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IMPROVING ON THE MLE OF A POSITIVE NORMAL MEAN

Peter Yi-Shi Shao and William E. Strawderman

Forest Laboratories, Inc. and Rutgers University

Abstract: We study the problem of estimating the mean of a univariate normal pop-

ulation when the mean is known to be non-negative and loss is squared error. The

MLE is superior to the UMVUE, but it is known that the MLE is itself inadmissible.

A long unsolved problem is to �nd an explicit estimator which dominates the MLE.

This paper is devoted to producing a class of such estimators. We believe, but have

not proved, that some members of our class are admissible.
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1. Introduction

This paper gives explicit improvements to the MLE of a normal mean � with

� 2 [0;1).

Let X � N(�; 1), � 2 [0;1) and �(X) be an estimator of the mean � with

loss

L(�; �) = (� � �)2: (1:1)

The estimator X is the UMVUE, X+ is the MLE, where

a+ =

�
a; if a � 0,

0; otherwise.

Since � � 0, it is clear that X+ dominatesX. It has long been known that the

positive-part estimator X+ is itself inadmissible (see for example, Brown (1971)).

Rukhin (1990) described a fascinating connection whereby asymptotically,

the problem of variance estimation can be reduced to the estimation of a positive

normal mean.

Katz (1961) showed that X+ is a minimax estimator of �. He also showed

that the generalized Bayes estimator with respect to the uniform prior on [0;1)

is an admissible and minimax estimator of �, but that it does not dominate X+

uniformly.

Shao and Strawderman (1993) found explicit improvements over the positive-

part James-Stein estimator in the problem of estimating the mean vector of a
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multivariate normal distribution. The present paper grew out of that study

and the methods of proof are quite similar in the two papers. The problem of

improving the UMVUE of a noncentrality parameter is also closely related and

is the subject of a forthcoming paper.

The similarities have to do with the fact that the improving estimator in each

of these problems must \wiggle" su�ciently about the estimator to be improved.

Our results fall into two broad classes. The �rst set of results describe explicit

estimators which change X+ on the set (�1; 0] [ [1;
p
3]. These results depend

on some properties of central chi-square distributions. These results and other

preliminary results are given in Section 2. In Section 3, we study alternative

estimators of the form

�(X) = X+ � ag(X2)If1�X�p3g � akh(X2)IfX�0g; (1:2)

where g(�) is an even symmetric piecewise linear function about X2 = 2 with

g(1) = g(3) = 0, g0(1) < 0 and jg0(�)j � 1 a.s: on [1; 3]. Hence, the simplest

function g(�) is \W" shaped on [1; 3]. To fully specify g(�), then, it su�ces to

specify the value c� in (2,3) such that g(c�) attains its minimum. Values of a

and c� and conditions on k and h(�) are given such that �(X) dominates X+. In

Section 4, we give some numerical results and some comments. It is easy to see

that estimators of the form (1.2) cannot themselves be admissible. Therefore we

investigate a more general class of estimators in Section 5.

This second class of estimators is of the form

�(X) = X+ � ag(X2)IfX�x0g � akh(X2)IfX<x0g; (1:3)

where x0 is a given positive number. We give conditions on a, k, g(�) and h(�)
such that (1.3) dominates X+. In this case, g(�) will be \W" shaped on [x0;1)

and h(�) will be bounded continuous and nonpositive. We believe, but have not

proved, that admissible improvements can be found in this class.

Some proofs of technical results are given in the Appendix.

2. Preliminaries

Our �rst result in this section is a lemma analogous to Stein's (1981) lemma

for the evaluation of expectation of cross products appearing in risk functions.

Its proof is straightforward and is omitted.

Lemma 2.1. Let X � N(�; 1), H(�) be a continuous function on [a2; b2], and

H 0(�) have at most a �nite number of discontinuities 0 � a2 = a20 < a21 < � � � <
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a2k < a2k+1 = b2. If, for i = 0; : : : ; k+1, both H 0((a+i )
2) and H 0((a�i )

2) are �nite,

then

E(X � �)XH(X2)Ifa�X�bg

= E[H(X2) + 2X2H 0(X2)]Ifa�X�bg + aH(a2)e�(a��)
2=2 � bH(b2)e�(b��)

2=2:

(2:1)

Note that if H(a2) = H(b2) = 0, then the lemma essentially reduces to

Stein's lemma in one dimension.

