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BOUNDS AND ESTIMATORS OF A BASIC CONSTANT IN

EXTREME VALUE THEORY OF GAUSSIAN PROCESSES

Qi-Man Shao

National University of Singapore

Abstract: Let H� be the constant in the extremal theorem for Gaussian processes.

In this note a lower and upper bound as well as two statistical estimators of H� are

given. Simulation results are also discussed. As a by-product of the proof, a more

precise bound on the small ball probability of fractional Brownian motion is obtained.
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1. Introduction

Let f�(t); t � 0g be a stationary Gaussian process with mean zero, variance

one and covariance r(�) satisfying

r(�) = 1� Cj� j� + o(j� j�) as � ! 0; (1:1)

here, and in the sequel, � is a constant, 0 < � � 2, and C is a positive constant.

Let fY (t); t � 0g be a non-stationary Gaussian process with mean �jtj� and

covariance jsj� + jtj� � jt� sj�. Let

H� = lim
N!1

N�1

Z 1

0

ex P
�
sup

0�t�N

Y (t) > x
�
dx: (1:2)

It is well-known (see Pickands (1969a,b), Berman (1971), Qualls and Watan-

abe (1972) and Leadbetter, Lindgren and Rootzen (1983)) that for each �xed

h > 0 such that sup
"�t�h

r(t) < 1 for all " > 0,

lim
u!1

1

u
2
�
�1�(u)

P

 
sup
0�t�h

�(t) > u

!
= hC1=�H�; (1:3)

where �(u) is the standard normal density function and H� is de�ned as in (1.2).

Based on (1.3), one can prove that (cf. Leadbetter, Lindgren and Rootzen

(1983), p.237) if r(t) ln t! 0 as t!1, then

P

 
aT

�
sup

0�t�T

�(t)� bT

�
� x

!
�! exp

��e�x�
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as T !1, where aT = (2 lnT )1=2 and

bT = (2 lnT )1=2 +
1

2
(lnT )�1=2

�
2� �

2�
ln lnT + ln

�
C1=�H�(2�)

�1=22(2��)=2�
��

:

Clearly, H� is a very important parameter in the above extremal theorem.

H� appears also in the Erd}os-R�ev�esz type law of the iterated logarithm (Shao

(1992)). Unfortunately, the exact value of H� is unknown except for two special

cases, H1 = 1 and H2 = 1=
p
�. The main aim of this note is to give a lower and

upper bound of H�.

Theorem 1. We have

5:2�1=� 0:625 � H� � (� e=
p
�)2=� if 1 � � � 2 (1:4)

and

(�=4)1=�
�
1� e�1=�(1 + 1=�)

�
� H�

�
�p

�
�
0:77

p
�+ 2:41(8:8 � � ln(0:4 + 2:5=�))1=2

��2=�
(1:5)

if 0 < � < 1. In particular, we have

0:12 � H� � 3:1 if 1 � � � 2; (1:6)

lim
�!0

� lnH�

ln�
= 1: (1:7)

We will prove this theorem in the next section. In Section 3 we propose two

estimators of H� and present some simulation results. As a by-product of the

proof of Theorem 1, we will establish a more precise bound on the small ball

probability of fractional Bownian motion.

2. Proofs

One may note that the value of H� depends only on �. Therefore, to estimate

H�, one can choose a special Gaussian process f�(t); t � 0g provided that (1.1)

is satis�ed.

Throughout this section let 0 < � < 2, fX(t); t � 0g be a fractional Brow-

nian motion of order � (cf., Mandelbrot and Van Ness (1968)), i.e., a centered

Gaussian process with stationary increments and variance EX2(t) = t�. Set

�(t) = X(et)=e�t=2; M(h) = sup
0�t�h

X(t); M =M(1); t; h � 0: (2:1)



BOUNDS OF H� 247

It is easy to show that E�(t) = 0; E�2(t) = 1,

E�(t)�(s) =
1

2

�
e�(t�s)=2 + e�(s�t)=2 � je(t�s)=2 � e(s�t)=2j�

�
and

r(t) = 1� 1

2
jtj� + o(jtj�) as t! 0:

Hence, f�(t); t � 0g is a stationary Gaussian process with correlation function

r(t) satisfying (1.1) with C = 1=2.

We start with the following lemmas, some of which are of independent inter-

est.

Lemma 1. If U and V are centered Gaussian processes on a parameter set T

such that EU 2(t) = EV 2(t) and

EU(t)U(s) � EV (t)V (s) for all s; t 2 T;

then for all real x

P

�
sup
t2T

U(t) > x

�
� P

�
sup
t2T

V (t) > x

�
:

This is the well-known Slepian (1962) lemma.

