of the mode m0 of the true under-

lying density, and f 0(x;m0) 6= 0 be the derivative of the density f(x;m0) with

respective to x. Then,

n1=3

����12f(x;m0)f
0(x;m0)

����
� 1

3

(f̂n(x; m̂)� f(x;m0))
L�! 2Z;

where the random variable Z is distributed as the location of the maximum of the

process (W (u)� u2; u 2 <), and W (�) is a standard two-sided Brownian motion

on the real line < originating from zero (i.e. W (0) = 0).

Remark 1. A striking feature of Theorem 1 is that for any consistent estimate

m̂, the plug-in MLE f̂n(x; m̂) has the same asymptotic distribution as f̂n(x;m0).

Birg�e (1987c) showed that for a particular choice of m̂, the L1 norm of f̂n(:; m̂)�
f̂n(�;m0) is also of order oP (n

�1=2). Less satisfactory is the lack of real information

about f̂(m0;m0).
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We now propose a mode estimate based on the maximum likelihood method.

Estimating the mode by the kernel method (Parzen (1962), Eddy (1980)) and

greatest \clustering" method (Cherno� (1964), Venter (1967)) requires a choice

of smoothing parameters. Unlike these traditional approaches, the maximum

likelihood method is fully automatic. Let f̂j(�;Xj) be the maximum likelihood

estimate for the data fXi; i 6= jg with mode location Xj . Let ĵ = arg max
j

P
i6=j

log(f̂j(Xi;Xj)). Then, the proposed estimate of the mode and of the density are

m̂MLE = X
ĵ
; f̂MLE(�) = f̂

ĵ
(�; m̂MLE):

Herewith is a consistency result, which shows that m̂MLE can be used in

Theorem 1. Hence, the estimated density f̂MLE has the same asymptotic property

as in Theorem 1.

Theorem 2. Suppose that the tail of the underlying distribution satis�es F (x)�
F (�x) = 1�o(x�1=�) as x! +1 for some � > 0 and that the density f(x;m0)

is bounded and unimodal with mode m0. If the mode is uniquely de�ned, then

m̂MLE is a consistent estimate of the mode m0.

Remark 2. We show, in fact, that in addition to the conditions given in Theorem

2, if there exists a positive constant k � 1 and c > 0 such that in a neighborhood

of m0,

jf(y;m0)� f(z;m0)j � cjy � zjk; for y; z < m0 and y; z > m0 (2:1)

and the density is Lipschitz continuous at m0, then

m̂MLE �m0 = oP

��
n�1=2 log2(n)

�1=(2k+1)
�
: (2:2)

We conjecture that the estimates leading to (2.2) are too crude and that

the rate is n�1=(2k+1). The heuristic basis of the conjecture is given in Section

5. The truth of this conjecture would imply that this estimate has convergence

rate O(n�1=5), the same rate as kernel based density estimate (Eddy (1980)),

if f 00(m0;m0) < 0 and has rate O(n�1=3) if the density has a wedge (e.g. the

triangular density). Wang (1994) showed that Birge's (1987c) result can be

extended to any m̂ which converges to m0 no slower than OP (n
�1=(2k+1)). Thus,

if the conjecture is correct m̂MLE give the appropriate rate for the L1-norm:

kf̂MLE(�) � f(�;m0)k1 = OP (n
�1=3). Numerical support for the conjecture is

given in Figures 5.1 and 5.2 and some heuristics for the conjecture are given

following the proof of (2.2) in Section 5.

It has been observed empirically that the MLE for estimating a unimodal

density appears to be spiky near the estimated mode. We suggest a pregrouping
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technique to reduce the spikiness and computation. The idea is to group the

data �rst, and then apply the plug-in technique. Let fIj = (�tj ; tj+1]; j =

0;�1;�2; : : :g be a partition of the real line, where ftjg is a sequence of increasing
constants. De�ne a modi�ed version of the empirical distribution function by

F �
n
(x) =

1

n
(# of X 0

i
s � tj+1); when x 2 (tj ; tj+1]:

Let f̂�
n
(x;m) be the left derivative of the least concave majorant of F �

n
(x) when

x > m, and the right derivative of the greatest convex minorant of F �
n
(x) when

x < m. Let m̂ be a consistent estimate of m0. We call f̂�
n
(x; m̂) a \pregrouping"

version of the plug-in MLE f̂n(x; m̂). Note that the estimator f̂�
n
(x; m̂) is the

plug-in MLE of the grouped data: taking all data in the interval (tj ; tj+1] to be

tj+1.

