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Abstract: In this paper we show how to use di�erence matrices to construct trend

resistant asymmetrical orthogonal arrays. In particular, by modifying a method of

constructing asymmetrical orthogonal arrays given by Wang and Wu (1991), it is

shown that the treatments in many previously constructed asymmetrical orthogonal

arrays can be ordered to give various degrees of trend resistance.
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1. Introduction

In this paper we consider experimental situations where the treatments that

make up a mixed level orthogonal main e�ects plan (OMEP) are to be applied

sequentially to experimental units over space or time and where there may be an

unknown or uncontrollable trend e�ect which is highly correlated with the order

in which the observations are obtained. Any ordered application of treatments to

experimental units over space or time is called a run order. In situations such as

described above, the experimenter may prefer to assign treatments to experimen-

tal units in such a way that the usual estimates for the factorial e�ects of interest

are not a�ected by the unknown trend. Such run orders are called trend resis-

tant. A good deal of work has been done on the construction of trend resistant

run orders of factorial designs when all factors have the same number of levels,

(see Bailey, Cheng and Kipnis (1992) for a summary of the work done on these

problems). The only work known to the author on the construction of trend resis-

tant mixed level factorial run orders is that done in Coster (1993), Bailey, Cheng

and Kipnis (1992) and Jacroux (1992). Unfortunately, the construction methods

given in these papers require fairly large numbers of experimental units when the

number of factors involved is large. In this paper, we show that by modifying

a method of constructing asymmetrical OMEP's given in Wang and Wu (1991),

a number of trend resistant mixed level OMEP's can be constructed which can

handle fairly large numbers of factors with smaller numbers of observations.
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2. Notation and De�nitions

In this section, the notation and main de�nitions which are used throughout

the sequel are given. It is assumed that an OMEP is to be constructed for n

factors, denoted by A1; : : : ; An where factor Ai has pi levels, i = 1; : : : ; n. An

allocation of factor level combinations to available experimental units will be

called a design and denoted by d. We denote the levels of a given factor having

pi levels by 0, 1; : : :, pi� 1 and assume throughout that pi is a prime or power of

a prime. The model assumed here for analyzing the data from a given design d

is one which utilizes orthogonal polynomials.

De�nition 2.1. The system of orthogonal polynomials on m equally spaced

points i = 0; 1; : : : ;m � 1 is the set fPkm; k = 0; : : : ;m � 1g of polynomials

satisfying
m�1X
i=0

Pk0m(i)Pkm(i) = 0 for all k 6= k
0

;

where Pom(i) = 1 for i = 0; 1; : : : ;m� 1 and Pkm(i) is a polynomial of degree k.

We assume that each polynomial in the system is scaled so that its values are

always integers.

With each factor Ai having pi levels, we associate pi�1 main e�ect component

parameters Aj

i
, j = 1; : : : ; pi�1. Aj

i
is called the jth order main e�ect of Ai. For

a given ordered allocation of the treatments in d to experimental units, suppose

we let y = (y
1
; : : : ; y

N
)0 denote the ordered vector of observations obtained. The

model for d can be written as

y = X�+ � = X1�1 +X2�2 + �; (2:1)

where � is an N � 1 vector of independent error terms having expectation zero

and constant variance �
2. The parameters in �1 correspond to the factorial

e�ects de�ned above and the parameters in �2 to possible trend e�ects. If we

let X = (x0; : : : ;xp) = (xij), we shall assume that the �rst column of X, x0,

corresponds to an overall mean e�ect and that it is a column of 1's. If xt of X1

corresponds to main e�ect component Aj

i
and factor Ai occurs at level w in run

yl, then xlt = Pjpi(w). It is assumed that any trend e�ect can be represented as

a polynomial of the form trend e�ect = �0 + �1x + � � � + �
	
x
	, x = 1; : : : ; N ,

and the values that x assumes correspond to the positions in which observations

are obtained in the run order.

In this paper we restrict our attention to OMEP's. A design d is said to be

an OMEP if the columns of X1 in model (2.1) corresponding to the main e�ect

parameters form a mutually orthogonal set of vectors.
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De�nition 2.2. Let d be an OMEP such as described above. Let xj be the

column of X1 in model (2.1) corresponding to the main e�ect component Ak

i
. We

say xj or A
k

i
is t-trend free or t-trend resistant if

P
N

i=1 xij i
Z = 0 for z = 0; 1; : : : ; t.