Lemma 2. If U is a centered Gaussian process on a parameter set T , then for

all x > 0

P

�
sup
t2T

U(t) > x+med sup
t2T

U(t)

�
� 	(x):

Here and in the sequel, 	(x) = (2�)�
1
2

R1
x
e�t

2
=2 dt and med denotes the median.

This elegant result was due to Borell (1975).

Lemma 3. Let fX(t); t � 0g be a fractional Brownian motion of order �; 0 <

� < 2. Then

lim sup
h!0

h��=2med sup
0�t�h

X(et) � E sup
0�t�1

X(t): (2:2)

Proof. Let � be a standard normal random variable independent of fX(t),

t � 0g. Put
�(t) = X(et � 1) + (et� � �et � 1)�

�1=2
�; t � 0:

Clearly, we have E�2(t) = EX2(et) and for any 0 � s � t � 1

E�(t)�(s)

= EX(et�1)X(es�1)+(et��(et�1)�)1=2(es��(es�1)�)1=2

=
1

2

�
(et�1)� + (es�1)��(et�es)�+2(et��(et � 1)�)1=2(es� � (es � 1)�)1=2

�

� 1

2

�
et� + es� � (et � es)�

�
= EX(et)X(es):
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Hence, by the Slepian lemma, we have, for any given h > 0; � > E sup0�t�1X(t)

P

 
sup
0�t�h

X(et) > �h�=2
!
� P

 
sup
0�t�h

�(t) > �h�=2
!

= P

 
sup
0�t�h

X(et � 1)+(et��(et�1)�)1=2 � > �h�=2
!
:

De�ne
a1 = a1(�; h) = If� < 1g+ (eh� � (eh � 1)�)If� � 1g;
a2 = a2(�; h) = If� � 1g+ (eh� � (eh � 1)�)If� < 1g;

where I is the indicator function. Clearly,

a1 � a2; lim
h!0

a1 = lim
h!0

a2 = 1: (2:3)

Noting that et� � (et � 1)� is an increasing function if � > 1 and non-increasing

if 0 < � � 1, we get

P
�
sup
0�t�h

X(et � 1) + (et� � (et � 1)�)1=2 � > �h�=2
�

� P
�
��0; sup

0�t�h

X(et�1)+� a1>�h�=2
�
+P

�
�<0; sup

0�t�h

X(et�1)+� a2>�h�=2
�

= P
�
� � 0; (eh�1)�=2M+� a1>�h

�=2
�
+P

�
�<0; (eh�1)�=2M+� a2>�h

�=2
�

= I1(h; �) + I2(h; �);

where, in the above equality we used the fact that sup0�t�1X(a t) and a�=2

sup0�t�1X(t) have the same distribution for any given a > 0, and M is de�ned

as in (2.1). Note that

I1(h; �) � P (�a1��h�=2)+P
�
0�� � �h�=2=a1; (e

h�1)�=2M > �h�=2�� a1
�

=
1

2
� P

�
0 � � � �h�=2=a1

�

+
1p
2�

Z �h
�=2

=a1

0

e�x
2
=2P

�
M > (�h�=2 � xa1)(e

h � 1)��=2
�
dx

� 1

2
�P

�
0 � � � �h�=2=a1

�
+
(eh�1)�=2
a1
p
2�

Z �h
�=2(eh�1)��=2

0

P (M > x) dx

and

I2(h; �) � (eh � 1)�=2

a2
p
2�

Z 1

�h�=2(eh�1)��=2
P (M>x) dx:
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Therefore, by (2.3)

I1(h; �)+I2(h; �) � 1

2
�P

�
0 � � � �h�=2=a1

�
+
(eh � 1)�=2

a2
p
2�

Z 1

0

P (M > x) dx

=
1

2
�P

�
0����h�=2=a1

�
+
(eh�1)�=2
a2
p
2�

E(M):

It is easy to show that, as h! 0,

P
�
0 � � � �h�=2=a1

�
� � h�=2p

2�
and

(eh � 1)�=2

a2
p
2�

E(M) � h�=2E(M)p
2�

:

Putting the above inequalities together, for any given � > E(M) we have

I1(h; �) + I2(h; �) � 1

2

and hence

med sup
0�t�h

X(et) � �h�=2

provided that h is su�ciently small, as desired.

