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ON THE CONSTRUCTION OF TREND RESISTANT
ASYMMETRICAL ORTHOGONAL ARRAYS
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Abstract. In this paper we show how to use difference matrices to construct trend
resistant asymmetrical orthogonal arrays. In particular, by modifying a method of
constructing asymmetrical orthogonal arrays given by Wang and Wu (1991), it is
shown that the treatments in many previously constructed asymmetrical orthogonal
arrays can be ordered to give various degrees of trend resistance.
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1. Introduction

In this paper we consider experimental situations where the treatments that
make up a mixed level orthogonal main effects plan (OMEP) are to be applied
sequentially to experimental units over space or time and where there may be an
unknown or uncontrollable trend effect which is highly correlated with the order
in which the observations are obtained. Any ordered application of treatments to
experimental units over space or time is called a run order. In situations such as
described above, the experimenter may prefer to assign treatments to experimen-
tal units in such a way that the usual estimates for the factorial effects of interest
are not affected by the unknown trend. Such run orders are called trend resis-
tant. A good deal of work has been done on the construction of trend resistant
run orders of factorial designs when all factors have the same number of levels,
(see Bailey, Cheng and Kipnis (1992) for a summary of the work done on these
problems). The only work known to the author on the construction of trend resis-
tant mixed level factorial run orders is that done in Coster (1993), Bailey, Cheng
and Kipnis (1992) and Jacroux (1992). Unfortunately, the construction methods
given in these papers require fairly large numbers of experimental units when the
number of factors involved is large. In this paper, we show that by modifying
a method of constructing asymmetrical OMEP’s given in Wang and Wu (1991),
a number of trend resistant mixed level OMEP’s can be constructed which can
handle fairly large numbers of factors with smaller numbers of observations.
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2. Notation and Definitions

In this section, the notation and main definitions which are used throughout
the sequel are given. It is assumed that an OMEP is to be constructed for n
factors, denoted by Ay,..., A, where factor A; has p; levels, ¢ = 1,...,n. An
allocation of factor level combinations to available experimental units will be
called a design and denoted by d. We denote the levels of a given factor having
p; levels by 0, 1,..., p; — 1 and assume throughout that p; is a prime or power of
a prime. The model assumed here for analyzing the data from a given design d
is one which utilizes orthogonal polynomials.

Definition 2.1. The system of orthogonal polynomials on m equally spaced
points ¢ = 0,1,...,m — 1 is the set {Pj,, & = 0,...,m — 1} of polynomials
satisfying

m—1
> Pyw(i) Pun(i) =0 for all k # K,
=0

where P, (i) =1for i =0,1,...,m — 1 and P, (7) is a polynomial of degree k.
We assume that each polynomial in the system is scaled so that its values are
always integers.

With each factor A; having p; levels, we associate p;—1 main effect component
parameters A7, j = 1,... p;— 1. Al is called the jth order main effect of A;. For
a given ordered allocation of the treatments in d to experimental units, suppose
we let y = (y,,...,y,) denote the ordered vector of observations obtained. The
model for d can be written as

y=XB+e=X8 +X28 te¢ (2.1)

where € is an N X 1 vector of independent error terms having expectation zero
and constant variance o?. The parameters in B3, correspond to the factorial
effects defined above and the parameters in 38, to possible trend effects. If we
let X = (xg,...,2,) = (x;;), we shall assume that the first column of X, x,
corresponds to an overall mean effect and that it is a column of 1’s. If z; of X,
corresponds to main effect component A7 and factor A; occurs at level w in run
yi, then z;; = Pj,, (w). It is assumed that any trend effect can be represented as
a polynomial of the form trend effect = g + oz + -+ ag z°, z =1,...,N,
and the values that x assumes correspond to the positions in which observations
are obtained in the run order.

In this paper we restrict our attention to OMEP’s. A design d is said to be
an OMEP if the columns of X; in model (2.1) corresponding to the main effect
parameters form a mutually orthogonal set of vectors.
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Definition 2.2. Let d be an OMEP such as described above. Let x; be the
column of X, in model (2.1) corresponding to the main effect component A¥. We
say z; or A¥ is t-trend free or t-trend resistant if Eﬁil z;;i? =0forz=0,1,...,t.
We say factor A; is t-trend free if all p; — 1 main effect components of factor A;
are at least t-trend free.

In this paper we primarily consider the construction of trend resistant
OMEP’s which can be constructed from orthogonal arrays of strength two. In
describing these orthogonal arrays, we adopt much of the notation used in Wang
and Wu (1991). Formally, an orthogonal array of strength two, denoted by
Ly (pt*---pP), is an N x n matrix, n = ny; + --- + n,, having n; columns
with p; levels, p; being unequal, such that for any two columns all of their level
combinations appear equally often. If > 1, the array is said to be asymmetrical
or have mixed levels. We also use Ly (p;) to denote an array in which the p; levels
of some factor occur N/p; times in a column. An orthogonal array of strength
two is saturated if ., n;(p; —1) = N — 1.

