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Abstract: We consider a method of de�ning trimmed estimators of coe�cients in an

errors-in-variables model using the trimmed least squares estimators suggested by

Koenker and Bassett (1978). The resultant estimators are consistent and asymptoti-

cally normal. In terms of the asymptotic relative e�ciency, these trimmed estimators

are more e�cient than the traditional ones when the regression error in the errors-

in-variables model has a heavy tailed distribution. A lower bound for the asymptotic

relative e�ciency is also established under some assumptions.
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1. Introduction

Errors-in-variables models arise from the study of regression models wherein

the covariate is measured with error. Suppose that there are unobservable \true"

random variables (ui; �i) which satisfy a linear relation,

�i = �+ �ui: (1:1)

However, we can only observe (Xi; Yi) which are the true random variables plus

additive measurement errors (�i; "i), i.e.

Xi = ui + �i; Yi = �i + "i; i = 1; : : : ; n: (1:2)

It is assumed that fuig, f�ig, and f"ig are three i.i.d: sequences of random vari-

ables, and that ui � N(mu; �
2

u), �i � N(0; �2� ), and "i has a continuous distribu-

tion function F which is symmetric about 0. Moreover, it is also assumed that

F has a continuous density f that is positive on the support of F . Model (1.1)-

(1.2) is called a structural errors-in-variables model since the ui's are assumed to

be i.i.d: random variables. This is di�erent from a functional errors-in-variables

model where the ui's are assumed to be unknown constants, not a random sam-

ple. Errors-in-variables model arises in many applications. Surveys of results can

be found in Moran (1971), Kendall and Stuart (1979), Anderson (1984), Fuller

(1987), and Cheng and Van Ness (1991).
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It is well known that without extra assumptions about the parameters, model

(1.1)-(1.2) is unidenti�able. For example, parameter sets (�; �;mu; �
2

u; �
2

� ; F ) =

(0; 1; 1; 1; 1; F ) and (1 � 1=
p
2; 1=

p
2; 1; 2; 0; F ) are both such that (Xi; Yi) have

the same distribution. The present paper assumes that the error variance �2� is

known. In fact, knowledge of the error variance �2� is realistic. For example, the

Xi's may arise as the averages of repeated measurements on the ui's in cases

where no corresponding repeated measurements on the �i's are available, i.e.

\partial replications". These repeated measurements can be used to form an

independent estimator of �2� (Madansky (1959)).

The traditional estimators of � and �, the unknown key parameters, are

de�ned by

�̂ = �Y � �̂ �X; �̂ =
SXY

S2

X � �2�

; (1:3)

where �X =
P
Xi=n, �Y =

P
Yi=n, S

2

X =
P
(Xi� �X)2=n, S2

Y =
P
(Yi� �Y )2=n, and

SXY =
P
(Xi� �X)(Yi� �Y )=n. Note that under the assumption that "i in (1.2) is

normally distributed, these �̂ and �̂ are also the maximum likelihood estimators

of � and � whenever S2

Y (S
2

X � �
2

�) � S
2

XY > 0 (Fuller (1987, p.14) and Kendall

and Stuart (1979, p:405)). Although these estimators are consistent and asymp-

totically normal, they are, however, ine�cient when F has heavier tails than the

Gaussian distribution. Moreover, these estimators also possess high sensitivity

to spurious data Yi's. The presence of spurious observations Yi's can be modeled

by letting F be a mixture of the distribution of the \good" data, for instance,

standard normal, and that of the \bad" data, for instance, normal with variance

exceeding 1. Such a distribution F will have heavier tails than a normal distribu-

tion. For the location model, three classes, M, L, and R of estimators have been

suggested as alternatives to the traditional sample mean (see Lehmann (1983)

for an introduction). Among the L estimators, the trimmed mean is particularly

attractive since it is e�cient and easy to compute under most circumstances.

Stigler (1977, p:1070) applied robust estimators to data from 18th- and 19th-

century experiments design to measure basic physical constants. He concluded

that the 10% trimmed mean is preferable as a recommended estimator.