Lemma 4. Let H� be de�ned as in (1:2) and fX(t); t � 0g a fractional Brow-

nian motion of order �. Then, we have

H� �
 
e �p
2
E sup

0�t�1

X(t)

!2=�

: (2:4)

Proof. Let �(t) be de�ned as in (2.1). Put

� = 2=(�E sup
0�t�1

X(t)); h = h(u) = (�=u)2=�; u � 1: (2:5)

Using the Borell inequality, we obtain, for u > med sup0�t�1 �(t),

P
�
sup
0�t�1

�(t) > u
�

� (1 + 1=h)P
�
sup
0�t�h

�(t) > u
�
� (1 + 1=h)	

�
u�med sup

0�t�h

�(t)
�
:
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From (1.3), (2.2) and (2.5) it follows that

H� = lim
u!1

21=�

u
2
�
�1�(u)

P

 
sup
0�t�1

�(t) > u

!

� lim
u!1

21=�

u
2
�
�1�(u)

(1 + 1=h)	

 
u�med sup

0�t�h

�(t)

!

� 21=�

� 2=�
exp

 
umed sup

0�t�h

�(t)

!

� 21=�

� 2=�
exp

 
uh�=2 h��=2med sup

0�t�h

X(et)

!

� 21=�

� 2=�
exp

 
� E sup

0�t�1

X(t)

!

=

 
e�p
2
E sup

0�t�1

X(t)

!2=�

:

This proves (2.4).

Lemma 5. If 1 � � < 2, then

E sup
0�t�1

X(t) � (2=�)1=2: (2:6)

Proof. Let fW (t); t � 0g be a Brownian motion. Note that for 0 � s; t � 1

E(X(t) �X(s))2 = jt� sj� � jt� sj = E(W (t)�W (s))2:

Hence, applying the Sudakov-Fernique inequality (cf: Adler (1990)), we have

E sup
0�t�1

X(t) � E sup
0�t�1

W (t) = (2=�)1=2:

Lemma 6. If 0 < � < 1, then

E sup
0�t�1

X(t) � 1

(2�)1=2
+
e2:2 + 1

e2:2 � 1

�
8:8

�
� ln

�
2:5

�
+ 0:4

��1=2

: (2:7)

Proof. From the Borell inequality it follows immediately that

E sup
0�t�1

X(t) � (2�)�
1
2 +med sup

0�t�1

X(t): (2:8)

So, it su�ces to show that

med sup
0�t�1

X(t) � e2:2 + 1

e2:2 � 1

�
8:8

�
� ln

�
2:5

�
+ 0:4

��1=2

: (2:9)
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Set
c =2:2; h = e�2c=�; m = med sup

0�t�1

X(t);

� = ln(0:4 + 2:5=�); a = (4 c=� � �)1=2:

Using the Borell inequality again, we have

P
�
sup
0�t�1

X(t) > a+ h�=2(a+m)
�

� P
�
max

1�i�1=h
X(i h)>a

�
+P

�
max

0�i�1=h
sup

ih�t�(i+1)h

(X(t)�X(ih))>h�=2(a+m)
�

� 	(a)

h
+ (1 +

1

h
)P
�
sup
0�t�h

X(t) > h�=2(a+m)
�

=
	(a)

h
+ (1 +

1

h
)P
�
sup
0�t�1

X(t) > a+m
�

� 	(a)

h
+ (1 +

1

h
)	(a) � (1 +

2

h
) exp(�a

2

2
)=(a

p
2�)

= (2 + h) exp(
�

2
)=(a

p
2�) � 2:013 exp(

�

2
)=(a

p
2�) � 1=2;

where the last inequality was obtained by elementary argument. Therefore,

m � a+ h�=2(a+m)

and

m � a(1 + h�=2)=(1 � h�=2) = a(ec + 1)=(ec � 1):

This proves (2.9).

Lemma 7. If fY (t); t � 0g is the non-stationary Gaussian process de�ned as

in Section 1, then for any integer N and positive a

E sup
0�t�aN

eY (t) � N

 
1�

1X
k=1

exp

�
�(k a)�

4

�!
: (2:10)

Proof. Obviously, we have

E sup
0�t�aN

eY (t) � E sup
1�i�N

eY (ia))

� E

0
@ NX

i=1

eY (ia) �
N�1X
i=1

NX
j=i+1

e
Y (ia)+Y (ja)

2

1
A

=
NX
i=1

EeY (ia) �
N�1X
i=1

NX
j=i+1

Ee
Y (ia)+Y (ja)

2 : (2:11)
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Recalling that EY (t) = �t� and VarY (t) = 2t�, we have for any j > i � 1

EeY (ia) = 1; E

�
Y (ia) + Y (ja)

2

�
= �a

�

2
(i� + j�);

Var

�
Y (ia) + Y (ja)

2

�
= a�(i� + j� � 1

2
(j � i)�)

and hence

Ee
Y (ia)+Y (ja)

2 = exp

�
�(j � i)�a�

4

�
: (2:12)

(2.10) now follows from (2.11) and (2.12).

