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Abstract: This paper considers a likelihood ratio test for a change in mean when

observations are not independent. First, the e�ect of correlation on the performance

of the likelihood ratio test derived under the assumption of no correlation is examined.

Then, the likelihood ratio statistic for testing for a change in mean is obtained under

a general structure of nonzero correlation. For general correlation and some serial

correlations such as AR(p), distributional properties of the test statistic are examined

and methods to compute approximate p-values are discussed. Finally, the power of

the likelihood ratio test is compared with that of the test proposed by Henderson

(1986).
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1. Introduction

Change-point problems for a sequence of random variables X1; : : : ;Xn, are

concerned with inference for an unknown change-point � , (1 � � � n) such that

the �rst � observations come from a distribution F and the remaining ones come

from another distribution F �. Since Page (1954) developed a cumulative sum test

to detect a location change, considerable attention has been given to this problem

in a variety of settings. Most authors have assumed that the observations are

independent and studied the case where two distributions di�er only in location.

Some important papers on this topic include those of Hinkley (1970), Sen and

Srisvastava (1975), Siegmund (1986), who used likelihood ratio approaches, and

Cherno� and Zacks (1964), Smith (1975), who used Bayesian approaches. Some

nonparametric methods have been discussed by Carlstein (1988).

In many applications, however, the observations are correlated in various

ways. With a special correlation structure such as serial correlation, the prob-

lem is to detect a level shift in time series data. Sometimes we are interested

in studying an abrupt or a gradual change in repeatedly measured data, which

show natural dependency among the observations. The change-point problem
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when the data are correlated �rst appeared in Box and Tiao (1965), who dis-

cussed tests for the change in level assuming a known change-point. Although

several authors have studied this problem since then, most of them used a cu-

mulative sum statistic or a Bayesian approach because of the intractability of

the exact distribution of the likelihood ratio statistic. Bagshow and Johnson

(1975) studied the e�ect of serial correlation on the performance of the cusum

test. Yashchin (1993) also considered a cusum test with serially correlated obser-

vations and suggested a method to compute an approximate average run length

in a sequential detection. Henderson (1986) developed a Bayesian testing proce-

dure for correlated observations, made some comments on serial correlations and

applied his approach to material accountancy data. Nagaraj (1990) formulated

the likelihood ratio statistics under several di�erent assumptions and observed

analytic di�culties associated with the likelihood ratio statistics. Zhao (1993)

indicated the applicability of this problem in software reliability, but left the

analytic treatment of the likelihood ratio statistic open. Our main goal in this

paper is to study analytic properties of the likelihood ratio statistics in the case

of a general correlation structure and to suggest approximations for p-values of

the likelihood ratio test.

This paper is organized as follows. In Section 2, we examine the e�ect of

correlation on the performance of the likelihood ratio statistic derived under the

assumption of independence. Then, we obtain the likelihood ratio statistic for

a change in mean when Cov(X1; : : : ; Xn) = �
2�, where � is not an identity

matrix. Section 3 discusses how to evaluate the p-value of the likelihood ratio

test. Using large deviation theory, we develop approximations for the p-value of

the likelihood ratio test and provide numerical examples to assess the accuracy

of the approximations. The results are specialized to settings where � has a

structure such as a serial correlation of AR(p). In Section 4, the power of the

likelihood ratio test is compared to that of the test suggested by Henderson (1986)

and material accountancy data is discussed as an example.

2. Model and Likelihood Ratio Statistics

LetXi be a sequence of observations from a normal distribution withE[Xi] =

�i, for i = 1; : : : ; n. The hypotheses under consideration are

H0 : �i = � for all i = 1; : : : ; n

H1 : � = �1 = � � � = �� 6= ��+1 � � � = � = �
� for some 1 � � < n:

Many authors have worked on this problem when the X's are independent. Hink-

ley (1970) studied the asymptotic behavior of the likelihood ratio statistic (LRS)

and suggested a large sample approximation for the p-value of the test. Siegmund
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(1986) proposed a generalized likelihood ratio test (LRT) to avoid the case where

the likelihood ratio statistic does not have a valid limiting distribution. Using

a method developed to solve boundary crossing problems in sequential analysis,

Siegmund also derived an approximation for the p-value of the test, which is

accurate even for small samples. James, James, and Siegmund (1987) extended

the results of Siegmund (1986) to the unknown variance case and also compared

the performance of the LRT with other tests. Worsley (1983, 1986) proposed a

numerical method for computing the p-value of the LRT to detect a change in

binomial probability and in location of an exponential family distribution.