We say factor Ai is t-trend free if all pi � 1 main e�ect components of factor Ai

are at least t-trend free.

In this paper we primarily consider the construction of trend resistant

OMEP's which can be constructed from orthogonal arrays of strength two. In

describing these orthogonal arrays, we adopt much of the notation used in Wang

and Wu (1991). Formally, an orthogonal array of strength two, denoted by

LN (pn1

1 � � � p
nr

r
), is an N � n matrix, n = n1 + � � � + nr, having ni columns

with pi levels, pi being unequal, such that for any two columns all of their level

combinations appear equally often. If r > 1, the array is said to be asymmetrical

or have mixed levels. We also use LN(p1) to denote an array in which the p1 levels

of some factor occur N=p1 times in a column. An orthogonal array of strength

two is saturated if
P

r

i=1 ni(pi � 1) = N � 1.

In Section 3 we give a systematic method for constructing asymmetrical

OMEP's which is given in Wang and Wu (1991). By modifying this method of

constructing OMEP's and combining it with a result given in Jacroux (1992), we

show how to construct a large number of trend resistant OMEP's.

3. Construction Method

Wang and Wu (1991) have given a systematic method of constructing asym-

metrical orthogonal arrays of strength two using di�erence matrices. Thus, we

�rst give a brief review of di�erence matrices. Let G be an additive group of p

elements denoted f0; 1; : : : ; p � 1g. A �p � k matrix with elements from G, de-

noted by D�p;k;p, is called a di�erence matrix if, among the di�erences modulus

p, of the corresponding elements of any two columns, each element of G occurs

exactly � times. We note that any di�erence matrix D�p;k;p can be written in

the form D�p;k;p = (0J
(1)

�p;1; L
(2)

�p
(p); : : : ; L

(k)

�p
(p)) where Jmn is an m� n matrix of

ones and L
(i)

�p
(p) denotes the ith column of D�p;k;p. We note that any subset of

the columns which make up D�p;k;p is also a di�erence matrix.

Let A = [A1; : : : ; An] and B = [B1; : : : ; Bn] be two partitioned matrices

such that for each i, both Ai and Bi have entries from an additive group Gi =

f0; 1; : : : ; pi� 1g. The generalized Kronecker sum of A and B, denoted by A
B

and de�ned in Wang and Wu (1991), is

A ~B = [A1 �B1; : : : ; An � Bn];

where for l�r and m�s matrices Aq=(a
(q)
ij
) and Bq=(b

(q)
ij
) whose elements are

from the same additive group Gq, Aq �Bq=[B
(a

(q)

ij
)

q ] and By

q
=(Bq+yJms)(mod pq)
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where By

q
is obtained by adding y to each element of Bq modulus pq. With the

above de�nitions in mind, Wang and Wu (1991) prove the following result.

Lemma 3.1. If A is an orthogonal array LN(p
n1

1 � � � p
nr

r
) with the partition

A = [LN(p
n1

1 ); : : : ; LN (p
nr

r
)] and B = [DM;k1;p1 ; : : : ;DM;kr ;pr ] where DM;ki;pi is

a di�erence matrix and N and M are both multiples of the pi's, then their

generalized Kronecker sum

A ~B = [Ln(p
n1

1 ) �DM;k1;p1 ; : : : ; LN(p
nr

r
) �DM;kr;pr

]

is an orthogonal array LNM(pk1n1

1 � � � p
krnr
r

).

Jacroux (1992) has proven the following result.

Lemma 3.2. Suppose Ln(p1) and LM (p1) are arrays which are t1 and t2-trend

free, respectively, and let 0l denote an l � 1 vector of zeros. Then

(a) LNM (p1) = LN(p1) � LM(p1) is (t1 + t2 + 1)-trend free.

(b) LNM (p1) = 0N � LM (p1) is t2-trend free.

(c) LNM (p1) = LN(p1) � 0M is t1-trend free.

Using Lemma 3.2, we obtain the following easy generalization.

Theorem 3.3. Let DN;k1;p1 = (0
(1)

N
; L

(2)

N
(p1); : : : ; L

(k1)

N
(p1)) and DN;k2;p1 =

(0
(1)

M
; L

(2)

M
(p1); : : : ; L

(k2)

M
(p1)). Now let DNM;k1k2;p1 = DN;k1;p1 �DM;k2;p1. Then

(a) If the ith column of DN;k1;p1 , i = 2; : : : ; k1, is ai-trend free and the jth column

of DM;k2;p1 , j = 2; : : : ; k2, is bj-trend free, then column (i�1)k2+j of DNM;k1k2;p1

is (ai + bj + 1)-trend free.

