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BOUNDS AND ESTIMATORS OF A BASIC CONSTANT IN
EXTREME VALUE THEORY OF GAUSSIAN PROCESSES

Qi-Man Shao

National University of Singapore

Abstract. Let H, be the constant in the extremal theorem for Gaussian processes.
In this note a lower and upper bound as well as two statistical estimators of H, are
given. Simulation results are also discussed. As a by-product of the proof, a more
precise bound on the small ball probability of fractional Brownian motion is obtained.
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1. Introduction

Let {{(t),t > 0} be a stationary Gaussian process with mean zero, variance
one and covariance r(7) satisfying

r(r) =1-=C|7]* +o(|7|*) as 7 —0, (1.1)

here, and in the sequel, « is a constant, 0 < a < 2, and C' is a positive constant.
Let {Y(¢),t > 0} be a non-stationary Gaussian process with mean —|¢|* and
covariance |s|* + [¢|* — |t — s|*. Let

H,= lim N™' e” P( sup Y (¢t) > :Jc) dx. (1.2)
N—oo 0 0<t<N
It is well-known (see Pickands (1969a,b), Berman (1971), Qualls and Watan-
abe (1972) and Leadbetter, Lindgren and Rootzen (1983)) that for each fixed
h > 0 such that sup_.,,, r(t) < 1 for all € > 0,

2 _
u—00 ya~lgh 0<t<h

lim ﬁp ( sup £(t) > u> =hC'*H,, (1.3)

where ¢(u) is the standard normal density function and H, is defined as in (1.2).
Based on (1.3), one can prove that (cf. Leadbetter, Lindgren and Rootzen
(1983), p.237) if r(t)Int — 0 as t — oo, then

P or(gp, €0 -0r) <) — e e
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as T — oo, where ar = (2InT)'/? and

1 2 —
br = (2 T)"? 4 Z(InT) "> (2—0‘ InInT + In (Cl/“Ha(27r)1/22(2“)/2")> .
o

Clearly, H, is a very important parameter in the above extremal theorem.
H, appears also in the Erdés-Révész type law of the iterated logarithm (Shao
(1992)). Unfortunately, the exact value of H, is unknown except for two special
cases, H; = 1 and H, = 1/+/7. The main aim of this note is to give a lower and
upper bound of H,.

Theorem 1. We have
5.27190.625 < Hy, < (ae/vm)¥*  if 1<a<?2 (1.4)
and

(/)" (1= e/ (1+1/0)) < H,

2/
< (Vo (0.77v/a + 2.41(8.8 — o In(0.4 + 2.5/))/*) ) (1.5)
if 0 < a < 1. In particular, we have
012<H,<31 if 1<a<2, (1.6)
aln H
li =1 1.
0530 Ina (17)

We will prove this theorem in the next section. In Section 3 we propose two
estimators of H, and present some simulation results. As a by-product of the
proof of Theorem 1, we will establish a more precise bound on the small ball
probability of fractional Bownian motion.

2. Proofs

One may note that the value of H, depends only on a. Therefore, to estimate
H,, one can choose a special Gaussian process {{(t), t > 0} provided that (1.1)
is satisfied.

Throughout this section let 0 < o < 2, {X (¢), t > 0} be a fractional Brow-
nian motion of order « (cf., Mandelbrot and Van Ness (1968)), i.e., a centered
Gaussian process with stationary increments and variance EX?(t) = t*. Set

Et) = X(et)/e*t?,  M(h) = sup X(t), M=M(®1), t, h>0  (2.1)

0<t<h
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It is easy to show that F¢(t) =0, EE(t) =1

1
EE(1)E(s) = 5 (ea(t—s)/2 +eo(smD/2 _ |glt=9)/2 _ e(s—t)/2|a)

and 1
r(t)=1- §|t|‘l +o(|t|*) as t—0.
Hence, {£(t), t > 0} is a stationary Gaussian process with correlation function
r(t) satisfying (1.1) with C' = 1/2.
We start with the following lemmas, some of which are of independent inter-
est.
Lemma 1. If U and V are centered Gaussian processes on a parameter set T
such that EU*(t) = EV*(t) and
EU(t)U(s) > EV (t)V (s) for all s,t € T,
then for all real x
P (sup U(t) > x) <P (sup V(t) > :Jc> .
teT teT
This is the well-known Slepian (1962) lemma.
Lemma 2. If U s a centered Gaussian process on a parameter setT', then for
all z >0
P (sup U(t) > = + medsup U(t)) < U(x).

teT teT
Here and in the sequel, ¥(z) = (2m) % [*° e "’/2 dt and med denotes the median.

