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Abstract: Albeit the superiority of bootstrapping to jackkni�ng in estimating the

(asymptotic) variance of a sample quantile in the regular case, the bootstrap may

encounter technical problems in some non-regular cases. The related methodology

for one such important non-regular case is considered here, and the theory is supple-

mented with numerical studies.
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1. Introduction

Let X1; : : : ;Xn be independent and identically distributed random variables

with a continuous distribution function (d.f.) F de�ned on the real line, and let

Xn:1 < � � � < Xn:n be the order statistics associated with the Xi. The population

p-quantile is de�ned by F�1(p), where

F�1(u) = inffx : F (x) � ug; u 2 (0; 1):

The sample p-quantile is similarly de�ned by F�1
n

(p), where Fn is the usual sample

(or empirical) d.f. For simplicity of presentation, we consider the case of sample

median, ~Xn = F�1
n

(1=2), but the results to follow would remain applicable to any

p-quantile. Let � be the population median. Then, in the so called regular case,

one assumes that F admits a density function f such that f(x) is continuous and

positive at x = �. Then, as n increases,

n1=2( ~Xn � �) � N(0; �2); where �2 = (2f(�))�2: (1:1)

Moreover, if we assume that for some a > 0 (not necessarily � 1),

EF jXja <1; (1:2)

then, as n increases,

nEF [( ~Xn � �)2]! �2: (1:3)
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Ghosh et al: (1984) and Babu (1986) have shown that under (1.2) and the pos-

itivity and continuity of f at �, the classical bootstrap method (Efron (1982))

provides a (strongly) consistent estimator of �2; the jackknife method is known to

be non e�ective in this particular situation. Our primary interest centers around

the performance of the bootstrap method in one important nonregular case:

The d.f: F has a jump-discontinuity of its density f at �, so that both

f� = f(��) and f+ = f(�+) exist (and are positive), but they are not

the same.

Our study is partially motivated by the scale-signed perturbation model:

F�(x) =

�
�((x� �)=a); x < �,

�((x� �)=b); x > �,

where a 6= b. Then at the population median �, the right-hand side and left-hand

side derivatives of F (x) exist but they are not equal, so there is a jump discon-

tinuity. Ibragimov and Hasminskii (1981) describe other interesting problems

where the density has a jump. Chapter 5 of their monograph deals exclusively

with the asymptotic theory of likelihood ratio test and the maximum likelihood

estimation for such nonregular cases, and that is what we have here.

When � occurs at a density jump, the asymptotic results in (1.1) and (1.3)

fail, but the limiting distribution exists under fairly general regularity conditions

(Smirnov (1952)). Hence it may be of some interest to inquire how far classical

bootstrapping succeeds in estimating such a limiting distribution and its variance.

Two parallel results are given in Section 2. A large-scale simulation result of the

bootstrap distribution is given in Section 3. Section 4 gives some concluding

remarks.

2. The Variance Estimator and the Bootatrap Distribution

Consider the case where F has a jump-discontinuity of its density f at �,

so that f� = f(��) and f+ = f(�+) both exist but they are not the same. We

assume that

f� > 0; f+ > 0; but f� 6= f+: (2:1)

Then, some simple manipulations lead us to the following limit law:

lim
n!1

Pfn1=2( ~Xn � �) � yg = �(ayy); (2:2)

where � stands for the standard normal d.f. and ay = 2f� if y � 0, ay = 2f+ if

y � 0. Also, under (1.2) and (2.1),

lim
n!1

EF fn1=2( ~Xn � �)g = (8�)�1=2(f�1+ � f�1
�
);
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lim
n!1

EF fn( ~Xn � �)2g = 8�1(f�2+ + f�2
�
); (2:3)

so that the asymptotic variance of n1=2( ~Xn � �) is

�2 = 8�1ff�2+ + f�2
�
� ��1(f�1+ � f�1

�
)2g; (2:4)

while the asymptotic mean square error is given by (2.3). We are primarily

concerned with the following:

How far are (2.2) and (2.4) estimable by the classical bootstrap proce-

dure?