If X � N(�; 1), the density of X can be rewritten as

1p
2�

e��
2=2

1X
j=0

�jxj

j!
e�x

2=2:

The next series of lemmas have to do with properties of functions Gn(u)

de�ned in Lemma 2.2. These properties play a crucial role in the development

of Section 3. The function Gn(u) is essentially (modulo constants) qn(2 + u) �
qn(2� u) restricted to u 2 [0; 1] where qn(u)=[2

n=2+1�(n=2 + 1)] is the density of

a central chi-square with n+ 2 degrees of freedom,

qn(u) = e�u=2un=2:

Lemma 2.2. Let

Gn(u) = e�(2+u)=2(2 + u)n=2 � e�(2�u)=2(2� u)n=2 (2:2)

and the domain of Gn(u) be [0; 1]. The following properties hold:

1. [G2(u)=G0(u)]
0 + u � 0, (2.3)

2. [G3(u)=G1(u)]
0 + 2u � 0, (2.4)

3. G0(u) and G1(u) are monotone decreasing, and Gn(u) is monotone increasing

for all n � 2. (2.5)

Proof. See Appendix.

Lemma 2.3. If 0 < d < 0:5, and n � 4, then e((1 + d)=(3� d))n=2 is monotone

decreasing in n, and

e
�1 + d

3� d

�n
< 1: (2:6)

Proof. Since 0 < (1 + d)=(3 � d) < 1, (2.6) is monotone decreasing in n, and

e
�1 + d

3� d

�n=2
< e

�1 + d

3� d

�2
� e

�3
5

�2
< 1:
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Lemma 2.4. Let Fn(u) = e�(2+u)=2(2 + u)1=2+n� e(2�u)=2(2� u)1=2+n. Then for

n � 2

Fn+1(u) = 4Fn(u)� (4� u2)Fn�1(u); (2:7)

Fn+1(u)� (2 + u)Fn(u) = (2� u)[Fn(u)� (2 + u)Fn�1(u)]

= (2� u)n[F1(u)� (2 + u)F0(u)]; (2:8)

Fn+1(u) =
(2 + u)n+1 � (2� u)n+1

2u
(F1(u)�(2+u)F0(u))+(2+u)n+1F0(u) (2:9)

and

G2n+1(u) = Fn(u): (2:10)

Proof. See Shao and Strawderman (1993), Lemma 2.5 with p = 3.

A key result of this section is the following:

Theorem 2.1. Let u 2 [0; 1]. For all j � 3, G2j+2(u)=G2j(u) and G2j+3(u)=

G2j+1(u) are both positive monotone increasing functions of u.

Proof. See Appendix.

The next lemmas use these properties of Gn(u)'s to establish inequalities

used in the remainder of the paper.

Lemma 2.5. Let cj 2 (0; 1) be such that
R cj
0
Gj(u)du =

R 1
cj
Gj(u)du; then for

all j � 6, cj < cj+2.

Proof. See Appendix.

By calculating we have the following results:

Table 2.1. The table of cj

j 0 1 2 3 4 5

cj 0.710751 0.692336 0.841921 0.712458 0.702803 0.699699

j 6 7 8 9 10 11

cj 0.699742 0.702042 0.706146 0.711710 0.718439 0.726062

If we take c to be any number between (c0; c9), and let

I(j) = �
Z c

0

Gj(u)du+

Z 1

c

Gj(u)du; (2:11)

then I(j) > 0 for j = 0; 1; 2; 3 and all j � 9.
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3. A Class of Improved Estimators

In this section we use the results of Section 2, particularly Theorem 2.1, to

�nd a class of estimators dominatingX+ for the loss (1.1). We consider estimators

of the form

�(a; g; h;X) = X+ � ag(X2)If1�X�p3g � akh(X2)IfX<0g; (3:1)

where g(t) is an even symmetric linear function around the point t = 2 such that

g(1) = g(3) = 0.

Theorem 3.1. Let X � N(�; 1) with � 2 [0;1). The loss function is given by

(d� �)2. Let c 2 (c0; c9) (see Lemma 2:5) and d satisfy

Z c

0

G9(u)du �
Z 1�d

c

G9(u)du (3:2)

and Z c

0

G10(u)du �
Z 1�d

c

G10(u)du:

De�ne

g(t) =

�
1 + 2c� t; if 2 � t < 2 + c,

t� 3; if 2 + c � t < 3,
(3:3)

and extend the de�nition of g(t) to [1; 2) so that g(t) is symmetric about t = 2,

and

0 � h(t) � �1: (3:4)

Let 0 < � < � be two constants such that if � � �, then

�9

9!