We are now ready to prove Theorem 1.

Proof of Theorem 1. The right hand side of (1.4) and (1.5) follows from

Lemmas 4, 5 and 6. We prove below the left hand side. It is easy to see from

(1.2) that

H� = lim
T!1

T�1E exp( sup
0�t�T

Y (t)) = lim
T!1

T�1E sup
0�t�T

eY (t): (2:13)

We next divide the proof into two cases.

CASE I: 1 � � � 2. Put a = 5:21=� in Lemma 7. By (2.10) and (2.13), we get

H� � a�1
 
1�

1X
k=1

exp(�(k a)�=4)
!

� a�1
 
1�

1X
k=1

exp(�k a�=4)
!

= a�1
�
1� 1=(ea

�
=4 � 1)

�
� 5:2�1=� 0:625

This proves the left hand side of (1.4).

CASE II: 0 < � < 1. Let a� = 4=� in Lemma 7. Note that

1X
k=1

exp(�(k a)�=4) =
1X
k=1

exp(�k�=�)

� exp(�1=�) +
Z 1

1

exp(�x�=�) dx: (2:14)

An elementary argument yields

Z 1

1

exp(�x�=�) dx � (1=�)e�1=�: (2:15)



BOUNDS OF H� 253

From (2.10), (2.13), (2.14) and (2.15) it follows that

H� � a�1
 
1�

1X
k=1

exp(�(k a)�=4)
!

� a�1
�
1� e�1=�(1 + 1=�)

�
= (�=4)1=�

�
1� e�1=�(1 + 1=�)

�
;

as desired.

3. Estimators of H�

Since we are unable to obtain the precise numerical value of H�, it would

certainly be interesting to introduce some estimators of H�. A natural way is by

using the empirical process. Let fXi(t); t � 0g1
i=1 be i.i.d. fractional Brownian

motion of order �. Set

�i(t) = Xi(e
t)=e�t=2; 0 � t � 1:

Let fnk; k � 1g be a sequence of integers and fak; k � 1g a sequence of real

numbers with nk � 2a
2
k and ak � k for every k � 1. Put

Dk;1 =

nkX
i=1

If sup
0�t�1

�i(t) > akg=
�
nk(ak=

p
2)2=� �(ak)=ak

�
; k = 1; 2; : : : (3:1)

On the other hand, noting that by (1.3)

H� = 21=� lim
T!1

T�2=�e�T
2
=2E exp

 
T sup

0�t�1

�(t)

!
; (3:2)

we present another estimator of H�.

Dk;2 = 21=�(4=3ak)
2=� exp(�9a2

k
=32)

nkX
i=1

exp

 
(3 ak=4) sup

0�t�1

�i(t)

!
=nk: (3:3)

Theorem 2. We have

Dk;1 �! H� a:s: (3:4)

and

Dk;2 �! H� a:s: (3:5)

as k !1.

Proof. Using the Chebyshev inequality and (1.3), one has

P

 ��� nkX
i=1

�
If sup

0�t�1

�i(t) > akg � P
�
sup
0�t�1

�(t) > ak

����� > nk�(ak)

!

� (nk�(ak))
�2P

 
sup
0�t�1

�1(t) > ak

!
� (nk�(ak))

�2a
2=�

k
�(ak) � exp(�0:1 k2) (3:6)
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provided that k is su�ciently large. (3.4) now follows from (1.3), (3.6) and the

Borel-Cantelli lemma.

We next prove (3.5). By (3.2) and the Chebyshev inequality,

P
���� nkX

i=1

�
exp

�
(3 ak =4) sup

0�t�1

�i(t)
�
�E exp

�
(3 ak =4) sup

0�t�1

�i(t)
�����

> nk exp(9 a
2
k
=32)

�
� n�1

k
exp(�9a2

k
=16)E exp

�
(3 ak =2) sup

0�t�1

�(t)
�

� n�1
k

exp(�9 a2
k
=16)a

2=�

k
exp(9 a2

k
=8) � e�0:1 k (3:7)

for k su�ciently large. This proves (3.5), by (3.2), (3.7) and the Borel-Cantelli

lemma.

Simulations on Dk;1; Dk;2; E sup0�t�1X(t) as well as the upper bound of

H� in (2.7) are given in the following table with n1 = 20000; a1 = 3.

