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Abstract: In applications, statistical models are often restricted to what produces

reasonable estimates based on the data at hand. In many cases, however, the principles

that allow a model to be restricted can be derived theoretically, in the absence of any

data and with minimal applied context. We illustrate this point with three well-known

theoretical examples from spatial statistics and time series. First, we show that an

autoregressive model for local averages violates a principle of invariance under scaling.

Second, we show how the Bayesian estimate of a strictly-increasing time series, using

a uniform prior distribution, depends on the scale of estimation. Third, we interpret

local smoothing of spatial lattice data as Bayesian estimation and show why uniform

local smoothing does not make sense. In various forms, the results presented here have

been derived in previous work; our contribution is to draw out some principles that

can be derived theoretically, even though in the past they may have been presented

in detail in the context of speci�c examples.

Key words and phrases: ARMA, Bayesian statistics, conditional autoregression, im-

age, scaling, sieve, spatial smoothing, spatial statistics, time series.

1. Introduction

In many contexts, statistical models can be constrained by invariance prin-

ciples, the simplest being exchangeability among independent samples from a

population. For many time series and spatial models, stationarity (or translation-

invariance, for a nonstationary model such as a random walk) is a useful assump-

tion, at least before any specialized knowledge is added. In spatial modeling,

another useful default assumption is isotropy, or rotational invariance. To put it

another way, a statistician is expected to provide a justi�cation for a model that

does not satisfy the usual invariance principles.

In this article, we discuss other ways in which probability models can be

evaluated, using a variety of invariance principles, before seeing any data. (We

do not go as far as some maximum entropy theorists (e.g., Skilling (1988)) who

seek not just to restrict a model class, but actually to specify a model based on

theoretical principles only.) In Section 2, we consider the scale invariance of a

family of time series models for pixels that are local averages of a continuous
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image, and Section 3 presents an unexpected example of how the estimate of

a continuous function under constraints can depend critically on the scale of

discretization. Section 4 gives an example of how a particular image smoothing

estimate can be understood, and its parameters restricted, by exploiting the

equivalence between probability and smoothing. We conclude in Section 5 with

a discussion of the principles by which time series and spatial models can be

criticized theoretically.

Our key intellectual lever is the Bayesian approach, which allows us to worry

about probability models rather than techniques of estimation. Bayesian analysis

is the simplest way for us to derive the results presented here, but is, of course, not

the only approach. In various forms, the results presented here have been derived

in previous statistical work; our contribution is to draw out some principles

that can be derived theoretically, even though in the past they may have been

presented in detail in the context of speci�c examples.

2. Models for Averages

For our �rst example, we consider discrete models for continuous functions.

Suppose f(t) is to be approximated on a discrete set of intervals, with �i, the

time series value at interval i, representing the average of the continuous function

over the interval Ii: �i =
R
Ii
f(t)dt=

R
Ii
dt. Consider the problem of estimating

�, and thus approximating f , from a �xed set of data (direct or indirect). Ide-

ally, the discretization should not a�ect our estimate of the function. Of course,

information will be lost if the intervals of estimation are too large, but it seems

reasonable to demand that as the discretization intervals get smaller and smaller,

the gross features of the estimated time series should depend less and less on the

size of the intervals at which the process is modeled. If there is really an un-

derlying continuous function, the discretization should be a convenience, not a

fundamental part of the estimate. (In general, estimating �ner intervals increases

computation time, leading to a compromise between detail of modeling and fea-

sibility of computation. If the computing power is available, however, we do not

want �ne-scale modeling to have adverse inferential e�ects.)

It turns out that standard time series models do not always satisfy the re-

quirement that large-scale inference not depend on the scale of estimation. Here,

we consider a familiar one-dimensional example and ask, does a given probability

model for a discretized image make sense?