(b) The �rst column of DNM;k1k2;p1 has all zeros and all remaining columns of

DNM;k1k2;p1 corresponding to 0N �L
(i)

M
(p1) or L

(j)

N
(p1)�0M have the same level of

trend resistance in DNM;k1k2;p1 as L
(i)

M
(p1) or L

(j)

N
(p1) do in DM;k2;p1 and DN;k1;p1 ,

respectively.

Proof. Simply observe that with the partitions given above for DN;k1;p1 and

DM;k2;p1 ,

DNM ;k1k2;p1 = DN;k1;p1 �DM;k2;p1

=
��

0
(1)

N
�DM;k2;p1

�
;

�
L
(2)

N
(p1) �DM;k2;p1

�
; : : : ;

�
L
(k1)

N
(p1) �DM

��

=
��

0
(1)

N
� 0

(1)

M
; 0

(1)

N
� L

(2)

M
(p1); : : : ; 0

(1)

M
� L

(k2)

M
(p1); L

(2)

N
(p1) � 0

(1)

M
;

L
(2)

N
(p1) � L

(2)

M
(p1); : : : ; L

(2)

N
(p1) � L

(k2)

M
(p1); : : : ; L

(k1)

N
(p1) � 0

(1)

M
;

L
(k1)

N
(p1) � L

(2)

M
(p1); : : : ; L

(k1)

N
(p1) � L

(k2)

M
(p1)

��
:

Parts (a) and (b) now follow from lemma 3.2 (a), (b) and (c).
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Using the preceding Lemmas, we have the following method of construction

which is a modi�cation of the method given in Wang and Wu (1991).

1. Construct matrices A and B as described in Lemma 3.1 so that the

columns of A and B have maximal levels of trend resistance.

2. Construct the orthogonal array A ~B as described in Lemma 3.1.

3. Let L = 0N � LM (M) be a matrix consisting of N copies of the array

LM (M) as its rows. By adding the columns of L to A ~B, the resulting (3.1)

matrix [A ~B;L] is an orthogonal array LNM(pk1n1

1 � � � p
krnr
r

M).

4. (optional) Replace the M levels of the last factor in LNM (pk1n1

1 � � �

p
krnr
r

M) by the corresponding rows in LM (qr11 � � � q
rm
m
) to obtain LNM

(pk1n1

1 � � � p
krnr
r

q
r1

1 � � � q
rm
m
). The orthogonal array LM (qr11 � � � q

rm
m
) should

be constructed so that its columns have maximal trend resistance.

With regard to the construction process just described, we now give some

additional information which is useful in performing the various steps.

In Step 1 of Process (3.1), there are as yet no results available to indicate

when a given column of a di�erence matrix has a maximal degree of trend resis-

tance. However, Theorem 3.3 is useful for the construction of di�erence matrices

having di�erent levels of trend resistance and the following observations are also

useful in performing Step 1:

1. Every orthogonal array LN(p
n) is a di�erence matrix DN;n;p.

2. If Dp;k;p = (0(1)
p
; L

(2)
p
(p); : : : ; L(k)

p
(p)), then each column L

(i)
p
(p), i =

2; : : : ; k, is at least 0-trend free.

3. Let DN;k;p = (0
(1)

N
; L

(2)

N
(p); : : : ; L

(k)

N
(p)). We note that changing the

order of rows in DN;k;p does not change the fact that DN;k;p is a di�erence

matrix. Thus, if p is odd and N = �p, � = 2; : : : ; p, one can use the

results of Phillips (1968) to order the elements in L
(2)

N
(p) (and hence the

rows of DN;k;p) so that L
(2)

N
(p) is 1-trend free.

4. Let DN;k;p = (0
(1)

N
; L

(2)

N
(p); : : : ; L

(k)

N
(p)) and let �DN;k;p be the di�erence (3.2)

matrix obtained by reversing the order of the rows in DN;k;p. Then all

columns in D2N;k;p =

�
DN;k;p

�DN;k;p

�
except the �rst column are 1-trend free.