Consider the linear model

W = D+ Z; (1:4)

whereW = (W1; : : : ;Wn)
0, D is a n�p matrix of known constants whose ith row

is d
0

i,  = (1; : : : ; p)
0 is a vector of unknown parameters, and Z = (Z1; : : : ; Zn)

0

is a vector of i.i.d: random variables with unknown distribution G. Koenker

and Bassett (1978), who extended the concept of quantiles to the linear model,

proposed a method of de�ning a regression analog to the trimmed mean. Let
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0 < � < 1. They de�ned the �th regression quantile, denoted by (�), to be any

solution to the minimization problem:

min
b2Rp

f
X
i2A

(1� �)jWi � d
0

ibj+
X
i2Ac

�jWi � d
0

ibjg; A = fi : Wi � d
0

ib < 0g: (1:5)

They showed that the regression quantiles have asymptotic behavior similar to

those of sample quantiles in the one-sample problem. As Koenker and Bassett

pointed out, regression quantiles can be computed by standard linear program-

ming techniques (Meketon (1986)). They also suggested the following trimmed

least squares estimator ̂(�): Where 0 < � < 1=2 is the trimmed proportion,

remove from the sample any observations satisfying

Wi � d0i(�) � 0 or Wi � d0i(1� �) � 0; (1:6)

and calculate the least squares estimator using the remaining observations. Rup-

pert and Carroll (1980) made the following assumptions:

1. G has a continuous density g that is positive on the support of G.

2. Letting (di1; : : : ; dip) = d
0

i be the ith row of D, di1 = 1 for 1 � i � n andPn
i=1 dij = 0 for 2 � j � p.

3. limn!1max1�i�n;1�j�p jdij j=
p
n = 0:

4. There exists positive de�nite Q such that limn!1D
0
D=n = Q:

They showed that the estimator ̂(�) satis�es

p
n[̂(�)� ] = Q

�1
n
�1=2

(
nX
i=1

di[�(Zi)�E�(Zi)] + �(�)

)
+ op(1) (1:7)

and p
n[̂(�)� � �(�)]

L�!Np[0; �
2(�;G)Q�1]; (1:8)

where

�(s) =

8<
:
�1=(1 � 2�); if s < �1,

s=(1� 2�); if �1 � s � �2,

�2=(1 � 2�); if �2 < s,

�(�) =
1

1� 2�

Z �2

�1

sdG(s); �(�) = (�(�); 0; : : : ; 0)0;

�
2(�;G) =

1

(1� 2�)2

nZ �2

�1

[s� �(�)]2dG(s) + �(�2
1
+ �

2

2
)� [�(�1 + �2)]

2

o
;

�1 = G
�1(�); �2 = G

�1(1� �); and �j = [�j � �(�)]: (1:9)

By comparing asymptotic variances, they also concluded that the trimmed least

squares estimator turns out to be more e�cient than the usual least squares
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estimator when G is within the family of contaminated normal distributions

and the extent of contamination is getting large. These contaminated normal

distributions have long been used to study the behavior of statistical procedures

under heavy-tailed distributions. They have the form

(1� �)�(s) + ��(
s

b
); (1:10)

where 0 < � < 1 and � is the standard normal distribution function. Typically,

b > 1 and �(s=b) is the distribution of the \bad" data, whereas � is the proportion

of \bad" data.

In this paper, we write errors-in-variables model (1.1)-(1.2) as a form of linear

model (1.4). By the relations between the parameters of these two models, we

de�ne the trimmed estimators of � and � in errors-in-variables model (1.1)-(1.2)

through the trimmed least squares estimators for linear model (1.4). As will be

shown in this work, these trimmed estimators are not only asymptotically normal

but also more e�cient than the traditional ones (estimators in (1.3)) when the

distribution F of the regression error "i in model (1.1)-(1.2) has heavier tails than

the Gaussian distribution.

In Section 2 we de�ne the trimmed estimators for errors-in-variables model

(1.1)-(1.2). The asymptotic distributions of these trimmed estimators are derived

in Section 3. In Section 4 we compare the e�ciencies of the trimmed estimators

and the traditional ones. A lower bound for these e�ciencies is also established

under certain assumptions.

2. Trimmed Estimators

For errors-in-variables model (1.1)-(1.2), the degree to which the covariate ui
has been contaminated with error can be measured by the ratio r = �

2

u=(�
2

u+�
2

�),

called the reliability of Xi. Conditioning on Xi, ui is normally distributed with

mean (1� r)mu+ rXi and variance r�2� . Therefore, the second equation of (1.2)

can be written as

Yi = �+ �E(uijXi) + �[ui �E(uijXi)] + "i = �
� + �

�(Xi � �X) + "
�

i ; (2:1)

where

�
�= �+ [r �X +(1� r)mu]�; �

� = r�; "
�

i = vi+ "i; vi = �[ui� rXi� (1� r)mu]:

(2:2)