Are there some variants of the classical bootstrap which may perform

better?

In these respects, we have both a�rmative and negative results.

Let X�

1 ; : : :, X
�

m
be m (conditionally) independent r.v.'s drawn with replace-

ment in a simple random sampling scheme from the base sample X1; : : : ;Xn

(or equivalently, the empirical d.f. Fn of X1; : : : ;Xn). Let ~X�

m
= median

(X�

1 ; : : : ;X
�

m
) be a bootstrap version of ~Xn, and de�ne the bootstrap variance

estimator, s�
2

m
, as the variance of the bootstrap distribution ofm1=2( ~X�

m
� ~Xn): Al-

lowing the bootstrap sample size m to be dependent on n (i.e., letting m = mn),

we intend to study (Theorem 2.1) the stochastic convergence of s�2
m
to �2 in (2.4).

Unlike the regular case, the picture here depends not only on jf�1+ � f�1
�
j but

also on the ratio mn=n.

For simplicity of presentation, we take both n and m to be odd integers; the

results to follow remain valid even if one or both of them may not be odd. We

let n = 2kn + 1 � 3 and mn = 2k�
n
+ 1 � 3; and we may drop the subscript n

whenever there is no confusion. This is one of the rare cases where the bootstrap

distribution ( and its variance ) can be calculated analytically. Following Efron

(1982, page 77), we see that, given Fn,

pn:i = Pf ~X�

m
= Xn:ijFng

= m!(k�!)�2
Z

i=n

(i�1)=n

fu(1 � u)gk
�

du; i = 1; : : : ; n: (2:5)

Hence the bootstrap variance estimator of the asymptotic variance (2.4) has an

exact expression

s�
2

m
= Var

�
m1=2

n
~X�

mn

jX1; : : : ;Xn

�
=Wn1 �W 2

n2; (2:6)

where

Wn1 = mnE
�
~X�

2

mn

jX1; : : : ;Xn

�
= mn

nX
i=1

X2
n:ipn:i (2:7)



302 J. S. HUANG, P. K. SEN AND J. SHAO

Wn2 = m1=2
n
E
�
~X�

mn

jX1; : : : ;Xn

�
= m1=2

n

nX
i=1

Xn:ipn:i: (2:8)

Some routine steps lead to

pn:k+1�r � (2=�)1=2(m+ 2)1=2n�1 expf�2(m+ 2)r2n�2g; r = 0; 1; : : : ; k: (2:9)

Theorem 2.1. Suppose that (1:2) and (2:1) hold. Further, suppose that mn !
1 as n!1.

(i) If mn=n! 0 as n!1, then s�
2

mn

! �2 in probability.

(ii) If mn(log log n)=n! 0 as n!1, then s�
2

mn

! �2 almost surely (a.s.).

(iii) If mn � n as n!1, then s�2
mn

� �2 has asymptotically a nondegenerate

distribution with mean

(8�)�1(1� 2�1=2)(f�1+ � f�1
�
)2; (2:10)

so that for f+ 6= f�, s
�2
mn

does not stochastically converge to �2 for almost all

Fn. The inconsistency of s�2
mn

remains intact for mn >> n.

Proof. Without any loss of generality, we may set � = 0. Let l = ln =

maxfk : Xn:k � 0g; so that ln has a binomial(n; 1=2) law. Based on this, we

have n�1=2(2ln � n) � N(0; 1); as n!1; and

limn!0jn�1=2(ln � n=2)j(log log n)�1=2 = 2�1=2; with prob. 1. (2:11)

Further, let Un:i = F (Xn:i); 1 � i � n, and note the Un:i are the uniform order

statistics (of a sample of size n). Then the following result follows from Bahadur

(1966) with further adaptations from Sen and Ghosh (1971):

maxfjUn:i�Un:j�n�1(i�j)j : 1 � i < j � i+n1=2
p
logn � ng = O(n�3=4(log n))

a.s. as n!1:

Moreover, using (2.5) and (2.9), we obtain the following:X
r�0

pn:k+1+r � 1=2; (2:12)