5. If p is a prime andDp;p;p = (0(1)
p
; L

(2)
p
(p); � � � ; L(p)

p
(p)), then LN

�
p
p
(n�1)

�
= Lp(p) �D

(1)
p;p;p � � � � �D

(n�1)
p;p;p is an orthogonal array with N = p

n where

D
(i)
p;p;p denotes the ith copy of Dp;p;p used in the given generalized Kro-

necker sum. Using Lemma 3.2 and the facts given above, it is easily

seen that LN

�
p
p
(n�1)

�
has

�
n�1

x

�
(p� 1)x columns that are x-trend free for

x = 0; 1; : : : ; n � 1. We note that Wang (1991) gives a result similar to

that indicated here.
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Steps 2 and 3 of Process (3.1) are self explanatory.

After Step 3, the last factor of LNM(pk1n1

1 � � � p
krnr

r
M) has M levels and has

0-trend resistance. In Step 4 of (3.1), it is often possible to replace theM levels of

the last factor by the corresponding rows of an orthogonal array LM (qr11 � � � q
rm
m
)

and achieve some level of trend resistance for the factors in LM(qr11 � � � q
rm

1 ). For

example, if factor j has qi levels and is tj-trend resistant in LM (qr11 � � � q
rm

m
) and

the M levels of the last factor in LNM(pk1n1

1 � � � p
krnr
r

M) are replaced by the

corresponding rows of LM (qr11 � � � q
rm
m
), then factor j will still be tj-trend free

in LNM (pk1n1

1 � � � p
krnr

r
q
r1

1 � � � q
rm

m
) by Lemma 3.2. Thus LM(qr11 � � � q

rm

m
) should be

constructed so that it also has a maximal level of trend resistance. In this regard,

the observations made in (3.2) are useful.

We now give several examples to illustrate these ideas.

Example 3.4. Suppose we wish to construct a trend free orthogonal array

having 18 runs in which all factors have two or three levels. To begin, we use the

di�erence matrix

D6;6;3 =

0
BBBBBBB@

0 0 0 0 0 0

0 1 2 0 1 2

0 2 1 1 0 2

0 2 0 2 1 1

0 1 1 2 2 0

0 0 2 1 2 1

1
CCCCCCCA
:

We note that the rows of D6;6;3 have been arranged so that the second column

is 1-trend free. Using (3.1) down to Step 3, we obtain the orthogonal array

L18(3
6
� 6) = (L3(3) �D6;6;3, 03 � L6(6)). In Step 4, by replacing the six levels of

the last factor in L18(3
6
� 6) by the corresponding rows in L6(3 � 2) = (00, 10, 20,

21, 11, 01)0, we obtain L18(3
7
� 2). We note that factor one in L6(3 � 2) is 1-trend

free; hence L18(3
7
� 2) has �ve 3-level factors that are 1-trend free, one 3-level

factor that is 2-trend free, and has the remaining factors 0-trend free. We also

note that the design given here is slightly better than the design L18(3
7) given

in John (1990) which has six 3-level factors that are 1-trend free and one 3-level

factor that is 0-trend free.

Example 3.5. Suppose we wish to construct a trend free orthogonal array

having 27 rows and all factors with three levels. Using

D3;3;3 =

0
@ 0 0 0

0 1 2

0 2 1

1
A ;

(3.1) and (3.2(3)), we obtain L27(3
9
�9) = (L3(3)�D3;3;3 �D3;3;;3; 03 �L9(9)) which,

by (3.2(5)), has four 3-level factors that are 2-trend free, four 3-level factors that
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are 1-trend free, and has the remaining factors that are 0-trend free. Upon

replacing the nine levels of the last factor in L27(3
9
� 9) by the corresponding

levels of L9(3
4) = (L3(3) �D3;3;3; 03 � L3(3)) (which has two 1-trend free 3 level

factors and two 0-trend free 3-level factors), we obtain L27(3
13) which has four

2-trend free 3-level factors, six 1-trend free 3-level factors and three 0-trend free

3-level factors. This design has the same level of trend resistance as the design

L27(3
13) given in John (1990).

In many cases, if the number of factors having a speci�ed number of levels

is relatively small, it is often possible to increase the level of trend resistance for

the factors used. This is illustrated in the following example.