2.1. Autoregressive models for averages

Consider a continuous time series, f(t), on the real line, divided into intervals



BAYESIAN MODEL-BUILDING BY PURE THOUGHT 217

of width �, parameterized by �i = (1=�)
R (i+1)�
i� f(t)dt, for integer values of

i. Suppose that the estimation scale � is arbitrary, chosen as �ne as possible

within the constraints of computation. The simplest conditional autoregressive

model is symmetric in the two nearest neighbors, with E(�ij�j ; all j 6= i) =

(�=(1 + �2))�i�1 + �i+1) for each i, where j�j � 1. In one dimension, this is

equivalent to the unidirectional AR(1) model with correlation �.

Now suppose that f(t) is modeled on a �ner scale, with local averages

�1; �2; : : :, de�ned on intervals of width �. For simplicity, assume that �=� is

an integer; thus, �i = (�=�)
P(i+1)�=�

j=i�=�+1 �j : If the AR(1) model is reasonable for �,

we should also be willing to apply it to the local averages, �; after all, the original

spacing � is arbitrary. It would be desirable if aggregating up an AR(1) model

on � were to yield an AR(1) model on �; then we could consider the model on �

to be a re�nement of the original model on the coarser grid. (Given a probability

distribution for �1; �2; : : :, the distribution for �1; �2; : : : is de�ned uniquely and

can be obtained by integrating out the \in-between" parameters. In contrast,

a distribution for the �i's does not uniquely de�ne a distribution for the more

numerous �i's.)

Unfortunately, it is well known (see, e.g., Lutkepohl (1984)) that the aggre-

gation of an AR(1) model is not an AR(1) but an ARMA(1,1). In fact, in the

limit as � ! 0 with � �xed, an AR(1) model on � implies an MA(1) model on

�. Thus, when �tting an AR(1) model to a discretized one-dimensional \image,"

the discretization scale is itself a key parameter and can a�ect inference about

real-world parameters.

If a family of models is not self-consistent, then the procedure of �tting the

family at an arbitrary scale is, in general, awed, because inferences depend on

the scale of the model. This is quite di�erent than modeling at a �xed scale (such

as in the analysis of annual data), and using, say, an AR(1) model after checking

its �t to the data, having considered models from a larger ARMA class.

2.2. A family of nested models

One solution to the problem of models depending on discretization scale is

to just explicitly make the discretization interval (or pixel size) a parameter in a

larger model, perhaps �xing the pixel size to a value that is consistent with the

scienti�c purpose of the analysis (e.g., ths size of medical features of interest in a

MRI scan). We do not like this strategy because it forces discretization to play

a double role: both as a scale for computation and a parameter with substantive

meaning. We do not want inference about real-world parameters to change every

time we get a faster computer. (Or, conversely, we do not want to model at

an unnecessarily coarse scale just because we do not have a rich enough family
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of models.) We would like to be able to create ever-�ner local models without

disturbing the large-scale structure.

An alternative approach is to expand the model class so that the models

are nested. In modeling a time series of averages, one can set up a family of

stationary Gaussian models for which the time series is an ARMA(1,1) at any

scale, but whose correlations depend on the discretization in such a way that the

models at all scales are coherent. Two families of ARMA(1,1) models satisfy this

criterion: the degenerate case of white noise (which is white noise at any scale),

and a restricted ARMA(1,1) family that we describe here.

A stationary Gaussian model is determined by its correlations, which for an

ARMA(1,1) model can be parameterized as 1; �; ��; �2�; : : :. If a discretization

at scale � is modeled as a Gaussian ARMA(1,1) process with parameters

� = e��=�0 ; � =
(1� �)2=2

� log � � (1� �)
; (1)

then the family of models at di�erent scales turn out to be nested, or self-

consistent, or closed under scaling: the model on �, based on a scale of �, averages

up to the appropriate model on �. The parameter �0, which is not supposed to

vary with the scale of estimation, can be thought of as a \characteristic scale"

of the family. The parameters � and � lie between 0 and 1 for any nonzero

�, so the ARMA model is always stationary. The bound on � is obvious from

its formula, and the bound on � is easily obtained from the Taylor expansion,

� log(�) = (1� �) + (1 � �)2=2 + � � �.
The self-consistency property can be shown in two ways. The direct proof

starts with the above correlation structure on �1; �2; : : :, at scale �, and then com-

putes the variance and covariances of the the time series of averages, �1; �2; : : :.