In this paper, we consider a generalized version of the LRT as in Siegmund

(1986) and discuss a detection procedure when the X's are correlated. We �rst

examine the e�ect of nonzero correlation on the performance of (3.6) in Sieg-

mund (1986), the likelihood ratio statistic derived under the assumption of in-

dependence (we call it LRS0), and then derive a likelihood ratio statistic under

nonzero correlation.

Table 1. Tail Distribution of LRS0 for xi � AR(1) with autocorrelation

parameter �, n = 40, n0 = 4, n1 = 36

� = �0:5 � = 0:2 � = 0:7

true probability b SA b SA b SA

0.25 1.41 0.828 2.16 0.259 3.77 3� 10�3

0.10 1.67 0.596 2.57 0.104 4.67 6� 10�5

0.05 1.83 0.468 2.82 0.055 5.24 3� 10�6

0.01 2.17 0.254 3.37 0.010 6.42 3� 10�9

Note: b is the tail percentile estimated by a Monte Carlo experiment with

10,000 repititions and SA is the approximation evaluated by (3.12) of Sieg-

mund (1986).

Let X = (X1; : : : ;Xn) and suppose that Cov[X] = �
2�(6= �

2
I). Table

1 shows the sensitivity of the LRS0 to the nonzero correlation among the ob-

servations. As an example, we consider observations from the AR(1) process

Xi = �Xi�1 + �i, where �'s are iid normal random variables with mean zero and

variance one. For di�erent values of �, Table 1 includes the tail percentiles of

the LRS0 and their corresponding p-values. The percentiles, b, of the LRS0 are

obtained by Monte Carlo experiments with 10,000 repetitions and their p-values

are approximated by (3.12) of Siegmund (1986) and are labeled as SA. It is ob-

served that we signi�cantly underestimate/overestimate the true p-values when

we ignore positive/negative autocorrelation. This motivates us to develop the

LRT for a change-point in mean taking the nonzero correlation structure into
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consideration.

We �rst assume that � and � are known for mathematical simplicity and will

discuss later how to handle a situation where these values are unknown. For some

quality control data sets and speci�cally for the material accountancy data in

Henderson (1986), it is not unnatural to assume � and � to be known. Although

� is assumed to be known and a transformation to independent observations is

possible, the mean vector after the transformation will not present a structural

change described under H1. Hence it is required to obtain the LRS with the

existing covariance matrix. Let ��1=2 be the symmetric positive-de�nite square

root of ��1, j
k
be an n� 1 vector with 0 in the �rst k components and 1 in the

last n� k components and let Zk = (j0; jk). Straightforward computation shows

that the LRT rejects the null hypothesis of no change for large values of

M = �
�2 max

n0�k�n1

Y 0(Pk � Pn)Y; (2:1)

where 1 � n0 < n1 < n,

Y = ��1=2X;

Pk = ��1=2Zk(Z
0

k
��1Zk)

�1
Z
0

k
��1=2

0

and Pn = ��1=2j0(j
0

0�
�1
j0)

�1
j
0

0�
�1=20

:

It is easy to check that under the null hypothesis of no change, Qk = �
�2Y 0(Pk�

Pn)Y has a chi-squared distribution with 1 degree of freedom for each k. However,

complicated covariance structures between the Qk's or the Q
1=2

k
's, which depend

on �, make it di�cult to study analytic properties of the LRS.