X
r�0

rpn:k+1+r � (8�)�1n(m+ 2)�1=2; (2:13)

X
r�0

r2pn:k+1+r � 8�1n2(m+ 2)�1; (2:14)

and similar results hold for k+1+r being replaced by k+1�r; r � 0; a negative

sign appears in (2.13). By similar manipulations, we have for every r� > 0,X
0�r�r�

rpn:k+1+r � (
p
8�)�1n(m+ 2)�1=2(1� expf2(m+ 2)(r�=n)2g);

X
0�r�r�

r2pn:k+1+r � 8�1n2(m+ 2)�1G3=2(2(m+ 2)(r�=n)2);
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where Gp is the gamma d.f. de�ned by

Gp(x) = [

Z
x

0

e�yyp�1dy]=�(p); for p > 0; x 2 [0;1):

A similar treatment holds for negative r�.

Denote by

U�
n
= Sign(ln � n=2)G3=2((ln � n=2)22(m+ 2)n�2):

Note that by (2.11) and the fact that Gp is a d.f., we obtain that as n!1,

mn=n! 0) U�
n

P�! 0; (2:15)

mn(log logn)=n! 0) U�
n
! 0 a.s,

and if mn � n, then U�
n
has asymptotically a nondegenerate distribution, sym-

metric about 0, so that U�
n
6! 0, in probability/a.s., as n!1; the same conclu-

sion holds if mn >> n. Similarly, if we let

V �
n
= expf�(ln � n=2)2 2(m+ 2)n�2g;

then as n!1,

mn=n! 0) V �
n

P�!1;

mn(log logn)=n! 0) V �
n
! 1; a.s., (2:16)

while for mn � n (or mn >> n), V �
n
� 1 has asymptotically a nondegenerate

distribution.

We now return to the proof of the main result. Note that by (2.9), the

pn:i converge to 0 (exponentially) as i moves away from kn + 1. As such, we

truncate the range of i around kn+1 and proceed as follows. First, consider the

range of i : ln < i � ln +Kn1=2
p
log n, where K(< 1) is arbitrary (but �xed)

and positive. As f is continuous from the right and f+ > 0, we have for all

i : ln < i � ln +Kn1=2
p
log n,

n
1

2Xn:i = n
1

2 (Xn:i � �) (at � = 0)

= n
1

2 fF (Xn:i)� F (�)gf[F (Xn:i)� F (�)]=(Xn:i � �)g�1

= n
1

2 fUn:i � :5gff+ + o(1) a.s.g�1

= n
1

2 fi=(n + 1)� :5 + O(n�:75 log n) a.s.gff+ + o(1) a.s.g�1; (2:17)

where in the last step, we have made use of the classical Bahadur (1966) represen-

tation of the sample quantile (from the uniform(0,1) distribution). In a similar

manner, for all i : ln �Kn1=2
p
log n � i � ln, as n!1,

n
1

2Xn:i = n
1

2

�
i=(n+ 1)� :5 + O(n�:75 logn) a.s.

	
ff� + o(1) a.s.g�1: (2:18)
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On the other hand, by (1.2) and (2.9), the contribution of the Xn:i in (2.7) - (2.8)

for all i : ji� (n+ 1)=2j > Kn1=2
p
log n can be o(1) a.s., as n!1. Thus, using

(2.5), (2.9), (2.12) - (2.14) along with (2.17) - (2.18), we obtain from (2.7) that

as n!1,

Wn1 = 8�1f(f�2+ + f�2
�
) + U�

n
(f�2
�
� f�2+ )g+ o(1) a.s. (2:19)

In a similar manner, we have for n!1,

Wn2 = (8�)�1=2(f�1+ � f�1
�
)V �

n
Sign(ln � (n+ 1)=2) + o(1) a.s., (2:20)

so that by (2.19) and (2.20),

Wn1 �W 2
n2 =�

2 + 8�1fU�
n
(f�2
�
� f�2+ ) + ��1(f�1+ � f�1

�
)2(1� V �2

n
)g

+ o(1) a.s., as n!1: (2:21)

The rest of the proof of the theorem follows directly from (2.21) after making

use of the convegence results in (2.15) through (2.16).