Intuitively, the coarser the partition of the interval, the less spiky the MLE.

A natural question is how crude a partition can be so that the pregrouping MLE

preserves the asymptotic properties of the usual MLE.

Theorem 3. Let m̂ be a consistent estimate of the mode m0. Suppose that

the function f(�;m0) is bounded, and f 0(x;m0) is nonzero at the point x. If

maxj jtj+1�tjj = o(n�1=2), then the conclusion of Theorem 1 holds with f̂n(x; m̂)

replaced by f̂�
n
(x; m̂).

Note that other smoothing methods should also yield the same behavior.

For example, the kernel smoothing estimate for estimating a decreasing density

would be the density of the least concave majorant of the smoothed empirical

distribution (Mammen (1991a)).

The MLE, being a random bin width histogram, is not smooth. We can ob-

tain a smoother estimate by �nding the MLE satisfying the monotonicity restric-

tions among linear splines. The problem, of course, already appears in estimating

a decreasing density. Let X 0
1; : : : ;X

0
n
be a random sample from a decreasing den-

sity f and let FD

L
be the class of continuous linear spline decreasing densities on

[X1;Xn] with knots at the data points. We wish to �nd:

arg max
f2FD

L

nY
j=1

f(X 0
j
): (2:3)

The solution to problem (2.3) can be computed explicitly by isotonic regression

techniques. Let

f̂aj =

8>><
>>:
mina+1�t>j maxs�j

t�s
n(zt�zs)

; when j < a,

mina�s�j maxt>j
t�s

n(zt�zs)
; when j > a,

max
n
maxs�a

a�s+1

n(za+1�zs)
;maxt>a

t�a
n(zt�za)

o
; when j = a,

(2:4)



28 PETER J. BICKEL AND JIANQING FAN

where zj = (Xj +Xj�1)=2 with the convention that X0 = X1, and Xn+1 = Xn.

Let f̂nL(x; a) be the function connecting the points (Xj ; f̂aj) by using lines, and

0 when x is out of the data range [X1;Xn]. The following two theorems describe

the solution and the asymptotic behavior of the linear spline MLE.

Theorem 4. The solution to problem (2:3) is given by f̂nL(x; 1).

Theorem 5. Suppose that X 0
1; : : : ;X

0
n
are independent observations from a

decreasing density f on [0;1), which has a nonzero derivative f 0(x) at a point

x 2 (0;1). Then

n1=3

����12f(x)f 0(x)
����
�1=3

(f̂nL(x; 1)� f(x))
L�! 2Z;

where the random variable Z was de�ned in Theorem 1.

Linear splines can also be applied to the unimodal case. Let FU

L
be the class

of linear spline unimodal densities on [X1;Xn] with knots at the data points. We

wish to �nd

arg max
f2FU

L

nY
j=1

f(X 0
j
): (2:5)

It will be shown in the proof of Theorem 6 that f̂nL(x; a), de�ned above, is

a density in FU

L
with mode location Xa. Let f̂nL(x; â) be the maximizer of

the likelihood function among the n possible choices of densities f̂nL(x; a), a =

1; : : : ; n. Then, we have the following result.

Theorem 6. The solution to problem (2:5) is given by f̂nL(x; â).

Let us give a geometric interpretation of this result. De�ne a modi�ed em-

pirical distribution (strictly speaking, it is not a cdf)

F̂ �
n
(x) =

1

n

n+1X
j=1

Ifzj�xg; (2:6)

where IA is the indicator of the set A. Let f̂�
a
(x) be the left derivative of the

least concave majorant of F̂ �
n
(x) when x > za. Then we have for j > a,

f̂aj = f̂�
a
(zj+1): (2:7)

In other words, f̂nL(x; a) is a continuous version of f̂
�
a
(x): f̂nL(x; a) is obtained by

connecting points (Xi; f̂
�
a
(Xi)) by lines. This identity gives a simple way of com-

puting f̂aj by using the \pool-adjacent-violators" algorithm, and an indication

that MLE linear spline should not be very di�erent from the MLE itself.
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3. Discussion

We have proposed the maximum likelihood method to estimate unimodal

densities, a pregrouping technique to reduce peaking problems and to save com-

putational cost, and a linear spline approach to produce continuous pictures.