In Section 3 we give a systematic method for constructing asymmetrical
OMEP’s which is given in Wang and Wu (1991). By modifying this method of
constructing OMEP’s and combining it with a result given in Jacroux (1992), we
show how to construct a large number of trend resistant OMEP’s.

3. Construction Method

Wang and Wu (1991) have given a systematic method of constructing asym-
metrical orthogonal arrays of strength two using difference matrices. Thus, we
first give a brief review of difference matrices. Let G be an additive group of p
elements denoted {0,1,...,p — 1}. A Ap x k matrix with elements from G, de-
noted by D), .,, is called a difference matrix if, among the differences modulus
p, of the corresponding elements of any two columns, each element of G occurs
exactly A times. We note that any difference matrix D,, ., can be written in
the form D, ., = (OJS,)J,L%) (p),... ,Lg\kp) (p)) where J,,, is an m x n matrix of
ones and Lg\i; (p) denotes the ith column of D), ;.,. We note that any subset of
the columns which make up D), ., is also a difference matrix.

Let A = [A4,...,A,] and B = [By,...,B,] be two partitioned matrices
such that for each i, both A; and B; have entries from an additive group G; =
{0,1,...,p; —1}. The generalized Kronecker sum of A and B, denoted by A® B
and defined in Wang and Wu (1991), is

A® B =[A, xBy,..., A, * B,],
(q)

ij ) and B, = (bfj)) whose elements are
al?
from the same additive group G, A, *B,= [B; i )] and BY = (B;+yJy,)(modp,)

where for [ xr and m x s matrices A, =(a
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where BY is obtained by adding y to each element of B, modulus p,. With the
above definitions in mind, Wang and Wu (1991) prove the following result.

Lemma 3.1. If A is an orthogonal array Ly (pt*---p") with the partition
A= [LN(p?l)a' .- aLN(p:}T)] and B = [DM,kn;pm v ’DM7kr;p7‘] where DM,ki;pi i
a difference matriz and N and M are both multiples of the p;’s, then their
generalized Kronecker sum

A®B=[L,(p*) * Dikyiprs- - LN(027) * Dasi, p, ]

is an orthogonal array Ly (pi*™ - - - pkr).

Jacroux (1992) has proven the following result.

Lemma 3.2. Suppose L,(p1) and Ly (p1) are arrays which are t, and ty-trend
free, respectively, and let 0; denote an | X 1 vector of zeros. Then
(a) Lya(p1) = Ln(p1) * Las(p1) is (61 + to + 1)-trend free.
(b) Lya(p1) = On * Las(p1) 18 ta-trend free.
(¢) Lya(p1) = Ly(py) * 0y is ty-trend free.

Using Lemma, 3.2, we obtain the following easy generalization.
Theorem 3.3. Let Dy = (0%, LY (p1),..., L8 (p1)) and Dy gy, =
(05 L (1), ..., LE (p1)). Now let Dyagiskaips = Dnokripy * Ditpaipy- Then
(a) If the ith column of Dx ky.py» & = 2, ..., ki1, 15 a;-trend free and the jth column
Of Drtkoiprs J = 2,. .., k2, is bj-trend free, then column (i —1)ky 47 of DNk, ko,
is (a; + b; + 1)-trend free.
(b) The first column of Dnar g kspy has all zeros and all remaining columns of
DNt kg kegip, COTTESPONAING tO ON*LS\? (p1) or L%) (p1) * 0y have the same level of
trend resistance in Dy g koip, OS L3 (py) or LY (py) do in Dty:p, and Dy gy oy
respectively.

Proof. Simply observe that with the partitions given above for Dy ,.,, and

DM,kz;Plv

Dnuikikaipy = DNokipy * DMokoipn
= ((08 % Darsoipr )+ (B (21) * Dt ) s+ (L8 (1) + Dar) )
= (0% 05, 08 « LG (p), -, 05 + LI (p1), LR (p) * 037,
L%)(Pl) * Lg\?(?l)a e 7LS\2I) (p1) * LS\ZZ)(Pl)a e aLS\]rﬁ)(Pl) * 05&[)7
LGV (1) * L7 (1), - LYY (1) < L (1)) -

Parts (a) and (b) now follow from lemma 3.2 (a), (b) and (c).
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Using the preceding Lemmas, we have the following method of construction
which is a modification of the method given in Wang and Wu (1991).

1. Construct matrices A and B as described in Lemma 3.1 so that the
columns of A and B have maximal levels of trend resistance.