Example 3.6. Suppose we wish to construct a trend free orthogonal array hav-

ing 18 runs in which three factors have three levels. To begin, use the di�erence

matrix

D6;2;3 =

�
0 1 2 2 1 0

0 2 1 1 2 0

�
0

which is obtained from D3;3;3 of Example 3.5 using (3.2(4)) after omitting the

column of zeros in D3;3;3. We note that the two columns in D6;2;3 are 1-trend

free. Using (3.1) down to Step 3, we obtain the orthogonal array L18(3
2
� 6) =

(L3 � D6;2;3;03 � L6(6)). In Step 4, by replacing the six levels of the last factor

in L18(3
2
� 6) by the corresponding levels of L6(3) = (0; 1; 2; 2; 1; 0), we obtain

L18(3
3). We note that the 3-level factor in L6(3) is 1-trend free, hence L18(3

3)

has two 3-level factors that are 2-trend free and one 3-level factor that is 1-

trend free. When comparing L18(3
3) constructed in this example with L18(3

7
� 2)

obtained in Example 3.4, we see that L18(3
3) has fewer factors but that these

factors have slightly higher trend resistance than those in L18(3
7
� 2).

Example 3.7. In this example we use the generalized Kronecker sum to con-

struct an array having a larger number of runs. In particular, we now set about

constructing an orthogonal array having 72 runs and having all factors with two

or three levels. To begin, let

D12;12;2=

2
66666666666664

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 0 1 1 0 0

0 1 1 1 0 1 0 1 0 1 0 0

0 1 0 1 1 1 0 0 1 0 1 0

0 1 1 0 0 0 0 0 1 1 1 1

0 1 0 0 1 0 1 1 0 1 1 0

0 0 1 0 0 1 1 1 1 0 1 0

0 0 0 0 1 1 0 1 1 1 0 1

0 1 0 1 0 0 1 1 1 0 0 1

0 0 1 1 1 0 0 1 0 0 1 1

0 0 0 1 0 1 1 0 0 1 1 1

0 1 1 0 1 1 1 0 0 0 0 1

3
77777777777775

; D12;12;3=

2
66666666666664

0 0 0 1 1 0 0 1 0 2 2

0 0 0 0 2 0 2 0 2 0 0

0 1 2 2 0 0 1 1 2 0 2

0 1 2 1 2 1 2 2 2 2 1

0 2 1 2 1 0 0 2 2 1 1

0 2 1 0 0 1 2 1 1 2 2

0 2 2 1 2 2 1 1 0 1 0

0 2 0 1 1 1 1 0 1 0 1

0 1 0 0 2 2 0 2 1 1 2

0 1 1 2 1 2 2 0 0 2 0

0 0 1 0 0 2 1 2 0 0 1

0 0 2 2 0 1 0 0 1 1 0

3
77777777777775
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and B = (D12;12;2;D12;12;3). We note that columns two, three and four of D12;12;2

are 1-trend free and column two of D12;12;3 is 1-trend free. Now let L6(2 � 3) be

given by

L6(2 � 3) =

�
0 1 0 1 0 1

0 1 2 2 1 0

�
0

= (L6(2); L6(3)) = A:

In L6(2 � 3), L6(3) is 1-trend free. Upon applying Steps 1, 2 and 3 of (3.1), we

get L72(2
12
� 312 � 12) = (A ~B, 06 � L12(12)) = (L6(2) �D12;12;2, L6(3) �D12;12;3,

06 �L12(12)). Using the comments made previously, we see that L72(2
12
� 312 � 12)

has three 2-trend free 2-level factors, eight 1-trend free 2-level factors, one 3-trend

free 3-level factor, ten 2-trend free 3-level factors, and remaining factors 0-trend

free. We can now replace the 12 levels of the last factor in L72(2
12
� 312 � 12) by

the corresponding rows of

L12(3 � 2
4) =

0
BBBBB@

0 0 1 1 2 2 2 2 1 1 0 0

0 1 0 1 0 1 1 0 1 0 1 0

0 0 0 0 0 0 1 1 1 1 1 1

0 1 1 0 1 0 1 0 0 1 1 0

0 1 1 1 0 0 1 1 0 0 0 1

1
CCCCCA

0

given in Wang and Wu (1991) which has one 1-trend free 3-level factor and one

1-trend free 2-level factor or by the corresponding rows of

L12(6 � 2) =

�
0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 1 0 1

�
0

which has a 1-trend free 6-level factor or by L12(2
11) which is obtained from

D12;12;2 by eliminating the �rst column. Upon making these replacements, we

obtain the orthogonal arrays L72(2
16
�313), L72(2

13
�312 �6) and L72(2

23
�312) which

have the levels of trend resistance previously described.
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