Since vi is distributed as N(0; �2r�2�) which is independent of Xi, consequently

"
�
i and Xi are independent. Thus, model (2.1) is a linear regression model. Let

0 < � < 1=2 be the trimmed proportion and let �̂�(�) and �̂
�(�) be the trimmed

least squares estimators of �� and �
� in (2.1) suggested by Koenker and Bassett
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(1978) as described in Section 1. Then we de�ne the trimmed estimators of �

and � in model (1.1)-(1.2) by

�̂(�) = �̂
�(�)� [ �X + (

1

r̂
� 1)m̂u]�̂

�(�) = �̂
�(�)� 1

r̂

�X�̂
�(�); �̂(�) =

�̂
�(�)

r̂
; (2:3)

where m̂u = �X and r̂ = (S2

X � �
2

�)=S
2

X are consistent estimators of mu and r,

respectively. Note that unlike �̂�(�) and �̂�(�) we do not remove any observations

in calculating m̂u and r̂. Since the Xi's are i:i:d: normal random variables, the

estimators m̂u and r̂ without the trim procedure are more e�cient than the

trimmed ones.

Comment: The main reason for con�ning our approach to the structural model

(ui-random) is to take advantage of conditional expectation for ui given Xi.

This is not de�ned for the functional model, where the ui are unknown �xed

constants. However, under the assumptions that the limits u� = limn!1 �un =

limn!1

P
ui=n and v

� = limn!1

P
(ui� �un)

2
=n exist, it is not di�cult to de�ne

the parallel trimmed estimators for the functional model that result in asymptotic

consistency. Nevertheless, the asymptotic distributions of these estimators could

be hard to establish.

3. Asymptotic Results

Although model (2.1) has a form as model (1.4), they di�er in the nature

of design matrix. The design matrix of model (1.4) is nonstochastic, whereas

that of model (2.1) is stochastic. In order to apply the results of (1.7) and (1.8)

to model (2.1), we need to show that the distribution H of "�i in (2.1) satis�es

the �rst assumption of Ruppert and Carroll (1980) as stated in Section 1, and

that the Xi's satisfy the assumptions 2, 3, and 4 of Ruppert and Carroll with

probability 1.

From (2.2) we have "
�
i = vi + "i, where vi = �[ui � rXi � (1 � r)mu] �

N(0; �2r�2�). Since the distribution F of "i has a continuous density f that is

positive on the support of F , obviously the distribution H of "�i satis�es the �rst

assumption of Ruppert and Carroll. Also, from the structure of model (2.1), the

Xi's clearly satisfy assumption 2 with probability 1. For assumption 3, it su�ces

to show that

P

�
lim
n!1

max
1�i�n

(Xi � �X)2

n
= 0

�
= 1:

For every � > 0, we have

P

�
max
1�i�n

(Xi � �X)2

n
� �

�
= P

� n\
i=1

[
(Xi � �X)2

n
� �]

�
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� 1�
nX
i=1

P

�(Xi � �X)2

n
> �

�
> 1� 1

n2�3
E(Xi � �X)6:

Consequently,

1X
i=1

P

�
max
1�i�n

(Xi � �X)2

n
> �

�
<

1

�3
E(Xi � �X)6

1X
i=1

1

n2
<1

due to E(Xi� �X)6 <1. Applying the convergent part of Borel-Cantelli lemma,

we have

P

�
lim sup
n!1

max
1�i�n

(Xi � �X)2

n
> �

�
= 0:

Therefore,

lim
n!1

max
1�i�n

(Xi � �X)2

n
= 0 a.s.

For assumption 4, since S2

X ! �
2

X (= �
2

u + �
2

� ) a.s., we have

1

n

�
1 � � � 1

X1 � �X � � � Xn � �X

� �
1 � � � 1

X1 � �X � � � Xn � �X

�0

=

�
1 0

0 S
2

X

�
!
�
1 0

0 �
2

X

�
a.s.

Lemma 1. Let model (1.1)-(1.2) hold with �
2

� known, and let �̂�(�) and �̂
�(�)

be the trimmed least squares estimators of �� and �
� in (2:1) with trimmed

proportion 0 < � < 1=2. Then

p
n[�̂�(�)� �

�
; �̂

�(�)� �
�]0

L�! N2[0; �
2(�;H)��1]; (3:1)

where

�
2(�;H)=

1

(1�2�)2
�Z �2

�1

s
2
dH(s)+�(�2

1
+�2

2
)

�
=

2

(1�2�)2
�Z �2

0

s
2
dH(s)+��2

2

�
;

�1 = H
�1(�); �2 = H

�1(1� �); � =

�
1 0

0 �
2

X

�
; (3:2)

and H is the distribution function of "�i in (2:1).