After the algebra clears, the �'s have an ARMA(1,1) correlation structure with

parameters � and � corresponding to the larger scale �. In the appendix a proof

is presented that connects more clearly with the underlying continuous model

and shows that the above models, at all scales �, are moving averages of a single

stochastic process in continuous time. As � ! 0, the correlations approach 1,

and the model looks like an AR(1), with �=�! 1, and the correlation has asymp-

totic form � � 1 ��=�0, in the sense that (1 � �)=(�=�0) ! 1. As � ! 1,

the correlations approach 0, and the model looks like an MA(1), with �=� ! 0,

and the correlation has asymptotic form � � �0=(2�).

There is only one independent correlation parameter for any ARMA(1,1)

model in this family|� determines �, and vice-versa, as shown in Figure 1. All

the parameter values o� the curve in the �gure|such as AR(1) models with low

correlation or MA(1) models with high correlation|are \illegal" under this class
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of models. If we were originally planning to �t an AR(1) model to the parameters

�, it seems reasonable now to �t instead a model from the restricted ARMA(1,1)

class pictured in Figure 1. What if, however, we were to �t an unrestricted

ARMA(1,1) model to a set of data, and found that the data supported param-

eter values o� the \legal" line; e.g., (�; �) = (0:9; 0:2)? Since the unrestricted

ARMA(1,1) family is not closed under averaging and rescaling, it would make

sense to expand the model class, perhaps to a restricted ARMA(2,2) family, so

that the data can be �t without introducing scaling artifacts.
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Figure 1. Correlation parameters of the restricted ARMA(1,1) family

Of course, in practice, one will often �t a time series model by �rst choosing a

scale of discretization that �ts the data and the scienti�c questions of interest and

then �t the parameters of a particular model class (such as the ARMA family)

based on the data. The point of the preceding analysis is not that there is a

aw in standard time series analysis, but rather that that some choices made in

the model �tting stage can be determined by the structure of the problem rather

than any details of the particular dataset.

3. Models with Constraints

Consider again the estimation of the discretized version of a continuous func-

tion. We would like our inferences about the large-scale features to stabilize as

the size of the intervals of estimation approaches zero. In this section, we focus

on the di�culties that arise due to constraints on the continuous model. Much
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statistical research has been devoted to the topic of inference about a restricted

function (e.g., Barlow et al. (1972)); here, we do not directly consider practical

issues of inference but, instead, focus on the mathematical artifacts that arise

when applying a discrete model to a continuous function.

3.1. Modeling an increasing time series

Once again, we illustrate the principle involved with a mathematically tract-

able example. Suppose our unknown continuous time series, f(t), is known to be

increasing and is de�ned on the range t 2 [0; 1]. For simplicity, we assume that

f(0) and f(1) are known to be 0 and 1, respectively.

Now suppose we estimate the time series at k � 1 equally-spaced points:

�1; : : : ; �k�1, where �i = f(i=k). As Bayesians, we assign the seemingly innocu-

ous uniform prior distribution on the vector (�1; : : : ; �k�1), so that the mode of

the posterior distribution equals the maximum likelihood estimate. A uniform

distribution on the values �i, along with the constraint that they are increasing

and the known values of f(0) and f(1), is equivalent to a uniform distribution on

the simplex: 0 < �1 < � � � < �k�1 < 1. This in turn is equivalent to saying that

�1; : : : ; �k�1 are the order statistics of a sample of size k � 1 from the uniform

distribution on [0; 1]. In particular, each �i has a marginal beta distribution,

with variance of order 1=k.

3.2. Inference for a �xed data set

As k !1, the prior distribution becomes ever more concentrated about the

straight line f(t) = t, the uniform cumulative distribution function. The strength

of the prior distribution thus depends on the discretization, with potentially grave

consequences.