Let

Hmn
(y) = Pfm1=2

n
( ~X�

mn

� ~Xn) � yjFng

be the bootstrap distribution estimator of Pfn1=2( ~Xn � �) � yg, where Pf�jFng
is taken under the conditional law generated by the nmn (conditionally) equally

likely realizations of the X�

i
, i � mn (given X1; : : : ;Xn). Then we have the

following result similar to Theorem 2.1, (Note that (1.2) is not needed).

Theorem 2.2. Suppose that (2:1) holds and that mn !1 as n!1.

(i) If mn=n! 0, then Hmn
(y)! �(ayy) in probability.

(ii) If mn log log n=n! 0, then Hmn
(y)! �(ayy) a.s.

(iii) If mn � n, then Hmn
(y) has asymptotically a nondegenerate distribution so

that Hmn
(y) is inconsistent.

Proof. It follows from the arguments in Sering (1980, pp.78-79) and the con-

tinuity of � that

Hmn
(y) = �(2m1=2

n
�m;n(y)) + o(1) a.s.,

where �m;n(y) = Fn( ~Xn +m�1=2
n

y)� 1=2. In case (i) or (ii),

y +m1=2
n

( ~Xn � �) = y + o(1) (in probability or a.s.),

which is positive (negative) if y > 0 (y < 0) for su�ciently large n. Therefore,

fF (�+ ~Xn��+m�1=2
n

y)�F (�)gf ~Xn��+m�1=2
n

yg�1 �! 2�1ay (in prob. or a.s.).



BOOTSTRAPPING QUANTILES 305

It follows from the proof of Lemma 2.5.4 E of Sering(1980) that

sup jFn(� + x)� Fn(�)� F (� + x) + F (�)j = O(n�3=4(log n)3=4) a:s:; (2:22)

where the supremum is taken over jxj � n�1=2(log n)1=2. Hence

fFn(� + ~Xn � � +m�1=2
n

y)� Fn(�)gf ~Xn � � +m�1=2
n

yg�1 �! 2�1ay

(in prob. or a.s.). Therefore

m1=2
n

�m;n(y) = m1=2
n

[Fn(�)� 1=2] + [y +m1=2
n

( ~Xn � �)]�

[Fn(� + ~Xn � � +m�1=2
n

y)� Fn(�)][ ~Xn � � +m�1=2
n

y]�1

= 2�1ayy + o(1) (in prob. or a.s.)

and the result in (i) or (ii) follows. For case (iii), we show that m1=2
n

�m;n(y) has

asymptotically a nondegenerate distribution when mn � n, f+ > f� and y > 0.

From (2.22),

m1=2
n

�m;n(y) = m1=2
n

[Fn( ~Xn +m�1=2
n

y)� Fn( ~Xn)] + op(1)

= m1=2
n

[F ( ~Xn +m�1=2
n

y)� F ( ~Xn)] + op(1)

= g(m1=2
n

( ~Xn � �)) + op(1);

where

g(x) =

8<
:
f+ � y; x > 0,

f� � y; x � 0; x > �y,
(f+ � f�)x+ f+ � y; x � 0; x � �y.

Therefore,m1=2
n

�m;n(y) converges in law to a random variable having distribution

G(t) =

8<
:
1; t > f+ � y,
1=2; t < f+ � y; t > f� � y,
�(a� � �); t < f+ � y; t � f� � y,

where � = (t� f+ � y)(f+ � f�)
�1.

3. Simulation Results

For our numerical study, 100,000 samples of size n were taken from the

population whose density function is

f(x) =

�
1; �1=2 � x < 0,

1=2; 0 � x < 1.

To estimate the asymptotic variance (2.4), we compare the bootstrap vari-

ance estimators based on three di�erent choices of the fmng sequences: (i)
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mn = n, (ii) mn = n(logn)�1 and (iii) mn = n(log n)�2. The n values are

so chosen that both n and mn (to the nearest integer) are odd (see Table 1).