If we assume that � is unknown and � is known, then it can be observed that

the test statistic is F1 = maxn0�k�n1 Y
0(Pk � Pn)Y=Y

0(I � Pk)Y or equivalently

F2 = maxn0�k�n1 nY
0(Pk � Pn)Y=Y

0(I � Pn)Y. Under the null hypothesis, it is

straightforward to show that Y 0(I � Pn)Y=n converges to �2 in probability, and

thus large sample properties of (2.1) will be approximately the same as those of

F2. In a general case of unknown � and �, it may be possible to develop the

LRS when � is assumed to have a special structure. Even in the case of AR(1),

however, the maximum likelihood estimates of parameters cannot be obtained in

closed forms, and thus the derivation of the LRS would require some iterations

or approximate computation. If the observations form an AR(1) process and we

further assume that � is known, it would be possible to derive the LRT and study

its asymptotic properties.

3. Computation of p-value

When the test statistic is too di�cult to handle analytically, one way to

compute the p-value of the test is to use simulation or a resampling technique.
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Since the null distribution of (2.1) does not depend on the location parameter,

�, we may generate n observations with mean 0 and a given covariance matrix

�
2� and use those for X in (2.1).

Table 2. Accuracy of Approximations for xi � AR(1) with autocorrelation

parameter �, n = 40, n0 = 4, n1 = 36

true � = �0:7 � = �0:4 � = 0

probability b (3.3) SA b (3.3) SA b (3.2)

0.10 2.51 0.105 0.120 2.53 0.108 0.116 2.57 0.104

0.05 2.76 0.055 0.065 2.77 0.056 0.063 2.82 0.055

0.01 3.33 0.010 0.012 3.34 0.010 0.012 3.37 0.010

true � = 0:2 � = 0:8

probability b (3.3) SA b (3.3) SA

0.10 2.62 0.091 0.092 2.92 0.112 0.041

0.05 2.87 0.046 0.048 3.16 0.050 0.020

0.01 3.45 0.009 0.009 3.61 0.010 0.005

Note: b is the tail percentiles estimated by a Monte Carlo experiment

with 10,000 repititions and SA is the approximation evaluated by (3.12) of

Siegmund (1986).

Compared to simulation, analytic approximations are more e�cient and more

importantly, help to understand properties of the test statistic. Since (2.1) with

an identity matrix for � is equivalent to the LRS0, it is expected that the ap-

proximation (3.12) of Siegmund (1986), derived under the assumption of indepen-

dence, works well when the correlation between the observations is weak. Table

2 includes the tail percentiles of (2.1) and approximate p-values. As in Table 1,

selected percentiles of the tail of the distribution of (2.1) are estimated by the

Monte Carlo experiments with 10,000 repetitions; and the naive approximation

(3.12) of Siegmund, labeled SA in Table 2, are evaluated through numerical in-

tegration. The Monte Carlo results indicate that the percentile of (2.1) increases

as the autocorrelation parameter, �, gets larger. Table 2 also shows that the

approximation of Siegmund works reasonably well if the correlation is weak, but

loses its accuracy as the correlation becomes strong.

The main purpose of this section is to derive analytic approximations for the

p-value of the LRT taking a nonzero correlation into consideration. To evaluate

the p-value of the test, � = Prf��2maxn0�n�n1 Y
0(Pk � Pn)Y � b

2g, we may

assume that � is equal to one without loss of generality. We �rst note that for



280 HYUNE-JU KIM

any n0 � k � n1, the null distribution of Tk = j0
k
��1=2Y does not depend on the

location parameter and that T0 = j00�
�1=2Y is a complete su�cient statistic for

the location parameter. Thus Basu's theorem (Lehmann (1986, Theorem 5.2))

tells us that under the null hypothesis, (2.1) is independent of T0. Therefore,

� = Prf max
n0�k�n1

Y
0(Pk � Pn)Y � b

2jj00�
�1=2

Y = 0g

= Prf max
n0�k�n1

(Dk=j
0

0�
�1j0)

�1=2jTkj � bjT0 = 0g;

where Dk = (j00�
�1j0)(j

0

k
��1jk) � (j00�

�1jk)
2. Since Y is a Gaussian random

vector with identity covariance matrix, straightforward computation of the con-

ditional density of Tk given T0 = 0, shows that

� = PrfjUkj � b(Dk=j
0

0�
�1
j0)