Here are some computational details.

Amount of Pregrouping. In practice, we typically take the partition ftjg to
be equally spaced grid points with span ln. Theorem 3 suggests that the choice

of ln be not too large. Practically, we recommend choosing ln such that the data

are grouped into 25 � 50 groups (Recall 5 � 15 bins are suggested for histograms

in many textbooks; we need more detail than that), depending on the number

of data points. Our experience in simulations shows that such a resolution is

detailed enough for practical purposes.

Bayesian Estimation of Mode. Let f̂j(�;Xj) be the maximum likelihood es-

timate for the data fXi; i 6= jg with mode location Xj and L(j) be the likelihood

of this estimate:

L(j) =
Y
i6=j

f̂j(Xi;Xj): (3:1)

De�ne the Bayesian estimate of the mode by

m̂B =
X
i

L(i)P
j
L(j)

Xi: (3:2)

Our empirical experience via simulation shows that this estimator has a more

stable variance than m̂MLE.

Smoothed MLE. As indicated at the end of Section 2, higher order spline

MLE such as linear spline MLE does not produce a qualitatively di�erent curve

from the MLE itself. One possible way to produce a smoothed unimodal den-

sity is to impose a smoothness penalty on the likelihood function and then to

maximize the penalized likelihood subject to the unimodality constraints. We

do not explore in this direction because we do not know a simple optimization

algorithm. An alternative way is to �nd a smoothed curve that basically (in a

least squares sense) passes through the midpoints of the MLE histogram esti-

mate. Unfortunately, the resultant curve is not necessarily unimodal. Herewith

is our smoothing procedure.

Let (x1; z1); : : : ; (xN ; zN ) denote the midpoints of the MLE histogram esti-

mate f̂MLE (i.e., xi is the midpoint of the ith histogram bin and zi is the height).

Let us take x2; x6; : : : ; x4m+2 (m = [(N � 2)=4]), as initial knots that may be
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deleted. Let corresponding power bases be

(
Bj(x) = (x� x4j+2)

3
+; j = 0; : : : ;m;

Bm+1(x) = 1; Bm+2(x) = x; Bm+3(x) = x2; Bm+4(x) = x3:

Let log(fs(x)) =
P

m+4
1 �kBk(x). Use the usual least squares to �nd �k that

minimizes
NX
1

[log(zi)�
m+4X
1

�kBk(xi)]
2wi; (3:3)

where wi is the area of the histogram estimate on the ith bin.

Denote the least square estimate of (3.3) by �̂j with standard error SE(�̂j).

Then, delete the j0th knot (1 � j0 � m) having the smallest absolute t-value:

j�̂j j=SE(�̂j), (1 � j � m).

Repeat the above deleting process (at each step delete one knot) until the

absolute t-value is no smaller than 3. Let x̂1; : : : ; x̂ĵ be the remaining knots

with bases B�
j
(x) = (x � x̂j)

3
+, j = 1; : : : ; ĵ, and B�

ĵ+1
(x) = 1, B�

ĵ+2
(x) = x,

B�
ĵ+3

(x) = x2, and B�
ĵ+4

(x) = x3, and estimates �̂j; j = 1; : : : ; ĵ + 4. Now, form

the function

f̂�(x) = exp

0
@ĵ+4X

1

�̂jB
�
j
(x)

1
A :

Normalize f̂�(x) to be a density and denote the resulting function by f̂��(x).

Then, f̂��(x) is a smoothed version of MLE, which will be presented in the next

section. This kind of knot deletion idea was used in CART by Breiman et al.

(1983).