Z 1

0

g0(2 + u)G9(u)du + 2
8X

j=4

�j

j!

Z 1�d

0

g0(2 + u)Gj(u)du � 0; (3:5)

and if 0 � � � �, then

Z 1

0

g0(2 + u)G0(u)du+ 2
8X

j=4

�j

j!

Z 1�d

0

g0(2 + u)Gj(u)du � 0: (3:6)

If k � K and 0 < a � min(A;A1; B(k); D(k)) where

A =
d

2

h
1� e

�1 + d

3� d

�2i
; (3:7)

A1 = min
n 4

R 3
1
g0(t)qj(t)dtR 3

1
g2(t)qj�1(t)dt

jj = 0; 1; 2; 3
o
; (3:8)
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K =
2
P8

j=4
�
j

j!
j
R 1�d
0

g0(2 + u)Gj(u)duj
�
R1
0
jh(x2)je�x2=2�x�dx

; (3:9)

B(k) =

R 3
1
g0(t)e�t=2dtR p3

1
g2(x2)e�x2=2dx+ k2

R1
0
h2(x2)e�x2=2dx

; (3:10)

and

D(k) =
�

k
; (3:11)

then

�(X) = X+ � ag(X2)If1�X�p3g � akh(X2)If�1<X�0g

dominates X+.

Proof. The di�erence in risk between �(X) and X+ is given by

�R(�) = R(�(X); �) �R(X+; �)

= E[a2g2(X2)� 4axg0(X2)]If1�X�p3g

+E[(ak)2h2(X2) + 2ak�h(X2)]IfX<0g;

so

p
2��R(�) =

Z p
3

1

[a2g2(x2)�4axg0(x2)]e�(x��)2=2dx

+

Z 1

0

[(ak)2h2(x2) + 2ak�h(x2)]e�(x+�)
2=2dx

= a2
Z p

3

1

g2(x2)e�(x��)
2=2dx� 2ae��

2=2
1X
j=0

�j

j!

Z 3

1

g0(t)e�t=2tj=2dt

+ (ak)2
Z 1

0

h2(x2)e�(x+�)
2=2dx+ 2ak�

Z 1

0

h(x2)e�(x+�)
2=2dx: (3:12)

Consider case I: � � �:

Take ak � �, then the sum of the last two terms of (3.12) is non-positive.

By Lemma 2.5 and (3.5),

2

1X
j=4

�j

j!

Z 3

1

g0(t)qj(t)dt � 2

8X
j=4

�j

j!

Z 1

1�d
g0(2 + u)Gj(u)du+

1X
j=9

�j

j!

Z 3

1

g0(t)qj(t)dt

>
1X
j=4

�j

j!

Z 1

1�d
Gj(u)du:
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When j � 4, then by Lemma 2.3 and since qj(t) is monotone increasing, we haveZ 1

1�d
Gj(u)du =

Z 1

1�d
e�(2+u)=2(2 + u)j=2[1� eu(

2� u

2 + u
)j=2]du

� [1� e(
1 + d

3� d
)j=2]

Z 3

3�d
qj(t)dt

� d

2
[1� e(

1 + d

3 � d
)2]

Z 3

1

qj(t)dt

= A

Z 3

1

qj(t)dt:

1X
j=4

�j

j!

Z 1

1�d
g0(2 + u)Gj(u)du >A

1X
j=4

�j

j!

Z 3

1

g2(t)qj(t)dt

>A
1X
j=4

�j

j!

Z 3

1

g2(t)qj�1(t)dt:

By (3.8) and (3.11), (3.12) is non-positive.

Consider case II: 0 � � < �:

Because h(x2) is non-positive,Z 1

0

h(x2)e�x
2=2dx < 0:

And by (3.12), (3.4), (3.6) (3.10) and (3.8), we know that if 0 < a < minfA;A1,

D(k)g, then
p
2��R(�) � a2e��

2=2

Z p
3

1

g2(x2)e�x
2=2dx

+ (ak)2
Z 1

0

h2(x2)e�(x+�)
2=2dx� ae��

2=2

Z 3

1

g0(t)q0(t)dt

< e��
2=2a2f

Z p
3

1

g2(x2)e�x
2=2dx+ k2

Z 1

0

h2(x2)e�x
2=2dxg

� ae��
2=2

Z 3

1

g0(t)q0(t)dt � 0:

Consider case III: � � � � �:

By (3.12) and (3.10),

p
2��R(�) �� 2ae��

2=2
8X

j=4

�j

j!