1=2 for some n0 � k � n1g;

where the Uk's are normally distributed with mean zero, variance Dk=j
0

0�
�1j0,

and

Cov(Uk; Ul) = j
0

k
��1jl � (j0

k
��1j0)(j

0

l
��1j0)=(j

0

0�
�1
j0) for k < l:

Noting that � is the probability that a discrete Gaussian process U crosses

either one of upper or lower boundaries between n0 and n1, we now discuss how

to approximate the p-value of the test. Since

�=2 = (1=2)Pr
n

max
n0�k�n1

jUkj

(Dk=j
0

0�
�1j0)

1=2
� b

o

�Pr
n

max
n0�k�n1

Uk

(Dk=j
0

0�
�1j0)

1=2
� b

o

=Pr
n
Un1

� b(Dn1
=j00�

�1j0)
1=2
o
+

n1�1X
k=n0

Z
�>b(Dk=j

0

0
��1j

0
)1=2

Pr
n

max
k�k+i�n1

Uk+i

(Dk+i=j
0

0�
�1j0)

1=2
< bjUk = �

o
Pr(Uk 2 d�); (3:1)

we need to develop approximations for the conditional probability in the above

integral.

Let akl = j0
k
��1jl, Al0;m0

(l1;m1) =
Pm1

m=m0+1

Pl1

l=l0+1
��1(l;m) and A(i; j) =

Ak;k(k + i; k + j). Then simple algebra shows that

E[Uk+ijUk = �] = �[1� fa0;0Ak;k(k + i; n)� ak;0Ak;0(k + i; n)g=Dk]

and

Cov[Uk+i; Uk+j jUk = �] = A(i; j) �Ak;0(k + i; n)Ak;0(k + j; n)=a0;0

� [a0;0Ak;k(k + i; n)� ak;0Ak;0(k + i; n)]

� [a0;0Ak;k(k + j; n)� ak;0Ak;0(k + j; n)]=(Dka0;0):
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Let ��1(i; j) = f(i=n; j=n) for some integrable function f . Then as k; l !1

in such a way that k=n! t and l=n! s, de�ne

G(t; s) = lim
n!1

j
0

k
��1jl=n

�
;

Dt = G(0; 0)G(t; t) �G
2(0; t);

and Bt = fG(0; 0)=Dtg
1=2

;

where, for �xed i and j and some functions C1, C2 and C3,

� =

�
1; if A(i; j) = C1(t)min(i; j) + C2(t) + o(1),

2; if A(i; j) = C3(t)ij + o(1).

Since the conditional distribution of (Uk+i; Uk+j) given Uk is determined by

the matrix ��1 or A(i; j), we consider the three di�erent cases of A(i; j) in

Theorem 1.

Theorem 1. Suppose that n; n0; n1 and b ! 1 in such a way that ni=n ! ti

(i = 0; 1) and b
2
=n! c

2. Let � be a function de�ned to be

�(x) = 2x�2 exp
n
�2

1X
n=1

n
�1�(�xn1=2=2)

o
;

where � and � are the standard normal distribution and density functions, re-

spectively. Then for some functions C1; C21; C22(> 0) and C3, as k=m! t,

Case 1. If A(i; j) = C1(t)min(i; j) + o(1),

� � 2(1� �(b)) + b�(b)

Z
t1

t0

�(cf
t=Dtg
1=2)
t=Dt dt; (3:2)

where 
t = C1(t)G(0; 0),

Case 2. If A(i; j) = C21(t)min(i; j) + C22(t) + o(1),

� � 2n

Z t1

t0

Z 0

�1

f�(b� v=�t)��(b)g�((v � �v;t)=�v;t)=�v;t dvdt

�
2n�(b)

b

Z t1

t0

f�(��v;t=�v;t)� �(�v;t=�v;t)gdt; (3:3)

where �t = n
1=2
Bt, �v;t = �cC22(t)=(2Bt), and �

2
v;t

= C22(t),

Case 3. If A(i; j) = C3(t)ij + o(1),

� � 2(1� �(b)) + 2�(b)