4. Simulations

In this section, we use 4 simulated examples to illustrate the proposed proce-

dures and to compare them with the kernel density estimate. For each example,

we use sample size n = 200 and number of simulations 500. For 500 simulations,

it is not possible to plot here all of these estimated curves. Instead, we select a

representative simulation | the simulation whose average L1-loss of the MLE at

data points is median among 500 replications. The four simulated examples are

Example 1. exponential distribution: f(x) = exp(�x)Ifx>0g (4.1)

Example 2. Gaussian distribution: f(x) = 1p
2�
exp(�x2=2) (4.2)

Example 3. Asymmetric distribution:

f(x) = 2

3
(exp(2x)Ifx�0g + exp(�x)Ifx>0g) (4.3)

Example 4. Triangular distribution: f(x) = (1� jxj)+ (4.4)
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In the MLE �tting, we only assume that the density is unimodal with unknown

mode, although density (4.1) is indeed decreasing. These densities represent

di�erent degrees of skewness and di�erent weights of tails.

The kernel density estimate is de�ned as

f̂(x) =
1

nh

nX
i=1

K

�
Xi � x

h

�
;

with the bandwidth determined by the normal reference rule (see Silverman

(1986)):

h = 1:06sn�1=5; (4:5)

where K(�) is the standard Gaussian density and s is the sample standard devi-

ation. Note that this choice of bandwidth is asymptotically optimal if the true

density is normal. Thus, the kernel density performs well under model (4.2). In

general, the above choice of bandwidth tends to oversmooth. Hence, it often pro-

duces a unimodal density and gives a good estimation of the mode location for

symmetric densities. For these reasons, we would expect that the kernel density

estimate with bandwidth (4.5) performs well for symmetric distributions.

Figures 1-4 depict the simulation results: The pregrouped MLE estimate

with mode estimated by m̂MLE, smoothed MLE proposed in Section 3 and the

kernel density estimate. The kernel density estimate does not estimate the tail

of densities well and mis-estimates the peak when the distribution is asymmetric

(e.g densities (4.1) and (4.3)).

Finally, we compare mode estimation by the MLE and by kernel density

estimation. As we anticipated, the kernel density estimate performs better for

symmetric densities and worse for asymmetric densities. In an attempt to un-

derstand the convergence rates, we simulated 500 times from (4.3) and (4.4) for

n = 50 � 2j ; (j = 0; : : : ; 5), and computed the MSE of the mode estimation for

three estimators: m̂MLE, m̂B, and the kernel density estimate. Figure 5 plots

the logarithm of MSE against log2(n) (hence the slope indicates the rate of con-

vergence). For the symmetric density (4.4), the MLE method seems to have a

rate comparable to the kernel density estimate except that the constant factors

are larger. For the asymmetric distribution (4.3), the mode estimation by kernel

has a much slower rate of convergence. Overall, the Bayesian estimation of mode

(3.2) seems to have a smaller constant factor than the m̂MLE (the rates are the

same because the curves are parallel). For the symmetric density (4.4) the bias

in the mode estimation is negligible (about 10 to 100 times smaller than the

variance), whereas for the asymmetric density (4.4), the bias is not negligible.

Figure 5.3 shows the bias and variance contribution in the logarithmic scale.
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Figure 5.1. Example 3: MSE for mode estimation
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5. Proofs

Proof of Theorem 1. We give the proof for x > m0; the other case can be

treated similarly. First note that if x > m1 � m2, then

f̂n(x;m1) � f̂n(x;m2); (5:1)

by the de�nition of the estimators.

Let l(x) = j 1
2
f(x;m0)f

0(x;m0)j�1=3. For any " > 0, and m0 + " < x, by the

consistency of m̂,

P
n
n

1
3 l(x)(f̂n(x; m̂)� f(x;m0)) � t

o
= P

n
n

1
3 l(x)(f̂n(x; m̂)� f(x;m0)) � t; jm̂�m0j � "

o
+ o(1): (5:2)

Note that f(x;m0) is decreasing when x � m0 + ". By a result of Prakasa Rao

(1969) and Groeneboom (1985), we have

P
n
n

1
3 l(x)(f̂n(x;m0 + ")� f(x;m0)) � t

o
�! Pf2Z � tg; 8t 2 (�1;+1):

(5:3)

Thus, the combination of (5.1), (5.2) and (5.3) leads to

lim infP
n
n

1
3 l(x)(f̂n(x; m̂)� f(x;m0)) � t

o
� lim infP

n
n

1
3 l(x)(f̂n(x;m0 + ")� f(x;m0)) � t

o
= P f2Z � tg : (5:4)