Z 1�d

0

g0(2 + u)Gj(u)du

+ a2k2
Z 1

0

h2(x2)e�(x+�)
2=2dx+ 2ak�

Z 1

0

h(x2)e�(x+�)
2=2dx

� ak�

Z 1

0

h(x2)e�(x+�)
2=2dx�2ae��2=2

8X
j=4

�j

j!

Z 1�d

0

g0(2+u)Gj(u)du:
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This last expression is negative by (3.9). Hence �R(�) � 0. This completes the

proof.

Next, we give some value of c;A;N; k and a for which the estimator given in

the theorem improves X+.

If c = 0:711, since c0 < c < c9, then, by the inequalities

Z c

0

G9(u)du �
Z 1�d

c

G9(u)du

and Z c

0

G10(u)du �
Z 1�d

c

G10(u)du

we get d > 0:000985.

Let

g(t) =

8>>><
>>>:

1� t; if 1 � t < 1:289,

t� 1:578; if 1:289 � t < 2,

2:422 � t; if 2 � t < 2:711,

t� 3; if 2:711 � t < 3.

It can be seen, from the following table,

j 0 1 2 3R 3
1
g
0(t)qj(t)dt 0.000133764 0.00633025 0.00768492 0.00111563R 3

1
g
2(t)qj�1(t)dt 0.0231128 0.031081 0.0424611 0.0588857

that A1 � 0:0231498.

Take N � 12. We can get � = 6 and � = 1:5.

j 4 5 6 7 8R 1�d
0

g
0(2 + u)Gj(u)du �:01180561 �:0506126 �:0950321 �:13757 �:137936

Let h(�) = �1, so K � 97:7063. If we take k = 98, then

B(98) = 1:11129 � 10�8; D(98) = 0:0153061:

So

�(X) = X+ � 1:11129 � 10�8g(X2)If1�X�p3g + 0:00000108906If�1<X�0g

dominates X+.
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4. Some Numerical Results

Theorem 3.1 gives conditions on a and k, such that �a;k(X) = X+ � ag(X2)

If1<X<
p
3g + akIfX<0g dominates X+. The calculations at the end of Section 3

indicate that the constant a must be quite small and the constant k quite large

in order to satisfy the conditions of the theorem.

The following tables suggest however that a could be substantially larger

and k substantially smaller and still lead to an estimator dominating X+. For

example, if a changes from 10�8 to 10�4 and k from 100 to 1 simultaneously, it

appears that the resulting estimator still dominates X+.

Table 4.1.
�R(�;a;k)

a
, for a = 10�4, k = 50; 10; 1

� k = 50 k = 10 k = 1

0 �0:00000445821 �0:0000345377 �0:0000357785

0.4 �34:5548 �6:91548 �0:696626

0.8 �42:4934 �8:50671 �0:859693

1.2 �34:6221 �6:93217 �0:701931

2.0 �11:403 �2:27878 �0:225842

4.0 �0:0311755 �0:00577131 �0:0000553673

6.0 �0:00000514318 �0:00000395614 �0:00000368905

8.0 �2:60539 10�10 �2:59559 10�10 �2:59328 10�10

Table 4.2.
�R(�;a;k)

a
, for a = 10�8, a = 10�7, a = 10�6, a = 10�5,

a = 10�4, and k = 0:5

� a = 10�8 a = 10�7 a = 10�6 a = 10�5 a = 10�4

0 �0:000267054 �0:000267296 �0:00026521 �0:000244354 �0:0000357879

0.4 �0:351529 �0:351529 �0:351525 �0:35149 �0:351134

0.8 �0:435434 �0:435434 �0:435429 �0:435377 �0:434859

1.2 �0:35652 �0:35652 �0:356513 �0:356449 �0:355807

2.0 �0:11247 �0:11247 �0:112464 �0:112402 �0:111789

4.0 0:00022486 0:000224893 0:000225229 0:000228589 0:000262185

6.0 �0:00000371233 �0:00000371229 �0:00000370852 �0:00000372713 �0:00000367421

8.0 �2:60053 10�10 �2:60034 10�10 �2:60046 10�10 �2:5998 10�10 �2:59328 10�10

The tables also indicate that k cannot be too small. The numerical results

show that if k = 0:5 for example, then for any 10�8 < a < 10�4, �a;0:5(X) cannot
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dominate X+.