For example, consider inference from a �xed set of data; e.g., measurements

of f(t), observed with error, for several values of t. As k increases, the prior

precision increases while the data, of course, stay the same. If we are unfortunate

enough to choose an extremely �ne scale of estimation, the mass of the posterior

distribution will virtually ignore the data. In the limit, all the posterior mass lies

on the line, f(t) = t. Interestingly, though, the posterior mode respects the data

even as k !1. In this case, maximum likelihood is reasonable, but its obvious

Bayesian extension is treacherous.

3.3. Example: �tting an increasing, convex mortality rate function

For a simple example, we reanalyze the data of Bro�tt (1988), who presents

a problem in the estimation of mortality rates. (Carlin (1993) provides another
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Bayesian analysis of these data.) For each age, t, from 35 to 64 years, inclusive,

Table 1 displays Nt, the number of people insured under a certain policy, and

yt, the number of insured who died. (People who joined or left the policy in

the middle of the year are counted as half.) We wish to estimate the mortality

rate (probability of death) at each age, under the assumption that the rate is

increasing and convex over the observed range.

This is a nice example for illustrating the issues of scaling, because the data

come binned by year (rather than continuously), but there is really no \natural"

physical time scale for the analysis. We will show how a seemingly reasonable

inference on the time scale of the data can be unacceptable in practice, a failure

that could have been predicted by theoretical arguments alone.

Table 1. Mortality rate data from Bro�tt (1988)

number number number number

age, t insured, Nt of deaths, yt age, t insured, Nt of deaths, yt

35 1771.5 3 50 1516.0 4

36 2126.5 1 51 1371.5 7

37 2743.5 3 52 1343.0 4

38 2766.0 2 53 1304.0 4

39 2463.0 2 54 1232.5 11

40 2368.0 4 55 1204.5 11

41 2310.0 4 56 1113.5 13

42 2306.5 7 57 1048.0 12

43 2059.5 5 58 1155.0 12

44 1917.0 2 59 1018.5 19

45 1931.0 8 60 945.0 12

46 1746.5 13 61 853.0 16

47 1580.0 8 62 750.0 12

48 1580.0 2 63 693.0 6

49 1467.5 7 64 594.0 10

The observed mortality rates are shown in Figure 2 as a solid line; due

to random variation, they are not themselves increasing or convex, even if the

true mortality rates are. The observed deaths at each age, yt, are assumed

to follow independent binomial distributions, with rates equal to the unknown

mortality rates, �t, and known population sizes, Nt. Because the population for

each age was in the hundreds, and the rates were so low, we use the Poisson

approximation for mathematical convenience: P (yj�) / Qt �
yt
t e
�Nt�t . We used a
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To perform Bayesian inference, we need to de�ne a prior distribution for �.

Since we were willing to use the maximum likelihood estimate, it seems reason-

able to use a uniform prior distribution on �, with the constraint of increasing

convexity. (The uniform distribution is also chosen here for simplicity; Bro�tt

(1988) and Carlin (1993) apply various forms of the gamma prior distribution. It

is an interesting question as to whether their analyses based on informative prior

distributions are subject to the problems we discuss here.) Samples from the

posterior distribution are generated by the algorithm of Metropolis et al. (1953),

as detailed in Gelman, Meng and Stern (1996). Nine samples from the posterior

distribution for � are plotted as dotted lines in Figure 3, with the maximum

likelihood estimate from Figure 2 displayed as a solid line for comparison.

The uniform prior distribution for � seems natural, and the maximum likeli-

hood estimate displayed in Figure 2 seems quite reasonable. However, the prior

distribution, as evidenced by the simulations displayed in Figure 3, seems to have

been too strong. Rather than \letting the data speak", the posterior simulations

of the mortality rate curve seem to curve upwards too strongly, as if they are

being forced into the shape of a parabola. Rather than being \noninformative,"

the multivariate uniform prior distribution has the e�ect of a strong prior belief

that the true function is a quadratic.