Similarly, by (5.1) and (5.2), we have

lim supP
n
n

1
3 l(x)(f̂n(x; m̂)� f(x;m0)) � t

o
� lim supP

n
n

1
3 l(x)(f̂n(x;m0 � ")� f(x;m0)) � t

o
: (5:5)

The proof is completed if we show that (5.5) has a limit (5.4). Let f" =

f(y;m0)=(1 � F (m0 � ")) and f�
"
(�) be the solution to the problem:

max
g(�) is a decreasing density on [m0�";1)

Z 1

m0�"
[log g(y)]f"(y)dy:

Then, f�
"
(y) = f"(a)1fm0�"�y�ag + f"(y)1fy>ag, where a is chosen so that f�

"
is

a density function. See Bickel and Fan (1990) for a proof. Thus, for each �xed

x > m0, there exists "0 such that f�
"
(x) = f"(x) for " < "0. By the argument of

Groeneboom (1985), one can show that

P

�
N

1=3
1 j1

2
f�
"
(x)f�

"

0(x)j�1=3(f̂��
N1
(x)� f�

"
(x)) � t

�
�! P f2Z � tg ;
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where f̂��
N1
(�) is the MLE over the class of decreasing densities on [m0 � ";1)

based on data Xj � m0 � ", and N1 = n[1� F̂n(m0 � ")]. Using the fact that

f̂n(x;m0 � ") =
N1

n
f̂��
N1
(x);8x > m0 � "

we have for " < "0,

P
n
n1=3l(x)[f̂n(x;m0 � ")� f(x;m0)] � t

o
�! P f2Z � tg :

This, together with (5.4) and (5.5), leads to the desired conclusion.

We need the following two lemmas to prove Theorem 2.

Lemma 1. Let f(x;m0) be a unimodal density with mode m0 and

G(m) = sup
g2Fm

Z
log g(x)f(x;m0)dx; (5:6)

where Fm is the class of unimodal densities with mode m. Then G(m) is in-

creasing when m < m0 and is decreasing when m > m0. If condition (2:1) is

satis�ed, then for m in a neighborhood of m0,

G(m0)�G(m) > c1jm0 �mj2k+1 (5:7)

for some c1 > 0.

Proof. Without loss of generality, we prove this lemma for the case m < m0.

First, the solution to the optimization problem (5.6) is given by

fm(x) = hm1fm�x�Mmg + f(x;m0)1fx<m or x>Mmg; (5:8)

where hm = f(Mm;m0) and Mm is a constant such that fm(x) is a density:Z Mm

m

f(x;m0)dx = hm(Mm �m): (5:9)

(See Bickel and Fan (1990) for a proof.) Given m2 < m1 < m0, since fm2
2 Fm1

,

we conclude that G(m1) � G(m2). Therefore, G(m) is increasing when m � m0.

Next, we prove (5.7). First of all, by (5.8), we have

G(m0)�G(m) =

Z
Mm

m

log(f(x;m0)=hm)f(x;m0)dx:

Evidently, as m! m0, Mm ! m0 and

sup
m�x�Mm

jf(x;m0)=hm � 1j ! 0:
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By Taylor's expansion, we obtain

G(m0)�G(m) =

Z
Mm

m

(f(x;m0)=hm � 1)f(x;m0)dx (1 + o(m0 �m))

=

Z
Mm

m

(f(x;m0)� hm)
2dx=hm (1 + o(m0 �m)); (5:10)

where the last equality follows from (5.9). Let m� 2 (m;m0) be the point such

that f(m�;m0) = f(Mm;m0). When m is close to m0, by (2.1) we have

G(m0)�G(m) � 1

2f(m0;m0)

Z
Mm

m

(f(x;m0)� f(m�;m0))
2dx

� 1

2f(m0;m0)

Z
m0

m

�
cjx�m�jk�2 dx

=
c2

2(2k + 1)f(m0;m0)

�jm0 �m�j2k+1 + jm� �mj2k+1
�

� c2

22k+2(2k + 1)f(m0;m0)

���m0 �m
���2k+1

:

The conclusion follows from the last inequality.

Recall that X1 < � � � < Xn denote the order statistics.

Lemma 2. Suppose that the tail of the underlying distribution satis�es F (x)�
F (�x) = 1�o(x�1=�) as x! +1 for some � > 0 and that the density f(x;m0)

is bounded. Then, the minimum and maximum spacing satisfy

Pfmin
i

(Xi �Xi�1) > n�2��g ! 1; PfXn �X1 � n�g ! 1;

for all � > 0.