This elegant result was due to Borell (1975).

Lemma 3. Let {X(t), t > 0} be a fractional Brownian motion of order a, 0 <
a < 2. Then
limsuph~*?med sup X(e') < E sup X(t). (2.2)

h—0 0<t<h 0<t<1

Proof. Let n be a standard normal random variable independent of {X(¢),
t > 0}. Put

nt) =X —1)+ (e — (e — 1)"‘)1/2 n, t>0.
Clearly, we have En*(t) = EX?(e') and for any 0 < s <t <1
En(t)n(s)
= EX(e'=1) X (e* —1)+ (e — (e' =1)*) "/ (e** — (e* —1)*)"/?

- %((et_l)a + (€5 =1)*— (! —e*)+2(e! — (e — 1)™)2(e* — (& — 1)&)1/2)
< ! (e + e — (e — e%)%)

2
= EX(e") X (e*).
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Hence, by the Slepian lemma, we have, for any given h > 0, 7 > Esup,<,<; X (t)

P ( sup X (e') > Th“/2> <P ( sup n(t) > Tha/2>
0<t<h 0<t<h

=P ( sup X (ef — 1)+ (e'* — (et —=1)*)/2y > Th“/2> .

Define
ar = ar(a,h) = I{a < 1} + (e"* — (" — 1)*)[{a > 1},
as = as(a, h) = I{a > 1} + (e"* = (e" = 1)) [{a < 1},

where [ is the indicator function. Clearly,
a1 Z as, ilg_}r% a; = ilg_}r% Ay — 1. (23)

Noting that e'* — (¢! — 1)® is an increasing function if @ > 1 and non-increasing
if0<a<1, we get

P( sup X(e' — 1) + (e —(et—l)“)1/2n>7ha/2)
0<t<h

P(n>0 sup X (e'— )+na1>7h"/2)+P(n<0, sup X(et—1)+na2>7ha/2)
0<t<h 0<t<h

( “/2M+na1>7h“/2)+P(n<0 (et 1)”‘/2M+na2>7h”/2)
1 ,7') + I2(h T)

where, in the above equality we used the fact that sup,.,, X(at) and a®/?
Supy<;<; X (t) have the same distribution for any given a > 0, and M is defined
as in (2.1). Note that

I,(h,7) < P(na, >7Th**)+P (Ogn < 7h®?Jay, (e"—1)*? M > ThD‘/Q—nal)

= % —P(O <n< Th“/z/m)

Tha/z/al
\/%/ e " 2P (M > (Th*? — zay)(e" — 1)~ “/2) dz
(6 _1)&/2 The/2(eh1)—o/2

<——P 0<n<th*?la) )+ —L—
-2 (_77_ /1) aV2r  Jo

P (M > z) dx

and
(eh _ 1)&/2 00

ILy(h,7) <
2( ) [1BRY 2T The/2(eh—1)—a/2

P (M >zx) dx.
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Therefore, by (2.3)

Li(h,7)+1(h,T) < ! P(O < 1h*?/a )—l—(eh_l)a/2 /OOP(M>:Jc)d:Jc
, T ,T) < —— <n<rT —_
! 2 2 g ! asV2m  Jo
1 (eh—1)*/
=_-—P(0<n<7h®?/a;) + ————E(M).
3~ P (00 ) + 5= B(M)
It is easy to show that, as b — 0,
ha/Z h_1q /2 ha/ZE M
P(0<n<7ha)) ~ and C =D gy L BT EQD
V2T asV 2T V2T

Putting the above inequalities together, for any given 7 > F(M) we have

Il(h7 T) + IZ(ha T) S

N —

and hence

med sup X(e') < 7h®/?
0<t<h

provided that h is sufficiently small, as desired.