This model is, of course, just a slight variant of the example of Sections 3.1{

3.2; in fact, the two models are identical if we replace the convex, increasing series

�1; �2; : : :, by the positive, increasing series (�2 � �1); (�3 � �2); : : :. (A uniform

distribution on the original scale corresponds to a uniform on the di�erences,

since the latter are a linear transformation of the former.) The di�erences are

constrained to be positive and thus, as in the previous example, their prior distri-

bution becomes ever-stronger as the scale of the time intervals becomes smaller.

The prior distribution on the series (�t � �t�1) becomes concentrated on a linear

function of t, and so the distribution on the series �t becomes concentrated on a

quadratic. In our example, if the data were analyzed by age in months, rather

than years, the posterior distribution would be focused even more on quadratic

curves, virtually ignoring the data. For our purposes, the most important thing

about this example is that we should have known not to �t this model, even

before seeing any data at all!

The pathological performance of this model is related to the well known result

of Stein (1955) on inadmissibility of Bayesian estimates for many parameters

based on a joint uniform prior distribution. A general remedy for this problem

in the Bayesian context is to replace the improper uniform prior distribution by

a hierarchical family of proper prior distributions, with the information content

of the prior distribution determined by hyperparameters to be estimated from

the data (see, e.g., Morris (1983)). The desired goal is that as the scale of
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discretization changes with �xed data, the strength of the prior distribution in

the Bayesian analysis would remain roughly constant, thus avoiding the problem

discussed in Section 3.2. For the mortality rate example, with its nonnormal data

and constraint of increasing convexity, it is an open problem whether a suitable

hierarchical model will solve the di�culties of scale dependence.

4. Spatial Smoothing

Our �nal example shows how one can restrict the parameters of a speci�c

image model without seeing any data. As in the previous examples, it is not our

purpose to present new results as much as to show that previous results, while

derived from data-analytic considerations, can be seen to have an underlying

theoretical justi�cation.

Consider a two-dimensional image �, discretized by gray-level intensities in a

grid of n square pixels, � = (�1; : : : ; �n). Suppose a data vector, y = (y1; : : : ; yn),

has been observed; to keep things simple, assume independent normal data:

yi � N(�i; �
2). In general, one can imagine y observed directly or indirectly; in

the latter case, the vector y could be augmented data that are imputed using

the EM algorithm (Dempster, Laird and Rubin (1977)) or the Gibbs sampler

(Geman and Geman (1984)). Examples of data augmentation in imaging include

Shepp and Vardi (1982) and Geman and McClure (1987).

Given the observations y (directly or indirectly), Silverman et al. (1990) pro-

pose a local linear smoothed estimate, in which the estimate �̂ is the convolution

of y with a speci�ed kernel: �̂ = Sy. Using the notation (sij) for the elements

of the matrix S, the smoother is required to be a weighted average:
P

j sij = 1

for each i. Silverman et al. suggest smoothing over a 3� 3 grid, with a weighted

average of the center and the eight neighbors:

sij =

�
W=(W + 8); if i = j,

1=(W + 8); if i and j are neighbors.

To bend notation slightly, we can write the smoothing kernel S in spatial form

as

S =
1

W + 8

1 1 1

1 W 1

1 1 1

: (2)

Silverman et al. (1990) report success with values of W from 25 to 100. Is this

advice useful in general, or only for their particular example? If the former, is

there a principle that could tell us not to use W = 1, say, or W = 200? It turns

out that, yes, theoretical reasoning alone can make us distrust the smoother with

W = 1, or, for that matter, W = 5.
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In this example, we consider the discretization as �xed and consider some

theoretical considerations that a�ect the choice of smoothing estimator. The

dependence of inferences on the size and orientation of pixels is an important

related problem that we do not discuss here.