Proof. According to Pyke (1965), the uniform spacing has the following repre-

sentation:

(F (X2)� F (X1); : : : ; F (Xn)� F (Xn�1))
d
=(�1; : : : ; �n�1)=

n+1X
i=1

�i;

where �1; : : : ; �n+1 are i.i.d. standard exponential random variables. Thus,

Pfn2+�=2min
i

(F (Xi+1)� F (Xi)) > 1g = Pfmin
i

�i > n�1��=2
n+1X
i=1

�i=ng

� Pfmin
i

�i > 2n�1��=2g+ o(1)! 1:



UNIMODAL DENSITY ESTIMATION 39

Since sup
x
f(x)mini(Xi+1 �Xi) � mini(F (Xi+1)� F (Xi)), we have

Pfmin
i

(Xi �Xi�1) > n�2��g ! 1:

It is easy to check, under our assumption on F , that

PfXn > n�=2g ! 1 and PfX1 < �n�=2g ! 1:

Thus, with probability tending to one, Xn�X1 � n�: This completes the proof.

Proof of Theorem 2. Denote the log-likelihood by

Gn(Xj) = sup
g2FXj

1

n

X
i6=j

log g(Xi):

Since the maximum likelihood estimate f̂(x;Xj) is the right derivative of the

greatest convex minorant of the empirical distribution when x < Xj , and the

left derivative of the least concave majorant of the empirical distribution when

x > Xj , then by Lemma 2, with probability tending to one, we have

max
i6=j

f̂(Xi;Xj) < n3 and min
i6=j

f̂(Xi;Xj) > n���1:

Denote this set by 
n. The previous statement is equivalent to P (
n) ! 1.

Thus, for ! 2 
n,

Gn(Xj) = sup
fk log gk1�d logn; g2FXj g

1

n

X
i6=j

log g(Xi)

= sup
fk log gk1�d logn; g2FXj g

Z
log gdPn +O(log n=n);

where Pn is the empirical processes and d = maxf3; �+1g. Let C be the class of

unimodal functions whose supnorm is bounded by 1. Then, for ! 2 
n

max
j

jGn(Xj)�G(Xj)j � d log n sup
g2C

����
Z
g(x)(dPn � dP )

����+O(log n=n):

By empirical process theory (Theorem 37, Pollard (1984))

sup
g2C

����
Z
g(x)(dPn � dP )

���� = o
�
an(log n=n)

1=2
�
almost surely;

for any sequence an !1. Taking an = log0:25(n), say, we have

max
j

jGn(Xj)�G(Xj)j = oP (log
1:75(n)=

p
n): (5:11)
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If the mode m0 is uniquely de�ned, then for small " > 0, fm0�"(�) and

fm0�2"(�) de�ned by (5.8) can not be identical. Thus, by the unimodality of G(�)
in Lemma 1,

G(m0 � ") > G(m0 � 2") and G(m0 + ") > G(m0 + 2");

and hence

inf
jm�m0j�"

G(m) > sup
jm�m0j�2"

G(m):

Using this and (5.11), then X
ĵ
2 (m0 � 2";m0 + 2") with probability tending to

one. That is, m̂MLE is a consistent estimate of m0.

Proof of (2.2). Let "n = (log
1:75

(n)=n1=2)1=(2k+1). In the sequel, we show that

with probability tending to one, it is not possible to have m̂MLE lies outside the

interval (m0 � "n;m0 + "n). By Lemma 1,

G(m0) � maxfG(m0 � "n); G(m0 + "n)g+ c1"
2k+1
n

= sup
jm�m0j�"n

G(m) + c1"
2k+1
n

:

Since f(�) is Lipschitz continuous at m0, it can easily deduced from (5.10) that

0 � G(m0)�minfG(m0 � logn=n); G(m0 + logn=n)g � O(log n=n):

Consequently, when n is large,

inf
jm�m0j�logn=n

G(m) > sup
jm�m0j>"n

G(m) + c1"
2k+1
n

=2: (5:12)

It is easy to show that

Pfat least one data point falls in (m0 � logn=n;m0 + logn=n)g ! 1:

Let X� be a data point in (m0 � log n=n;m0 + log n=n). By (5.11),

Gn(X
�) � G(X�) + oP

�
log

1:75
(n)n�1=2

�
:

For Xj such that jXj �m0j � "n, then by (5.11) and (5.12), when n is large, we

have
Gn(X

�) � G(Xj) + c1"
2k+1
n

=2 + oP
�
log1:75(n)n�1=2

�
� Gn(Xj) + c1"

2k+1
n

=2 + oP
�
log

1:75
(n)n�1=2

�
> Gn(Xj):

Thus, with probability tending to one, the maximum of Gn(�) can not be achieved
at the point Xj such that jXj �m0j > "n. Hence,

Pfjm̂MLE �m0j � "ng ! 1;
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and

m̂MLE �m0 = Op("n) = oP
�
(log2 n=n)1=(2k+1)

�
:

The conclusion follows.

Heuristic basis of conjecture. We base our conjecture on the conjectured

approximation,

1

n

nX
i=1

log
f̂n(Xi;m)

f̂n(Xi;m0)
=

1

n

nX
i=1

log
fm(Xi)

fm0
(Xi)

+OP (n
�1 + jm�m0j3) (5:13)

uniformly for m;m0 62 fXi : 1 � i � ng where fm(�) is de�ned by (5.8) and the

conjecture that m̂ behaves like the maximum of the left hand side of (5.13) for

m as speci�ed. If (5.13) holds it is easy to see from lemma 1 that, if k � 1,

supf 1
n

nX
i=1

log
fm(Xi)

fm0
(Xi)

: jm�m0j � �g

= OP (�
(2k+1)=2n�1=2) + C�2k+1; where C > 0: (5:14)

Therefore, if k � 1 the sup in (5.14) must be achieved for jm�m0j = O(n�
1

2k+1 ).

Since the remainder in (5.13) is also OP (n
�1) for k � 1 the conjecture follows.

Our belief in (5.13) is based on the behavior in the corresponding parametric

situation where f = f(�; �; �), the truth is f(�; �0; �0), �̂(�) is de�ned by

�̂(�) = max�1
1

n

nX
i=1

log f(Xi; �; �)

and �(�) by max�1
R
log f(x; �; �)f(x; �0; �0)dx. If we Taylor expand

1

n

nX
i=1

log
f(Xi; �; �(�))

f(Xi; �; �̂(�))

about �̂(�) and �̂(�) is assumed in the interior then, if j���0j = o(1), we expect

1

n

nX
i=1

�
log

f(Xi; �; �̂(�))

f(Xi; �0; �̂(�0))
� log

f(Xi; �; �(�))

f(Xi; �0; �(�0))

�

= OP (fj�̂(�)� �(�)j2 � j�̂(�0)� �0j2g): (5:15)

Finally, it seems plausible that

(�̂(�)� �(�))� (�̂(�0)� �(�0)) = OP (j�̂(�0)� �(�0)jj�� �0j): (5:16)

If we combine (5.15) and (5.16), identify � with the shape of f , and note that in

our case we expect �̂(�)��(�) = OP (n
�1=3) then (5.13) follows. Of course, there
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is much wrong with this argument. We do not have any assurance that bounds

like (5.15) and (5.16) are valid since we know that �̂(�) is achieved on the bound-

ary so that we cannot use Taylor expansions in function space. Nevertheless the

conjecture looks promising to us.

Lemma 3. Let X 0
1; : : : ;X

0
n
be i.i.d with a density f(x). If f is bounded and the

maximum span of the partition satis�es the condition of Theorem 3, then

sup
x

jF̂n(x)� F �
n
(x)j = op(n

�1=2);

where F̂n is the empirical cdf of X 0
1; : : : ; X

0
n
.

We omit the proof of Lemma 3; (but see Bickel and Fan (1990)).

Proof of Theorem 3. We need only to prove the result for the decreasing

density case; the unimodal case follows from the result of estimating a decreasing

density and the proof of Theorem 1.