Proof. Since vi � N(0; �2r�2�) and "i are independent and "i has a continuous

distribution F which is symmetric about 0, the distribution H of "�i = vi + "i is

continuous and symmetric about 0 as well. Therefore, �(�) = 0 in (1.9) because

�1 = H
�1(�) = �H�1(1 � �) = ��2. Now conditioning on Xi; 1 � i � n, and

applying (1.8), we have

p
n[�̂�(�)� �

�
; �̂

�(�)� �
�]0

L�! N2[0; �
2(�;H)��1]:
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Note that both �
2(�;H) and � above do not depend on Xi; 1 � i � n. By the

bounded convergence theorem, the limiting result holds unconditionally.

From (2.2) and (2.3), we have

�
�

�

�
=

�
1 �[ �X + (1=r � 1)mu]

0 1=r

� �
�
�

�
�

�

and �
�̂(�)

�̂(�)

�
=

�
1 � �X=r̂

0 1=r̂

� �
�̂
�(�)

�̂
�(�)

�
:

Therefore,

p
n

�
�̂(�)� �

�̂(�)� �

�
=
p
n

�
1 � �X=r̂

0 1=r̂

� �
�̂
�(�)� �

�

�̂
�(�)� �

�

�

+
p
n

�
0 (1� 1=r̂) �X + (1=r � 1)mu

0 1=r̂ � 1=r

� �
�
�

�
�

�
: (3:3)

Using this relation and Lemma 1, we can prove the main theorem in this section.

Theorem 1. Let model (1:1)� (1:2) hold with �2� known, and let �̂(�) and �̂(�),

which are de�ned in (2:3), be the trimmed estimators of � and � in this model

with trimmed proportion 0 < � < 1=2. Then

p
n

�
�̂(�)� �; �̂(�)� �

�0 L�! N2(0;�);

where

� =

�
�
2

� ���

��� �
2

�

�
; �

2

� = �
2(�;H)(1 +

m
2

u

r2�2X

) + �
2(1� r)2(�2X +

2m2

u

r2
);

�
2

�=
1

r2

�
2�2(1�r)2+�

2(�;H)

�2X

�
; and ���=

�mu

r2

�
2�2(1�r)2+�

2(�;H)

�2X

�
: (3:4)

Proof. Applying a Taylor expansion, we can show that

�
1 � �X=r̂

0 1=r̂

�
=

�
1 �mu=r

0 1=r

�
+Op(

1p
n
): (3:5)

By Lemma 1, (3.5), and Slutsky's theorem, the �rst term on the right hand side

of Equation (3.3) converges in distribution to N2(0;�1), where

�1 = �
2(�;H)

�
1 +m

2

u=(r
2
�
2

X) �mu=(r
2
�
2

X)

�mu=(r
2
�
2

X) 1=(r2�2X)

�
: (3:6)
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Conditioning on Xi, 1 � i � n, and by (1.7) we have

p
n[�̂�(�)� �

�
; �̂

�(�)� �
�]0 = ��1n�1=2

nX
i=1

�
1

Xi � �X

�
[�("�i )�E�("�i )] + op(1)

= n
�1=2

nX
i=1

�
�("�i )�E�("�i )

((Xi � �X)=SX)[�("
�
i )�E�("�i )]=�X

�
+ op(1); (3:7)

where � is de�ned by (1.9). It follows that (3.7) holds unconditionally by the

bounded convergence theorem. Since ( �X;S
2

X) is su�cient and complete for

(mu; �
2

X), the ancillary statistic (Xi � �X)=SX is independent of ( �X;S
2

X). There-

fore, from (3.5) and (3.7) we conclude that the two terms on the right hand side

of Equation (3.3) are asymptotically independent.

Again, applying a Taylor expansion the second term on the right hand side

of (3.3) can be written as

p
n

�
(1� 1=r)( �X �mu)� (1=r̂ � 1=r)mu

1=r̂ � 1=r

�
r� + op(1): (3:8)

Consequently, it converges in distribution to N2(0;�2), where

�2 =

�
�
2(1� r)2(�2X + 2m2

u=r
2) �2�2mu(1� r)2=r2

�2�2mu(1� r)2=r2 2�2(1� r)2=r2

�
: (3:9)

Now the result follows from (3.6) and (3.9).