Z
t1

t0

fh(t)g1=2dy=�1=2; (3:4)



282 HYUNE-JU KIM

where

h(t) = B
2
t

�
f(t; t)�

�Z 1

0

f(t; w)dw
�2
=G(0; 0)

�
=2

+B
4
t

�Z 1

t

f(t; w)dw +G(0; t)

Z 1

0

f(t; w)dw=G(0; 0)

�2

:

If the X's are iid observations, then A(i; j) = min(i; j) + o(1), 
t = 1 and

Dt = t(1 � t). It is easy to check that (3.2) with these 
 and D is equivalent

to (3.12) of Siegmund (1986), whose accuracy has been proved in a series of

papers on change-point problems such as Siegmund (1986) and James, James

and Siegmund (1987). If the X's are from an AR(1) process, then it can be

easily checked that ��1 satis�es the condition of Case 2 in Theorem 1 with C21 =

(1��)=(1+�), C22 = ((1+�2)=(1��2))I(� < 0)+(2�=(1��2))I(� > 0) and Bt =

fC21t(1�t)g
1=2, where I(�) is an indicator function. Table 2 indicates the accuracy

of the approximations (3.2) and (3.3) for some speci�c correlation functions. We

observe that the approximation (3.3) works reasonably well even for a strong

autocorrelation. Approximate p-values for (2.1) with AR(p) observations can be

obtained in a similar way as in the AR(1) case. Implementing (3.4) requires a

little more work, and we will add discussions on it in the following section.

Remark 1. As is to be shown in the Appendix, an approximate p-value in Case

2 may include more terms. Since the other terms are usually negligible, Theorem

1 reports only the term with a signi�cant contribution.

Remark 2. Although the Gaussian property of U has been obtained via the

normality of original observations, the zero mean Gaussian process U might also

serve as a large sample approximation to the conditional distribution of Tk given

Tn = 0 even for a nonnormal underlying distribution. Even if the x's are not

normally distributed, Tk and T0 will be asymptotically normal unless the depar-

ture from normality is severe. However, it is anticipated that the convergence

rate would depend on � and we plan to pursue this problem in a future paper.

Table 3. Accuracy of the Approximation (3.3) with unknown � and xi �

AR(1) with autocorrelation parameter �, n = 40, n0 = 4, n1 = 36

� = �0:7 � = �0:4 � = 0:2 � = 0:8

probability b (3.3) b (3.3) b (3.3) b (3.3)

0.10 2.46 0.125 2.47 0.130 2.55 0.109 2.90 0.119

0.05 2.67 0.073 2.68 0.075 2.74 0.066 3.07 0.068

0.01 3.12 0.020 3.13 0.020 3.09 0.024 3.40 0.022

Note: b is the tail percentiles of (2.1) and is estimated by a Monte Carlo

experiment with 10,000 repititions.
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Remark 3. The approximations in Theorem 1 are obtained under the assump-

tion of known � and �. Hence they cannot be applied directly to the case of

unknown � and �. A natural modi�cation would be to evaluate the approx-

imations with suitably estimated values, say �̂ and �̂. We simulated the tail

percentiles, (~b), of (2.1) with �̂ de�ned in Section 2 and �̂ =
Pn

i=2(xi� �x)(xi�1�

�x)=
P

n�1
i=2 (xi � �x)2, and evaluated (3.3) with these ~b and �̂. Since �̂ and �̂ are

consistant estimators of � and � at least asymptotically, (3.3) is expected to

serve as a large sample approximation for the p-value of the test. However, it

is observed in Table 3 that for the sample of size 40, (3.3) may be used as an

approximate p-value for moderate sizes of the tail probability, usually greater

than 0.1, but it overestimates the small tail probabilities about 120-250%. Kim

(1988) has observed similar overestimation in the case of independent observa-

tions. Simulation studies of Kim (1988) have shown that �̂ tends to signi�cantly

overestimate � when the observations yield the value of the test statistic at the

very end of the right tail of its distribution. It has been, however, observed that

the bias gets smaller as sample size increases. With correlated observations, our

simulation study also indicates similar behavior of �̂ and it is expected that if

the sample size is over 100, the bias should be within the practically tolerable

range. As discussed in Henderson (1986), the estimators which are robust to the

mean change can improve the accuracy of the approximations, but this problem

needs further work.