2. Construct the orthogonal array A ® B as described in Lemma 3.1.

3. Let L = Oy * Ly (M) be a matrix consisting of N copies of the array

Ly (M) as its rows. By adding the columns of L to A ® B, the resulting (3.1)
matrix [A ® B, L] is an orthogonal array Ly (pi™ - - - pi" M).

4. (optional) Replace the M levels of the last factor in Ly (pf*™ ---
pr M) by the corresponding rows in L (gi* -+ q"™) to obtain Ly,
( kiny krnp T

pit"teepitrgt oo ¢tm). The orthogonal array L (qi* ---¢im) should
be constructed so that its columns have maximal trend resistance.

With regard to the construction process just described, we now give some
additional information which is useful in performing the various steps.

In Step 1 of Process (3.1), there are as yet no results available to indicate
when a given column of a difference matrix has a maximal degree of trend resis-
tance. However, Theorem 3.3 is useful for the construction of difference matrices
having different levels of trend resistance and the following observations are also
useful in performing Step 1:

1. Every orthogonal array Ly(p™) is a difference matrix Dy ..

2. If D,y = (00, L (p),..., L (p)), then each column L{)(p), i =
2,...,k, is at least O-trend free.

3. Let Dy, = ( O LYP(p),...,L¥ (p)). We note that changing the

order of rows in Dy ., does not change the fact that Dy ., is a difference
matrix. Thus, if p is odd and N = Ap, A = 2,...,p, one can use the
results of Phillips (1968) to order the elements in L' (p) (and hence the

rows of Dy x.,) so that LY (p) is 1-trend free.

4. Let Dy g,y = 09, L (p),..., LY (p)) and let Dy r;p be the difference  (3.2)
matrix obtained by reversing the order of the rows in Dy .,. Then all

D k;p

columns in Dsy k., = ( ) except the first column are 1-trend free.

N,k;p
5. If pis a prime and D, ,;, = (0{Y, L) (p), - - -, LP) (p)), then Ly (p”("fl))
= L,(p) * DY ' --.x D"~V is an orthogonal array with N = p" where

) P,D;P P,D;P

D) denotes the ith copy of D, ., used in the given generalized Kro-
necker sum. Using Lemma 3.2 and the facts given above, it is easily
seen that Ly (pp(n_l)) has ("2")(p—1)” columns that are z-trend free for

x=0,1,...,n — 1. We note that Wang (1991) gives a result similar to
that indicated here.
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Steps 2 and 3 of Process (3.1) are self explanatory.

After Step 3, the last factor of Ly (pf*™ --- pF" M) has M levels and has
0-trend resistance. In Step 4 of (3.1), it is often possible to replace the M levels of
the last factor by the corresponding rows of an orthogonal array Ly (q;* - - - ¢m)
and achieve some level of trend resistance for the factors in L (q1" - - ¢i™). For
example, if factor j has g; levels and is ¢;-trend resistant in Ly (g7 - - - ¢/ ) and
the M levels of the last factor in Ly (pi*™ ---pk " M) are replaced by the
corresponding rows of Ly (g1 ---¢)r), then factor j will still be ¢;-trend free
in Ly (py*™ ---pfmrg* ---¢"») by Lemma 3.2. Thus Ly (q;" - - - ¢’r) should be
constructed so that it also has a maximal level of trend resistance. In this regard,
the observations made in (3.2) are useful.

We now give several examples to illustrate these ideas.

Example 3.4. Suppose we wish to construct a trend free orthogonal array
having 18 runs in which all factors have two or three levels. To begin, we use the
difference matrix

000000
01 2 0 1 2
02110 2

D6’6?3_020211
01 12 20
00 2 1 2 1

We note that the rows of Dgg.3 have been arranged so that the second column
is 1-trend free. Using (3.1) down to Step 3, we obtain the orthogonal array
L15(3% - 6) = (L3(3) * Dg 6.3, 03 % Lg(6)). In Step 4, by replacing the six levels of
the last factor in L;5(3% - 6) by the corresponding rows in Lg(3 - 2) = (00, 10, 20,
21, 11, 01)’, we obtain L;3(3" - 2). We note that factor one in Lg(3 - 2) is 1-trend
free; hence Lig(3" - 2) has five 3-level factors that are 1-trend free, one 3-level
factor that is 2-trend free, and has the remaining factors 0-trend free. We also
note that the design given here is slightly better than the design L;5(3") given
in John (1990) which has six 3-level factors that are 1-trend free and one 3-level
factor that is 0-trend free.