Lemma 4. Let H, be defined as in (1.2) and {X(t), t > 0} a fractional Brow-
nian motion of order c. Then, we have

2/a
ex
H,<|—=F sup X(t . 2.4
_<ﬁ s, ()) (2.4

Proof. Let £(t) be defined as in (2.1). Put

7=2/(aE sup X(t)), h=h(u)=(1/u)¥* u>1. (2.5)

0<t<1

Using the Borell inequality, we obtain, for u > med sup,,<, £(t),

P( sup &(t) > u)

0<t<1

< (1+1/h)P( sup &(t) > u) < (1+1/h)\11(u—med sup f(t)).

0<t<h 0<t<h
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From (1.3), (2.2) and (2.5) it follows that

H, = lim EQLP < sup &(t) > u)
(u)

0<t<1

< lim 227(1 +1/h)¥ <u—med sup f(t))

u—o0 ya ~Lep(u) 0<t<h

IA

21/a
—7-exp [ umed sup &(t)
T2/

0<t<h

IN

21/a
exp [ wh®? b=/ med sup X(e')

T2/ 0<t<h

IN

0<t<1

2/
ex
=|—=F sup X(¢t .
<\/§ ogt£1 ()>

21/a
—27a OXP TE sup X(t)

This proves (2.4).
Lemma 5. If 1 < a < 2, then

E sup X(t) < (2/m)"2. (2.6)

0<t<1
Proof. Let {W(t), t > 0} be a Brownian motion. Note that for 0 <s, ¢ <1
B(X(H) — X(s))? = |t — s|" < [t — 5| = BOW(t) - W(5))"
Hence, applying the Sudakov-Fernique inequality (cf. Adler (1990)), we have
E sup X(t) < E sup W(t) = (2/m)"/%

0<t<1 0<t<1

Lemma 6. If 0 < a < 1, then

1 2241 /8. 2. Yz
E sup X(1) < LT <§ ~In (—5 + 0.4)) . @)
(0%

0<t<1 (2m)t/2 " e22 -1\ «

Proof. From the Borell inequality it follows immediately that
E sup X(t) < (27)”% + med sup X(£). (2.8)

0<t<1 0<t<1

So, it suffices to show that

2241 (8. 2. 1z
med sup X (¢) < ¢t (ﬁ —In (;5 +0.4>> . (2.9)

0<t<1 e2? —1 (0%
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Set
c=22, h=e2/* m=med sup X(t),
0<t<1

0 =1n(0.4 +25/a), a=(4c/a — )2

Using the Borell inequality again, we have

P( sup X (t) > a+h"/2(a+m))

0<t<1

IN

P( max X(ih)>a)+P( max sup (X(t)—X(ih))>hD‘/2(a+m))

1<i<1/h 0<i<1/h jp<t<(i+1)h

< ‘I’é“) +(1+ %)P(Os;gh)((t) > h*/2(a +m))
= \I/éa) +(1+ %)P(Os;tlng(t) >a+ m)
<My Dwe) < (04 2y exp(- %)/ (av2m)

0 0
=(2+h) exp(i)/(a\/%r) <2.013 exp(i)/(a\/%r) <1/2,
where the last inequality was obtained by elementary argument. Therefore,
m < a+ h*?*(a+m)

and
m < a(l+h*?)/(1 = ho?) =a(e +1)/(e° —1).
This proves (2.9).