Remark 4. If the alternative hypothesis speci�es a special correlation structure

such as AR(p), the LRS would have a di�erent form. For example, if we wish

to test a level shift in an AR(p) process with unknown original mean level and

unknown autocorrelation parameter, it can be shown that the LRS converges to

the maximum of the pinned-down Brownian Bridge process. In such cases, the

statistic (2.1) may lose some power, but it has the advantage of generality.

Table 4. Powers of the LRT and Henderson's Test xi � AR(1) with au-

tocorrelation parameter �, n = 40, n0 = 4, n1 = 36 � = 1, signi�cance

level = :05

� = �0:8 � = �0:4 � = �0:2 � = 0

� LRT Bayes LRT Bayes LRT Bayes LRT Bayes

10,30 1.0000 0.9999 0.9683 0.9249 0.8637 0.8012 0.7116 0.6591

20 1.0000 0.9999 0.9937 0.9939 0.9441 0.9550 0.8359 0.8632

� = 0:2 � = 0:4 � = 0:8

� LRT Bayes LRT Bayes LRT Bayes

10,30 0.5677 0.5235 0.4277 0.4035 0.2594 0.2174

20 0.6861 0.7283 0.5264 0.5727 0.2805 0.2720
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4. Power Comparisons and Discussion

Henderson (1986) used a Bayesian approach to handle the problem discussed

in Section 2. Table 4 compares the power of the likelihood ratio test discussed in

Section 2 with that of the Bayes test proposed by Henderson. Since the alterna-

tive distribution of (2.1) depends only on the size of the shift, � = �
� � �, we do

not need to know the value of the initial mean. In Table 4, only the case of sam-

ple size 40, � = 1 and two-sided signi�cance level 0.05 is considered. The power

of the LRT with n0 = 4 and n1 = 36 is estimated by Monte Carlo experiments

with 10,000 repetitions and the power of the Henderson's test evaluated by the

formula in Section 2 of Henderson with u replaced by w in (2.2) of Henderson.

It is observed that the statistics behave similarly, but the LRT performs a little

better when the change occurs near the end points.

Henderson also applies his method to material accountancy data assuming

that both � and � are known. The data discussed in Henderson such that

correlation betweenXi andXj is � if ji�jj = 1 and is zero otherwise, satis�es Case

3 in Theorem 1 with very weak dependency between the observations. Instead of

putting extra e�ort on computing the approximations suggested in Section 3, we

estimate the p-value by simulation and obtain the p-value of .015 which is highly

signi�cant. Examining the values of the likelihood ratio statistic at each i of

the material accountancy data, we can obtain the point estimate of the change-

point. Since the maximum likelihood estimate of � is the value of k at which Qk

is maximized, the point-estimate is 11, which is equivalent to Henderson's point

estimate.

The purpose of this paper has not been to present a polished solution to

particular problems, but rather to indicate the applicability of the likelihood ratio

test to detect a mean change in correlated observations. It has been shown that

the p-value of the test for a level shift in an AR(p) process can be approximated

by (3.3). In case of more general correlation, implementation of (3.4) requires

further computation for each speci�c case of interest. For example, if we are

interested in detecting a mean change in repeatedly measured data, are able to

parameterize � using parameters �1; : : : ; �q , and are able to assume that such

parameters are known, then it would be possible to compute the right hand side

of (3.4). If it is preferred to assume the �'s are unknown, we need to derive

the LRT, at least in an approximate form, and to study each case separately.

The implementation of (3.4) will be studied in a future paper with some other

interesting correlation structures.
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Appendix

Since the marginal distributions of the Uk's are known, it is required to

derive approximations for the conditional probabilities in the integrand of (3.1).

Depending on the nature of the matrix �, we obtain di�erent approximations.

We follow the notation used in the main text.