Table. Simulation on Dk;1 and upper bound of H�

� D1;1 E sup0�t�1X(t) Upper bound of H�

0.1 1.16E-5 1.94 2.6E-9

0.2 1.54E-2 1.76 1.98E-2

0.3 0.14 1.59 0.55

0.4 0.35 1.43 1.64

0.5 0.52 1.28 2.34

0.6 0.56 1.16 2.61

0.7 0.72 1.04 2.63

0.8 0.85 0.94 2.53

0.9 0.85 0.86 2.40

1.0 0.87 0.80 2.36

1.1 0.88 0.75 2.29

1.2 0.85 0.67 2.04

1.3 0.86 0.63 2.05

1.4 0.83 0.57 1.85

Remark 1. According to the simulation, we conjecture that H� is increasing

on (0; 1].

Remark 2. From the simulation on E sup0�t�1X(t), we should have a much

better estimate for E sup0�t�1X(t) than (2.10).
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4. An Application to the Small Ball Probability of Fractional Brow-

nian Motion

Let 0 < � � 1; fX(t); t � 0g be a fractional Brownian motion of order �. In

Shao (1993) we proved

exp

�
�2
�
1 + 3 e(2�=�)1=2

�2=�
x�2=�

�

� P
�
sup
0�t�1

jX(t)j � x
�
� 2 exp

�
�0:17x�2=�

�
(4:1)

for every 0 < x < 1. Along the same lines of the proof of (4.1) (see (2.5) of Shao

(1993)), one can also obtain

exp

�
�11

�
1 + (1=�)1=2

�2=�
x�2=�

�

� P
�
sup
0�t�1

jX(t)j � x
�
� 2 exp

�
�0:17x�2=�

�
: (4:2)

The above so-called small ball probability is a key step in establishing a

Chung type law of the iterated logarithm and has attracted a lot of attention

recently (see Shao (1993), Monrad and Rootz�en (1992) and Kuelbs and Li (1992)).

It should be mentioned that the precise constant in the small ball problem is

unknown except for the case of � = 1. As a by-product of the proof of Theorem

1, we are now able to achieve a more precise upper bound.

Theorem 3. Let 0 < � < 1; and fX(t); t � 0g be a fractional Brownian motion

of order �. Then

exp

�
�11

�
1 + (1=�)1=2

�2=�
x�2=�

�
� P

 
sup
0�t�1

jX(t)j � x

!

� 3 exp
�
� �4 ep���2=� x�2=� ln 2

�
: (4:3)

From Theorem 3 and similar to the proof of Theorem 3.3 in Monrad and

Rootz�en (1992), we have, immediately,

Theorem 4. Under the condition of Theorem 3,

(ln 2)�=2

4 e
p
�
� lim inf

t!0

� log log 1=t
t

��=2
sup
0�s�t

jX(s)j � 11�=2(1 +
1p
�
) a:s: (4:4)

Remark 5. It is known that (cf. Monrad and Rootz�en (1992)) there exists c�
such that
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lim inf
t!0

�
log log 1=t

t

��=2

sup
0�s�t

jX(s)j = c� a:s:

In terms of (4.4), we have

1=(4e) � lim inf
�#0

p
� c� � lim sup

�#0

p
� c� � 1:

Proof of Theorem 3. When 0:2 � � < 1, (4.3) is an immediate conse-

quence of (4.2). So, we only need to deal with the case 0 < � < 0:2. Let

m = med sup0�t�1X(t). By Lemma 4, (2.8) and (1.5),

m � 1

e
p
�

�
1� e�1=�(1 + 1=�)

��=2 � (2�)�1=2

and hence

m � 1=(2 e
p
�) (4:5)

for every 0 < � � 0:2. Put

h = (m=(2x))2=�:

Applying the Slepian lemma and (4.5),

P

 
sup
0�t�1

jX(t)j � x

!
� P

�
max

0�i�[1=h]�1
sup
0<t<h

jX(t+ ih)�X(ih)j � 2x

�

� P

�
max

0�i�[1=h]�1
sup
0<t<h

(X(t+ ih)�X(ih)) � 2x

�

�
Y

0�i�[1=h]�1

P

�
sup
0<t<h

(X(t+ ih)�X(ih)) � 2x

�

=

�
P

�
sup
0<t<1

X(t) � m

��[1=h]

= exp(�[1=h] ln 2)

� 3 exp

 
�
�

1

4 e
p
�

�2=�

x�2=� ln 2

!
;

as desired.
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