Example 3.5. Suppose we wish to construct a trend free orthogonal array
having 27 rows and all factors with three levels. Using

0 0 0
D3,3;3: (0 1 2) )
0 2 1

(31) and (32(3)), we obtain L27(39 9) = (L3(3) *D3’3;3 *D373’;3, 03 *Lg(g)) WhiCh,
by (3.2(5)), has four 3-level factors that are 2-trend free, four 3-level factors that
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are l-trend free, and has the remaining factors that are 0-trend free. Upon
replacing the nine levels of the last factor in Ly;(3° - 9) by the corresponding
levels of Lg(3*) = (L3(3) * D3 33,05 x L3(3)) (which has two 1-trend free 3 level
factors and two O-trend free 3-level factors), we obtain Ls7(3'*) which has four
2-trend free 3-level factors, six 1-trend free 3-level factors and three 0-trend free
3-level factors. This design has the same level of trend resistance as the design
Ly7(3'3) given in John (1990).

In many cases, if the number of factors having a specified number of levels
is relatively small, it is often possible to increase the level of trend resistance for
the factors used. This is illustrated in the following example.

Example 3.6. Suppose we wish to construct a trend free orthogonal array hav-
ing 18 runs in which three factors have three levels. To begin, use the difference

01 2 2 1 0\
D6’2?3_<021120>

matrix

which is obtained from Dj ;.5 of Example 3.5 using (3.2(4)) after omitting the
column of zeros in Dj33;. We note that the two columns in Dg 5.5 are 1-trend
free. Using (3.1) down to Step 3, we obtain the orthogonal array L3(3? - 6) =
(L3 * Dg5.3,05 * Lg(6)). In Step 4, by replacing the six levels of the last factor
in Lig(3% - 6) by the corresponding levels of Lg(3) = (0,1,2,2,1,0), we obtain
L5(3%). We note that the 3-level factor in Lg(3) is 1-trend free, hence Lg(3?)
has two 3-level factors that are 2-trend free and one 3-level factor that is 1-
trend free. When comparing L5(3%) constructed in this example with L;g(37 - 2)
obtained in Example 3.4, we see that L;3(3%) has fewer factors but that these
factors have slightly higher trend resistance than those in Lg(37 - 2).

Example 3.7. In this example we use the generalized Kronecker sum to con-
struct an array having a larger number of runs. In particular, we now set about
constructing an orthogonal array having 72 runs and having all factors with two
or three levels. To begin, let

ro o 0o 0 000 0 0 0 0 07 ro o 0o 1 1.0 0 1 0 2 27
001 11 0101 1 00O 0 0 0 0 2 0 2 0 2 0 O0
01 1 10 1 01 01 0O o1 2 2 0 0 1 1 2 0 2
0101 1 1 001 010 o1 2 1 2 1 2 2 2 21
01 1 00 O0O0OO0OT1TT1 11 o 2 1 2 1 0 0 2 2 11
Dis 130 = 01 001 011 0110 . Dygiipis= 0 2 1 00 1 2 1 1 2 2
e 001 00 1 1 1 1 0 1 0 Ea 0 2 2 1 2 2 1 1 0 1 0
00 0O0OT11 0111 01 0 2 01 1 11 0 1 01
01 01 0 01 1 1 0 01 01 0 0 2 2 0 2 1 1 2
0 01 11 001 0011 o0 1 1 2 1 2 2 0 0 2 0
00010 1 1 001 1 1 o 01 00 21 2 001

Lo 1.1 0 1.1 1 0 0 0 O0 1 LO 0 2 2 0 1 0 0 1 1 OJd
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and B = (Di2,12.2, D12,12.3). We note that columns two, three and four of Dj5 12
are 1-trend free and column two of Di5 5.3 is 1-trend free. Now let Lg(2 - 3) be
given by
!
L=y 1 5 5 ) o) = E@ L) =4

In Lg(2 - 3), Lg(3) is 1-trend free. Upon applying Steps 1, 2 and 3 of (3.1), we
get Lin(2'2-312.12) = (A® B, Og + L15(12)) = (L(2) * Dis120, Ls(3) * Din1as,
06 * L12(12)). Using the comments made previously, we see that Lz, (2'2-3'%.12)
has three 2-trend free 2-level factors, eight 1-trend free 2-level factors, one 3-trend
free 3-level factor, ten 2-trend free 3-level factors, and remaining factors 0-trend
free. We can now replace the 12 levels of the last factor in Ly, (2'% - 3'2 - 12) by
the corresponding rows of

Lix(3-2) =

SO O O O
—_ = O = O
-0 O =
—_— O O ==
O~ O o N
O O O~ N
— = = =N
_ O = O N
O O = =
O = = O
O = = = O
_ o = O O

given in Wang and Wu (1991) which has one 1-trend free 3-level factor and one
1-trend free 2-level factor or by the corresponding rows of

01 2
L12(6'2):<0 10

which has a 1-trend free 6-level factor or by L;»(2'') which is obtained from
D15 155 by eliminating the first column. Upon making these replacements, we
obtain the orthogonal arrays L;»(2'%-3'3), L;»(2'%-3'2-6) and L.»(2?%-3'?) which
have the levels of trend resistance previously described.
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