Lemma 7. If {Y(t), t > 0} is the non-stationary Gaussian process defined as
i Section 1, then for any integer N and positive a

E sup O >N (1 - iexp <— (kz)a>> . (2.10)

0<t<a N k=1

Proof. Obviously, we have

E sup e¥® > E sup ¥

0<t<aN 1<i<N
N & viaivie
sp (e oYy e
i=1 i=1 j=i+1

N N-1 N .
= Y B0 -3 3 pet (2.11)
i=1

i=1 j=it1
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Recalling that EY (t) = —t* and VarY (¢) = 2¢t, we have for any j > i > 1

. Y (s Y (7 et
EeY(m) _ 1’ E < (/La) ; (]Cl)) _ _%(ia _,_joz)’

Var (Y(ia) + Y(ja))

1
. = a" (i + 5 = 5= )")

and hence

Fotirun _ (_%) . (2.12)

(2.10) now follows from (2.11) and (2.12).
We are now ready to prove Theorem 1.

Proof of Theorem 1. The right hand side of (1.4) and (1.5) follows from
Lemmas 4, 5 and 6. We prove below the left hand side. It is easy to see from
(1.2) that

H, = lim T~'Eexp( sup Y (t)) = lim T7'E sup e'®. (2.13)
T—o0 0<t<T T—o0 0<t<T

We next divide the proof into two cases.
CASEI: 1 < a < 2. Put @ = 5.2'/% in Lemma 7. By (2.10) and (2.13), we get

H,>a! (1 - iexp(—(k a)a/4)>

>a <1 — iexp(—k a”‘/4)>

=a ! (1=1/(e"/* 1))
> 5.27120.625

This proves the left hand side of (1.4).
CASEII: 0 < a < 1. Let a* =4/« in Lemma 7. Note that

S exp(—(ka)*/4) =3 exp(~k* /o)

<exp(—1/a) + /100 exp(—z%/a)dz. (2.14)

An elementary argument yields

/100 exp(—a* /o) dz < (1/a)e V/°. (2.15)
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From (2.10), (2.13), (2.14) and (2.15) it follows that

Hy,>a' (1 - iexp(—(k a)a/4)>

>a! (1—e /(14 1/)) = (/9" (1= /" (1 +1/a)),

as desired.

3. Estimators of H,

Since we are unable to obtain the precise numerical value of H,, it would
certainly be interesting to introduce some estimators of H,. A natural way is by
using the empirical process. Let {X;(¢),t > 0}3°, be i.i.d. fractional Brownian
motion of order a. Set

&:(t) = Xi(et)/ert?, 0<t< 1.

Let {ny,k > 1} be a sequence of integers and {a;,k > 1} a sequence of real
numbers with n; > 24k and ar > k for every k > 1. Put

Dy = if{oiggl &(t) > acl/ (nilar/ VDY dlar) far), k=1,2,... (3.1)

On the other hand, noting that by (1.3)

T—o0 0<t<1

H, =2"" lim T2/ T2 Eexp (T sup f(t)) , (3.2)
we present another estimator of H,.
N
Dy = 2'%(4/3a;)** exp(—9a3 /32) Zexp ((3 ar/4) sup fl(t)> [ng. (3.3)
— 0<t<1

Theorem 2. We have
Dy, — H, a.s. (3.4)

and
D> — H, a.s. (3.5)

as k — oo.

Proof. Using the Chebyshev inequality and (1.3), one has

0<t<1

P (‘i(f{ossggl &(0) > a) = P( sup £(1) > ar))| > nkqs(ak))

< (nug(ar)) P < sup &i(t) > ak> < (miglar) ai " plar) < exp(=0.15%) (3.6)

0<t<1
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provided that k is sufficiently large. (3.4) now follows from (1.3), (3.6) and the
Borel-Cantelli lemma.
We next prove (3.5). By (3.2) and the Chebyshev inequality,

(|3 (o309 smp 60) = e (304 /9 s, €00)

> ny, exp(9a; /32))

< n;" exp(—9a} /16)E exp((3ax /2) sup £(t))

0<t<1

< n;texp(—=9a2 /16)a)’* exp(9a? /8) < e O1* (3.7)

for k sufficiently large. This proves (3.5), by (3.2), (3.7) and the Borel-Cantelli
lemma.

Simulations on Dy 1, Dya, Esupyc,<, X(t) as well as the upper bound of
H, in (2.7) are given in the following table with n, = 20000, a, = 3.