By Lemma 3, and the Hungarian embedding of Koml�os et al. (1973), the

process F �
n
(t) has the following decomposition:

n1=2(F �
n
(t)� F (t)) = n1=2

�
F̂n(t)� F (t)

�
+ n1=2

�
F �
n
(t)� F̂n(t)

�
= Bn(F (t)) + op(1);

where fBn; n � 1g is a sequence of Brownian bridges, constructed on the same

space as the F̂n(t), the empirical process. The conclusion follows from the proof

of Theorem 2.1 of Groeneboom (1985).

Proof of Theorem 4. The result follows from the proof of Theorem 6.

Proof of Theorem 5. Let l(x) = jf(x)f 0(x)=2j�1=3. By the proof of Lemma 2,

with probability tending to one, the maximum spacing for the data set fXi : Xi 2
x�"g is of order O(n�1 log n), where " is small enough so that infy2x�" f(y) > 0.

Thus, with probability tending to 1, the points x� "n, x, x+ "n are in di�erent

intervals of (zj ; zj+1), where "n = n�2=5, and zj was de�ned in (2.6). Thus, by

(2.7), we have with probability tending to one that

f̂�1 (x+ "n) � f̂nL(x; 1) � f̂�1 (x� "n); (5:17)

where f̂�1 (x) was de�ned after (2.6).

Note that the modi�ed empirical distribution de�ned by (2.6) satis�es 0 �
F̂ �
n
(x)� F̂n(x) � 1=n, where F̂n(�) is the usual empirical cdf. Thus, by the same

argument as in the proof of Theorem 3, we have

P
n
n1=3l(x)(f̂�1 (x+ "n)� f(x)) � t

o
�! Pf2Z � tg; 8t 2 (�1;1):
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Consequently, by (5.17),

lim sup
n

P
n
n1=3l(x)(f̂nL(x; 1)� f(x)) � t

o
� lim sup

n

P
n
n1=3l(x)(f̂�1 (x+ "n)� f(x)) � t

o
= Pf2Z � tg; 8t 2 (�1;1):

The conclusion follows from a similar inequality:

lim inf
n

P
n
n1=3l(x)(f̂nL(x; 1) � f(x)) � t

o
� Pf2Z � tg; 8t 2 (�1;1):

We need the following lemma (Theorem 1.5.1 of Robertson et al: (1988)) to

prove Theorem 6.

Lemma 4. Suppose that �(�) is di�erentiable, and convex on an interval I. Let

��(u; v) = �(u) � �(v) � (u � v)�0(v). If f�
j
is a solution of problem (5:21),

then f� minimizes
P

j
��(gj ; fj)wj in the class of isotonic functions f .

Proof of Theorem 6. We need only prove that f̂n(x; a) is the solution to the

problem (2.5) with an additional constraint that the location of the mode is Xa.

Let fj = f(Xj). Then the problem is equivalent to

max
X
j

log fj

subject to : (unimodality) f1 � f2 � � � � � fa � fa+1 � � � � � fn; (5:18)

(Area one)
n�1X
j=1

fj+1 + fj

2
(Xj+1 �Xj) = 1: (5:19)

Write cj=(Xj+1�Xj�1)=2 with X0=X1, and Xn+1=Xn. Then the equality

constraint (5.19) can be rewritten as

nX
j=1

cjfj = 1: (5:20)

Denote gj = 1=(ncj) and wj = ncj. Then, the optimization problem is equivalent

to maximizing
Pn

1 log fj subject to (5.18) and
Pn

1 (gj � fj)wj = 0. Consider the

problem of isotonic regression

min
f

nX
1

(fj � gj)
2wj (5:21)
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with a partial order 1 � 2 � � � � � a � a + 1 � a + 2 � � � � � n. Then, the

solution to the problem (5.21) is given by (2.4) (see page 23 of Robertson et al.

(1988)). The solution also satis�es (Theorem 1.3.6 of Robertson et al. (1988))

nX
1

(f̂aj � gj)wj = 0;

i.e. (5.19). Now, let us apply Lemma 4. Take a convex function �(u) = u log u.

Then, f̂a also minimizes

nX
1

(gj log gj � gj log fj � gj + fj)wj = c�
nX
1

log fj + n
nX
1

cjfj ;

under the isotonic constraints, where c =
P

log gj � n. Since we are interested

only in the class of isotonic regression satisfying (5.20), f̂a maximizes
P

n

1 log fj
under the constraints (5.18) and (5.19). The desired conclusion follows.
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