The tables also indicate that the maximal improvement is quite small. This

is consistent also with the relatively small gains obtainable over the positive-part

James-Stein estimator in the multivariate normal case (see Shao and Strawder-

man (1994)).

5. More General Classes

The results of the previous two sections presented estimates which change the

values ofX+ only on the set (�1; 0)[[1;
p
3]. While the estimators improve upon

X+, they cannot themselves be generalized Bayes and hence are not admissible.

In this section, we present a class of improved estimators which allow change

for X in (�1;1) and which we believe (but have not proved) contain admissible

improvements.

Theorem 5.1. Let g(x2) be a continuous and piecewise di�erentiable W -shape

function de�ned on [x0;1) with g(x20) < 0 and g(1) = 0, i.e: there exist 0 <

x0 < x1 < x2 < x3 < x4 < x5 < x6 <1 such that

g(x22) = g(x24) = 0

and

g0(x2) =
�� 0; if x1 < x < x3 or x5 < x <1,

� 0; if x0 < x < x1 or x3 < x < x5.

Let h(x2) be a non-negative continuous function de�ned on [�1; 0], with h(�1)

= 0. Let G(x2) be a continuous function de�ned on [0; x0] with 0 � h(0) =

G(0) � 1 and G(x20) = g(x20).

Assume

(1)
R x6
x0
g0(x2)e�x

2=2xdx > 0.

(2) There exists a positive integer J such that

Z x6

x0

g0(x2)e�x
2=2xJdx > 0 and

Z x6

x3

g0(x2)e�x
2=2xJdx > 0:

(3) For all x � x6, g
2(x2) � Dxg0(x2) for some �xed D > 0.

(4) Let 0 < B1 < B2 be two constants, N a �xed integer (N � J) such that if

� � B2, then

�N

N !

Z x6

x0

g0(x2)e�x
2=2xN+1dx � 4

3

N�1X
j=1

�j

j!

���
Z x6

x0

g0(x2)e�x
2=2xj+1dx

���;
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and if 0 � � � B1, then

Z x6

x0

g0(x2)e�x
2=2xdx � 4

N�1X
j=1

�j

j!

���
Z x6

x0

g0(x2)e�x
2=2xj+1dx

���:

(5) Let

k �
2
PN�1

j=1 j
R x6
x0
g0(x2)e�x

2=2xj+1dxjB
j

2

j!

B1

R1
0
h(x2)e�x2=2�B2xdx

:

(6) Let G(�) satisfy the following two extra conditions:

k2
Z x0

0

G2(x2)e�x
2=2dx �

Z 1

x0

g2(x2)e�x
2=2dx

and

2k

Z x0

0

xG(x2)e�x
2=2dx �

Z 1

x6

g0(x2)e�x
2=2xdx:

(7)

A1 =
1:5

R1
x6
g0(x2)e�x

2=2xJ+1dxR x6
x0
g2(x2)e�x2=2dx+D

R1
x6
g0(x2)e�x2=2xdx

:

(8)

A2 =
3
R1
x0
g0(x2)e�x

2=2xdx

k2
R1
0
h2(x2)e�x2=2dx+ 2

R1
x0
g2(x2)e�x2=2dx

:

(9) 0 < a < min(A1; A2).

Then

�(X) = X+ � ag(X2)Ifx0�X<1g + akG(X2)If0�X<x0g + akh(X2)If�1<X<0g

dominates X+.

Proof. The di�erence in risk between �(X) and X+ is given by

�R(�) = R(�; �(X)) �R(�;X+)

=
1p
2�

Z 1

x0

[a2g2(x2)� 4axg0(x2)]e�(x��)
2=2dx

+
1p
2�

Z x0

0

[a2k2G2(x2) + 2(x� �)akG(x2)]e�(x��)
2=2dx

+
1p
2�

Z 0

�1
[a2k2h2(x2)� 2ak�h(x2)]e�(x��)

2=2dx:
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So

p
2�e�

2=2�R(�) � a2k2
Z 1

0

h2(x2)e�x
2=2dx+ a2k2

Z x0

0

G2(x2)e�x
2=2+�xdx

+ a2
Z 1

x0

g2(x2)e�x
2=2+�xdx+ 2ak

Z x0

0

G(x2)e�x
2=2+�xxdx

� 4a

Z 1

x0

g0(x2)e�x
2=2+�xxdx� 2ak�

Z 1

0

h(x2)e�x
2=2��xdx:

By assumption (6),

p
2�e�

2=2�R(�)

� a2k2
Z 1

0

h2(x2)e�x
2=2dx+ 2a2

1X
j=0

Z 1

x0

g2(x2)e�x
2=2 �

jxj

j!
dx

� 3a
1X
j=0

Z 1

x6

g0(x2)e�x
2=2 �

j

j!
xj+1dx� 4a

1X
j=0

Z x6

x0

g0(x2)e�x
2=2 �

j

j!
xj+1dx

� 2ak�

Z 1

0

h(x2)e�x
2=2��xdx:

By assumptions (2), (3), (7) and (9), for all j � 1,

2a

Z 1

x0

g2(x2)e�x
2=2xjdx� 3

Z 1

x6

g0(x2)e�x
2=2xj+1dx

� 2a

Z x6

x0

g2(x2)e�x
2=2xjdx� (3� 2aD)

Z 1

x6

g0(x2)e�x
2=2xj+1dx

� xj6[2a

Z x6

x0

g2(x2)e�x
2=2dx� (3� 2aD)

Z 1

x6

g0(x2)e�x
2=2xdx]

� 0;

so

p
2�e�

2=2�R(�) � a2k2
Z 1

0

h2(x2)e�x
2=2dx+ 2a2

Z 1

x0

g2(x2)e�x
2=2dx

� 3a

Z 1

x6

g0(x2)e�x
2=2xdx� 4a

Z x6

x0

g0(x2)e�x
2=2xdx

� 3a
1X
j=1

Z 1

x6

g0(x2)e�x
2=2 �

j

j!
xj+1dx

� 4a
1X
j=1

Z x6

x1

g0(x2)e�x
2=2 �

j

j!
xj+1dx

� 2ak�

Z 1

0

h(x2)e�x
2=2��xdx:
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By assumptions (8) and (9), for all j � N > J ,
R x6
x0
g0(x2)e�x

2=2xj+1dx > 0.

Therefore

p
2�e�

2=2�R(�) �� a

Z x6

x0

g0(x2)e�x
2=2xdx� 3a

Z 1

x6

g0(x2)e�x
2=2 �

N

N !
xN+1dx

� 2ak�

Z 1

0

h(x2)e�x
2=2��xdx

+ 4a
N�1X
j+1

�j

j!
j
Z x6

x0

g0(x2)x�x
2=2xj+1dxj

� 0;

by assumptions (4) and (5). This completes the proof.
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Appendix

We give the proofs of several results in the body of the paper.

Proof of Lemma 2.2. Since

G3(u)

G1(u)
=

(2 + u)3=2 � (2� u)3=2eu

(2 + u)1=2 � (2� u)1=2eu
;

then

[G3(u)]
0G1(u)� [G1(u)]

0G3(u) + 2u[G1(u)]
2

= e�2f[(2 + u)(1 + 2u)e�u � (2�u)(1�2u)eu]� [
4u

(4� u2)1=2
+ 2u(4 � u2)1=2]g:

Since (4 � u2) 2 [3; 4], and the function 2=v + v is monotone increasing on

[
p
3; 2], thus

4u

(4� u2)1=2
+ 2u(4� u2)1=2 = 2u[

2

(4 � u2)1=2
+ (4� u2)1=2] � 6u (A.1)

and
(2 + u)(1 + 2u)e�u � (2� u)(1 � 2u)eu � 6u

=� 4f u
1!

+
u3

3!
+
u5

5!
+ � � �g+ 10uf1 + u2

2!
+
u4

4!
+ � � �g

� 4u2fu+ u3

3!
+
u5

5!
+ � � �g � 6u
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� u3f10
2!

+
10

4!
u2 +

10

6!
u4g � u3f 4

3!
+

4

5!
u2 +

4

7!
u4 +

4

7!
u6g

� u3f4 + 4

3!
u2 +

4

5!
u4 +

4

7!
u6 +

8

9!
u6g

� 0:

Hence (2.4) is true. Also

[
G2(u)

G0(u)
]0 + u = [

(2 + u)� (2� u)eu

1� eu
]0 + u (A.2)

= (1�eu)�2f(1�eu + ueu)(1�eu) + eu(2 + u�2eu+ueu)+u(1�eu)2g: (A.3)

Denote the numerator of (A.3) as z(u). Then

z0(u) = 1� e2u + 2ue2u; (A.4)

z00(u) = 4ue2u � 0;

z(0) = z0(0) = 0;

so (2.3) is true. (2.5) is trivial.