Table. Simulation on Dy, and upper bound of H,

o D1 Esupg<;<; X(t) | Upper bound of H,
0.1 | 1.16E-5 1.94 2.6E-9
0.2 | 1.54E-2 1.76 1.98E-2
0.3 0.14 1.59 0.55
0.4 0.35 1.43 1.64
0.5 0.52 1.28 2.34
0.6 0.56 1.16 2.61
0.7 0.72 1.04 2.63
0.8 0.85 0.94 2.53
0.9 0.85 0.86 2.40
1.0 0.87 0.80 2.36
1.1 0.88 0.75 2.29
1.2 0.85 0.67 2.04
1.3 0.86 0.63 2.05
14 0.83 0.57 1.85

Remark 1. According to the simulation, we conjecture that H, is increasing
on (0, 1].

Remark 2. From the simulation on E'sup,.,., X(t), we should have a much
better estimate for £/sup,.,., X (¢) than (2.10).
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4. An Application to the Small Ball Probability of Fractional Brow-
nian Motion

Let 0 < a <1, {X(t),t > 0} be a fractional Brownian motion of order «. In
Shao (1993) we proved

2/
exp (—2 (1 + 36(27‘(‘/01)1/2) :1:2/a>

< P(sup [X(1)] <o) < 2exp (-0.17272/) (4.1)

0<t<1

for every 0 < z < 1. Along the same lines of the proof of (4.1) (see (2.5) of Shao
(1993)), one can also obtain

exp (—11 (1 + (1/a)1/2)2/a $_2/“>
< P(sup [X(1)] <) < 2exp (—0.1722/7). (4.2)

0<t<1

The above so-called small ball probability is a key step in establishing a
Chung type law of the iterated logarithm and has attracted a lot of attention
recently (see Shao (1993), Monrad and Rootzén (1992) and Kuelbs and Li (1992)).
It should be mentioned that the precise constant in the small ball problem is
unknown except for the case of &« = 1. As a by-product of the proof of Theorem
1, we are now able to achieve a more precise upper bound.

Theorem 3. Let 0 < a < 1, and {X(t),t > 0} be a fractional Brownian motion
of order . Then

exp (—11 (1 + (1/a)1/2)2/a $_2/“> <P ( sup |X(1)] < $>

0<t<1

< 3exp (— (4 e\/E)_Q/a % In 2) : (4.3)

From Theorem 3 and similar to the proof of Theorem 3.3 in Monrad and
Rootzén (1992), we have, immediately,

Theorem 4. Under the condition of Theorem 3,

sup | X (s)| < 11972(1 + %) a.s. (4.4)

0<s<t «

In 2)2/2 log log 1/t /2
(In2)° gliminf(iog o8 /)
dey/a t—0

Remark 5. It is known that (cf. Monrad and Rootzén (1992)) there exists c,
such that
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sup |X(s)| =c, as.
0<s<t

a/2
lim inf (M)
t—0 t

In terms of (4.4), we have

1/(4e) < lim&)nf\/aca < limsupvac, < 1.

al0

Proof of Theorem 3. When 0.2 < o < 1, (4.3) is an immediate conse-
quence of (4.2). So, we only need to deal with the case 0 < a < 0.2. Let
m = med supy,, X(t). By Lemma 4, (2.8) and (1.5),

1
T ea

m> (1 e 1) - )

and hence

m > 1/(2eva) (4.5)

for every 0 < o < 0.2. Put
b= (m/(2a))2.

Applying the Slepian lemma and (4.5),
Pl sup | X(¥)| <=z <P< ma; sup | X (¢t +1h) — X(zh <2:Jc>
<0<£1' (0l < ) <P(_muc sup [X(t+ih) - X(ih)| <

< P< max  sup (X (¢t +1ih) — X(ih)) < 2$>

0<i<[1/h]-10<t<h

IN

I - ( sup (X (t +ih) — X (ih)) < 235)

0<i<[1/h]—1 0<t<h

- (P xo <m) ™
= exp(—[1/h] In2)

1 2/
< 3 exp _<4e\/5> 7% n2),

as desired.
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