Table 1. Choices of the bootstrap sample size mn

n mn = n mn = n(logn)�1 mn = n(logn)�2

49 49 13 3

109 109 23 5

489 489 79 13

999 999 145 21

2499 2499 319 41

4999 4999 587 69

Given n and mn we �rst evaluate the set fpn:i; i = 1; :::; ng, (2.5), and then

construct the n� n matrix V = (vi;j), where

vi;j =

�
pn:i(1� pn:i); i = j,

�pn:ipn:j ; i 6= j.

For each sample (X1; : : : ; Xn), we obtain the bootstrap variance estimate s�
2

m
(X1,

: : : ; Xn) as a quadratic ~XV~XT of the order statistics ~X = (Xn:1; : : : ; Xn:n)

(Huang (1991)). Notice that since the exact value of the estimator (2.6) is ob-

tainable without the customary second stage (bootstrap) sampling, we are able

to a�ord a very large number of replications. The average of 100,000 such values

is then given in Table 2 ( columns 3 through 5 for various choices of fmng ).

Table 2. The averages of the bootstrap estimates s�
2

mn

Average of s�
2

mn

n Var(n1=2 ~Xn) m = n m = n(logn)�1 m = n(logn)�2

49 .5599 .6271 .5217 .3458

109 .5737 .6314 .5528 .4161

489 .5822 .6207 .5812 .5077

999 .5840 .6139 .5855 .5350

2499 .5833 .6091 .5878 .5588

4999 .5814 .6057 .5881 .5694

1 .5852 .5969 .5852 .5852

For the sake of comparison, the limiting values (as n ! 1) appear at the

bottom row. Notice the minute di�erence between the theoretical asymptotic

variance (.5852) and the limiting value (.5969) of the expectation of the classical

bootstrap (mn = n). For the classical bootstrap, the asymptotic bias (2.10) is so

small that it evaded our detection at an earlier stage of the study.
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n = 49 = m n = 49, m = 3
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Figure 1. Bootstrap distribution of m
1=2
n ( ~X�

mn

�
~
Xn)

A better view of the inconsistency of the classical bootstrap is provided

by the bootstrap distribution of m1=2
n

( ~X�

mn

� ~Xn). We show in Figure 1 six

histograms, three on the left for the classical, fmn = ng, and three on the right



308 J. S. HUANG, P. K. SEN AND J. SHAO

for the modi�ed, fmn = n(logn)�2g; at increasing sample sizes n = 49; 489

and 4999. The interval (�1:0; 2:0) is divided into 30 subintervals, and for each

sample (X1; : : : ;Xn) we distribute the mass fpn:i; i = 1; : : : ; ng as follows: pn:i
to the subinterval wherein the value m�1=2(Xn:i � ~Xmn

) lies, i = 1; : : : ; n. After

100,000 replications the total mass at each interval is then divided by 100,000,

and is compared against the superimposed limiting density curve (2.2). It is seen

that only the modi�ed bootstrap ( the three histograms shown on the right hand

side ) shows good convergence to the limiting density (See Figure 1).

4. Remarks

The idea of choosing the bootstrap sample size mn di�erent from n is not

new. It was studied by Bickel and Freedman (1981) and by Swanepoel (1986).

Our �nding does extend and complement the results of Ghosh et al (1984). It

also provides a dual to the other popular nonparametric variance estimator, the

jackknife. It is known (see, for instance, Wu (1986)) that by carefully choosing d

a delete-d jackknife estimator overcomes some of the de�ciencies of the ordinary

jackknife. Interestingly, here in the bootstrap we also �nd it advantageous to use

a smaller resample size m. Unlike the delete-d jackknife, however, which su�ers

from a combinatoric explosion of computation with increasing d, the bootstrap

is just the opposite. The smaller the resample size m the easier it is to resample

and to compute.

Several other nonregular cases, including a V-shaped and a U-shaped density

f , where f(�) = 0, have been studied in Huang, Sen and Shao (1992).
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