Remark 1. Let �̂ and �̂, as de�ned in (1.3), be the traditional consistent

estimators of � and � in model (1.1)-(1.2) (which are also the maximum likelihood

estimators under some extra conditions). Then by a similar proof of Theorem 1,

we have p
n

�
�̂� �; �̂ � �

�0 L�! N2(0;�
0

);

where �
0

is the same as � in (3.4) except that �2(�;H) is replaced by �
2

"� , the

variance of "�i in (2.1), applied to �
0

.

4. Comparison of E�ciency

In this section we take the distribution function F of "i in model (1.1)-(1.2)

to be a member in the family of contaminated normal distributions de�ned by

(1.10). Although these distributions have heavier tails than a normal distribution,

the heavy tails are not as serious as that of the Cauchy distribution. Hence they

are more likely to be used in practical situations. Since vi and "i are independent

and vi � N(0; �2r�2�), the distribution function H of "�i (= vi+ "i) in model (2.1)

is the convolution of �(s=
p
�2r�2�) and (1� �)�(s) + ��(s=b). Consequently,

H(s) = (1� �)�(
sp

1 + �2r�2�

) + ��(
sp

b2 + �2r�2�

): (4:1)
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From this and (3.2), we have the variance of "�i ,

�
2

"� = (1� �)(1 + �
2
r�

2

�) + �(b2 + �
2
r�

2

�) = (1� �+ �b
2) + �

2
r�

2

� ; (4:2)

and

�
2(�;H) =

2

(1� 2�)2

"
(1� �)

Z �2

0

s
2
d�

 
sp

1 + �2r�2�

!

+�

Z �2

0

s
2
d�

 
sp

b2 + �2r�
2

�

!
+ ��

2

2

#
: (4:3)

Suppose that f�ing; i = 1; 2, are two sequences of estimators of the parameter

g() based on the n observations (Xi; Yi); 1 � i � n, such that

p
n[�in � g()]

L�! N [0; � 2i ()]; �
2

i () > 0:

Then the asymptotic relative e�ciency (ARE) of f�1ng with respect to f�2ng is
de�ned by e1;2 = �

2

2
()=� 2

1
().

In Table 1 we tabulate the ARE's of �̂(�) with respect to �̂ for � = 1,

mu = 1, �2u = 1, and a few choices of �2� , �, b, and � (the results of those of �̂(�)

with respect to �̂ are quite similar and hence are not reported here). Several

conclusions can be drawn from this table.

1. For � = 0 (this corresponds to "i as well as "
�
i being normally distributed),

the ARE's are all less than 1. However, when the trimmed proportions are less

than 20%, these ARE's do not fall too low. For � = 0:1 and 0:25, the ARE's are

considerably greater than 1 under almost all circumstances. Only in some rare

situations ( for example, � = 0:1; r = 0:9; b = 3; and � = 50%) the ARE's are

little less than 1. This poor e�ciency is the consequence of over-trimming.

2. With other parameters being �xed, the ARE is increasing in b. This

accords with the intuition that �̂(�) turns to be more e�cient when the heavy-

tailed phenomenon becomes serious. Although for � = 0:1 and 0:25 the ARE

seems to be increasing in r (or decreasing in �
2

�) as other parameters are �xed,

this is not necessarily the case (see, for example, � = 0). There is a trade-o�

among the parameters.

3. As a whole, the 10%� 20% trimmed estimators �̂(�) provide much better

protection than �̂ against heavy contamination (� large or b large), while at the

same time giving up little e�ciency in the normal case (� = 0). They emerge as

the recommended estimators.

From Table 1, it is seen that the ARE's of �̂(�) with respect to �̂ are uni-

formly high for all �'s, and this raises the question of how these ARE's can fall

if the distribution function F of "i in (1.2) does not belong to the family of con-

taminated normal distributions. The answer is given by the following theorem.
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Table 1. ARE of �̂(�) with respect to �̂