Lemma. Suppose that n; n0; n1 and b ! 1 in such a way that ni=n ! ti (i =

0; 1) and b2=n! c
2. Then for �xed i and j, and some functions C1; C21; C22(> 0)

and C3 de�ned in Theorem 1, as k=n! t,

Case 1.

Pr(Uk+i < bfDk=j
0

0�
�1
j
0

0g
1=2 for all 1 � i � n1 � kjUk = �)

� Pr��t;�2t (max
i�1

Si < �x);

where Sk is the partial sum of k-iid variables with mean �t = cf(t; t)Bt=2 and

variance �2
t
= f(t; t).

Case 2.

Pr(Uk+i < bfDk=j
0

0�
�1
j
0

0g
1=2 for all 1 � i � n1 � kjUk = �)

� Pr��t;�2t ;�v;t;�2v;t(max
i�1

Si + V < �x);

where V is the random variable whose mean �v;t = �cC22(t)=(2Bt), variance

�
2
v;t

= C22(t) and is independent of the Sk's k = 1; 2; : : :.

Case 3.

Cov[ ~Uk;
~Uk+i] = 1� (i=n)2At + o

�
j
i

n
j2
�
;

where
~Uk = Uk=fDk=j

0

0�
�1j00g

1=2
;

and At =

�
C3(t)�

�Z 1

0

f(t; w)dw
�2
=G(0; 0)

�
G(0; 0)=(2Dt):

Proof of the Lemma is straightforward and is omitted here.

Proof of Theorem 1.

Case 1. Using the results in problem (8.13) of Siegmund (1985).

� �

n1X
k=n0

Z
x>0

Pr��t;�2t (max
i�1

Si < �x)�(b+ x=�k)=f�k(2�)
1=2gdx;

�

n1X
k=n0

�(b)

�k

Z
x>0

Pr��;1(max
i�1

Si < �x) exp(�bx=�k)dx

�
b�(b)

2

Z
t1

t0

�(xf
t=Dtg
1=2)
t=Dt dt;



286 HYUNE-JU KIM

where �2
k
= Dk=j

0

0�
�1j0, � = �t=�t.

Case 2. Using arguments in Chapter 8 of Siegmund (1985),

� � 2
n1X

k=n0

Z
x>0

Pr��t;�2t (max
i�1

Si + V < �x)�(b+ x=�k)=f�k(2�)
1=2gdx;

� 2
n1X

k=n0

Z
x>0

Z
1

�1

Pr��t;�2t

�
max
i�1

Si < �(x+ v)
�

�((v � �v;t)=�v;t)�(b+ x=�k)=f�v;t�k(2�)gdx;

� 2
n1X

k=n0

�Z
v>0

Z
x>0

� dxdv +

Z
v<0

Z
x>�v

� dxdv +

Z
v<0

Z
0<x<�v

� dxdv

�

� 2(I + II + III� IV);

where

I = n
1=2
�(b)

Z
t1

t0

Bt�t

Z
v>0

g(v=�t) exp(2v�=�t)�((v � �v;t)=�v;t)=�v;t dv;

with g(y) = fn1=2=[2�(b)]g ((9.92) of Siegmund with �
� and x replaced by 2�

and y, respectively)

II = n
1=2
�(b)

Z
t1

t0

Bt�t�(2�)�(�v;t=�v;t)dt;

III = n

Z t1

t0

Z
v<0

[�(b� v=�t)� �(b)]�((v � �v;t)=�v;t)=�v;t dvdt

�
n�(b)

b

Z t1

t0

[�(��v;t=�v;t)� �(�v;t=�v;t)]dt;

IV = n
1=2
�(b)

Z
t1

t0

Bt�(2�)�v;t[��v;t�(�v;t=�v;t)=�v;t + �(��v;t=�v;t)]dt:

Since I+II-IV are negligible compared to III, we may use III for a simple

approximation.

Case 3. Since Cov[ ~Uk;
~Uk+i] = 1 � (i=n)2At + o(j i

n
j2), arguments in chapter

12 of Leadbetter, Lindgren, and Rootzen (1983) lead to (3.4). (See (12.1.1) in

Leadbetter et al.)
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