Proof of Lemma 2.5. Let

Gj+2(u)

Gj(u)
= �j(u): (A.5)

Since Gj(u) � 0, Gj+2(u) � 0, and by Theorem 2.1, �(u) is monotone increasing,

we have

�
Z cj

0

Gj+2(u)du +

Z 1

cj

Gj+2(u)du =�
Z cj

0

Gj(u)�j(u)du+

Z 1

cj

Gj(u)�j(u)du

> �j(cj)[�
Z cj

0

Gj(u)du+

Z 1

cj

Gj(u)du]

= 0:

Therefore cj+2 > cj .

Proof of Theorem 2.1. The positive property is trivial. Let t = 2+u, s = 2�u
and Fj(u) = e�t=2tp=2+j�1 � e�s=2sp=2+j�1 with p = 3. So

G2j+1(u) = Fj(u): (A.6)

By Lemma 2.3.1 of Katz (1961)

G2j+3(u)

G2j+1(u)
=
Fj+1(u)

Fj(u)
= 4 + (u2 � 4)

Fj�1(u)

Fj(u)
;
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so

[
G2j+3(u)

G2j+1(u)
]0 = 2u

Fj�1(u)

Fj(u)
+ (u2 � 4)[

Fj�1(u)

Fj(u)
]0

= 2u
G2j�1(u)

G2j+1(u)
+ (u2 � 4)[

G2j�1(u)

G2j+1(u)
]0: (A.7)

If we can show G9(u)=G7(u) to be monotone increasing, then for all j � 3,

G2j+3(u)=G2j+1(u) will also be increasing. Here

G9(u)

G7(u)
=

F4(u)

F3(u)
=

F4(u)

F0(u)

F3(u)

F0(u)

=
(t4 � s4)F1(u)

F0(u)
� ts(t3 � s3)

(t3 � s3)F1(u)
F0(u)

� ts(t2 � s2)
: (A.8)

Since

[
F4(u)

F0(u)
]0[
F3(u)

F0(u)
]� [

F4(u)

F0(u)
][
F3(u)

F0(u)
]0

= [
F1(u)

F0(u)
]2(t2 � s2)3 � (ts)0

F1(u)

F0(u)
(ts)2(t� s)2 + ts[

F1(u)

F0(u)
]0(ts)2(t� s)2

� 2ts
F1(u)

F0(u)
(t� s)(t2 � s2)2 + (ts)2(t2 � s2)(t� s)2 (A.9)

= [
F1(u)

F0(u)
]2(8u)3 + 8[�F1(u)

F0(u)
](4� u2)u3(28 + u2)

+ 4(4 � u2)2u2f8u+ (4� u2)[
F1(u)

F0(u)
]0g;

then, by Lemma 2.2, the last term of (A.9) is non-negative. Hence G9(u)=G7(u)

is monotone increasing. Similarly

[
G8(u)

G6(u)
]0 � 0:

A similar argument, shows that G2j+2(u)=G2j(u) is monotone increasing for all

j � 3.

References

Brown, L. D. (1971). Admissible estimators, recurrent di�usions, and insoluble boundary value

problems. Ann. Math. Statist. 42, 855-903.

Katz, M. W. (1961). Admissible and minimax estimates of parameters in truncated spaces.

Ann. Math. Statist. 32, 136-142.

Rukhin, A. L. (1990). Comment on `Developments in decision-theoretic variance estimation',

by Maatta, J. M. and Casella, G. Statist. Sci. 5, 113-116.



274 PETER YI-SHI SHAO AND WILLIAM E. STRAWDERMAN

Shao, Peter Yi-Shi and Strawderman, William E. (1994). Improving on the James-Stein positive

part estimator. Ann. Statist. 22, 1517-1538.

Shao, Peter Yi-Shi and Strawderman, William E. (1993). Improving on the positive part of the

UMVUE of a noncentrality parameter. J. Multivariate Anal. To appear.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist.

9, 1135-1151.

Forest Laboratories, Inc.

Statistical Center, Rutgers University, New Brunswick, NJ 08903, U.S.A.

(Received May 1994; accepted February 1995)