� = 1;mu = 1; �2u = 1

ARE

� r b � 2.5% 5% 10% 15% 20% 30% 50%

0 1.0 0.99 0.97 0.94 0.91 0.87 0.80 0.64

0.9 0.99 0.97 0.94 0.91 0.88 0.80 0.64

0.8 0.98 0.98 0.95 0.92 0.88 0.81 0.66

0.7 0.99 0.97 0.95 0.92 0.89 0.83 0.68

0.6 0.99 0.98 0.96 0.93 0.91 0.85 0.71

0.1 1.0 3 1.29 1.36 1.38 1.36 1.33 1.24 1.00

5 1.84 2.31 2.46 2.46 2.43 2.27 1.83

10 2.51 6.57 7.52 7.62 7.52 7.08 5.74

0.9 3 1.25 1.31 1.33 1.31 1.28 1.19 0.96

5 1.78 2.17 2.30 2.30 2.25 2.11 1.71

10 2.47 6.02 6.79 6.92 6.84 6.44 5.24

0.8 3 1.22 1.27 1.28 1.27 1.23 1.15 0.93

5 1.71 2.02 2.13 2.13 2.08 1.96 1.59

10 2.41 5.44 6.09 6.19 6.09 5.77 4.73

0.7 3 1.19 1.22 1.23 1.21 1.19 1.11 0.91

5 1.62 1.87 1.95 1.94 1.91 1.80 1.49

10 2.33 4.84 5.36 5.44 5.36 5.08 4.22

0.6 3 1.15 1.18 1.18 1.17 1.14 1.07 0.90

5 1.52 1.72 1.78 1.77 1.74 1.66 1.39

10 2.24 4.24 4.63 4.69 4.63 4.41 3.72

0.25 1.0 3 1.19 1.40 1.62 1.69 1.69 1.61 1.33

5 1.26 1.70 2.93 3.35 3.47 3.43 2.86

10 1.32 1.88 6.94 10.51 11.44 11.65 9.83

0.9 3 1.18 1.37 1.55 1.60 1.60 1.53 1.25

5 1.26 1.68 2.75 3.11 3.20 3.16 2.64

10 1.31 1.87 6.56 9.61 10.42 10.59 8.95

0.8 3 1.16 1.33 1.48 1.51 1.51 1.45 1.19

5 1.25 1.65 2.57 2.86 2.94 2.90 2.43

10 1.31 1.86 6.14 8.71 9.40 9.54 8.09

0.7 3 1.15 1.29 1.41 1.44 1.43 1.36 1.14

5 1.24 1.61 2.39 2.62 2.69 2.64 2.22

10 1.31 1.84 5.71 7.81 8.39 8.49 7.25

0.6 3 1.13 1.24 1.34 1.36 1.35 1.29 1.09

5 1.22 1.56 2.20 2.38 2.43 2.39 2.04

10 1.30 1.82 5.24 6.92 7.36 7.45 6.42
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Theorem 2. Under model (1:1)� (1:2) with �
2

� known, the ARE's of �̂(�) with

respect to �̂ and of �̂(�) with respect to �̂ are greater than or equal to (1� 2�)2.

Proof. Since the distribution H of "�i is symmetric about 0, it follows that

1

2
�
2

"� =

Z 1

0

s
2
dH(s) �

Z �2

0

s
2
dH(s) + �

2

2
� =

�
2(�;H)

2
(1� 2�)2:

Consequently, we have �2"�=�
2(�;H) � (1 � 2�)2: From (3.4) and Remark 1, the

ARE of �̂(�) with respect to �̂, denoted as et;u, is given by

et;u =
c+ �

2

"�

c+ �2(�;H)
=

�
2

"�

�2(�;H)
+
[1� �

2

"�=�
2(�;H)]c

�2(�;H) + c
;

where c = 2�2(1�r)2�2X > 0:When �2"� � �
2(�;H), obviously et;u � �

2

"�=�
2(�;H)

� (1� 2�)2: On the other hand when �
2(�;H) < �

2

"� , we have

et;u � �
2

"�

�2(�;H)
+ 1� �

2

"�

�2(�;H)
= 1:

A similar proof can be established for the ARE of �̂(�) with respect to �̂.

5. Summary

We have considered a method of de�ning trimmed estimation in the struc-

tural errors-in-variables model. This method is accomplished by �rst writing

the errors-in-variables model as a standard linear regression model. Then by

applying the trimmed least squares estimators proposed by Koenker and Bassett

(1978), the corresponding trimmed estimators for the errors-in-variables model

are de�ned. These trimmed estimators are more e�cient than the traditional

consistent estimators and should be recommended when the regression error (i.e.

the error "i in (1.2)) in the model has a heavy tailed distribution. On the whole,

the trimmed estimators with trimmed proportions between 10% and 20% work

well. However, a better idea is to �nd a data-dependent trimmed proportion and

this will be pursued in some other work.

The approach used here can be easily generalized to the case where there is

more than one covariate. It also can be applied to the case where some covariates

are measured exactly and some are measured with errors.
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