4.1. Bayesian interpretation of the smoothing parameter

As a way of better understanding the smoothing estimate, we interpret it as

a posterior mean from a Bayesian model. Since �̂ = Sy is a linear estimate, it

corresponds to a Gaussian prior distribution. As discussed by Besag (1974), any

multivariate normal distribution can be expressed as a conditional autoregression,

in which the distribution of each component of � is expressed conditionally on

all the others:

E(�ij�j ; all j 6= i) = E(�i) +
X
j 6=i

cij(�j �E(�j));

Var(�ij�j ; all j 6= i) = � 2i :

The joint prior density of � under this model is P (�) / exp[�(��E(�))t diag(��2)
(I �C)(��E(�))=2], where C is the matrix of conditional autoregression coe�-

cients (cij), with the diagonal elements, cii, understood to be zero. In addition,

the precision matrix, diag(��2)(I � C), must be symmetric. For simplicity, we

assume that the prior variances are equal: � 2i = � 2, for all i. (Besag, York and

Mollie (1991) discuss the conditional autoregressive model in more detail in an

applied context.)

Combining the prior distribution with the likelihood, (yj�) � N(�; �2I),

yields the following posterior mean:

�̂ =
� 2

�2 + � 2

�
I � �2

�2 + � 2
C

��1
y;

which corresponds to the linearly smoothed estimate, with a smoother

S / (I � �C)
�1

; (3)

where � = �2=(�2 + � 2). We show that a local conditional autoregression ap-

proximately yields the smoother (2), with weight

W =
8

�

�
1 + �2=8

1 + 3�=8

�
: (4)

Di�erent values of the smoothing parameter, W , can be obtained by allow-

ing � to range from 0 to 1 in equation (4). As � ! 0, W ! 1. This makes
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sense, because if � is low, the prior variance is high, and the Bayesian estimate

will weight the data more highly. A smoothing parameter of W = 50, recom-

mended by Silverman et al. (1990), corresponds to � � 1=6, a fairly weak prior

distribution with variance �ve times the data variance.

The lowest value of W possible in equation (4) is W = 7, corresponding to

� = 1. However, if � is even close to 1, the second order Taylor expansion for

(I � �C)�1 will not be accurate, and many more terms will be required. The

terms C3, C4, and so on, will bleed far beyond the original 3 � 3 grid, and so

the corresponding smoother, S, will no longer be based on the eight nearest

neighbors.

There is thus a logical basis for considering restricting the parameter W to

exceed 10 for the local neighborhood smoother. If one is �tting such a model

and a lower smoothing parameter seems warranted, it would probably be better

to smooth over a larger neighborhood. Conversely, applying the eight-neighbor

smoother with small values of W corresponds to ugly conditional autoregres-

sion models, with alternately positive and negative coe�cients cij extending far

beyond the local neighborhood. For example, for W = 4, the conditional au-

toregressive coe�cients cij are 0.08, 0.64, �0:53, �0:06, and �0:41, for neighbors
of distance 1,

p
2, 2,

p
5, and

p
8, respectively, and coe�cients as high as 0.10

appear for neighbors as far apart as 6
p
2.

4.2. The local neighborhood smoother

We now derive the results just presented. Given that the smoothing operator

is a weighted average (i.e., the smoothing coe�cients sum to 1), the following

implications are well known (see Kimeldorf and Wahba (1970) and Wahba (1978)

for a general discussion and Besag (1986) for the image smoothing interpretation):

(a) the conditional autoregression is intrinsic of order 1, in the sense of Matheron

(1973) and Kunsch (1987)|that is,
P

j cij = 1 for all i|(b) the model for � is

nonstationary; (c) the prior distribution for � is improper; (d) the matrix (I�C)

is noninvertible.

Incidentally, the posterior distribution for �, being a multivariate normal

distribution, can itself be described as a conditional autoregression, but with

new coe�cients that do not sum to 1 and thus a proper distribution.

As discussed in Gelman (1990a, b), the smoother can be approximated using

the Taylor expansion of (3):

S / I + �C + �2C2 + � � � : (5)

To �rst order, C should have the same neighborhood of S.
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Consider the following matrix of autoregression coe�cients:

cij =

�
1=8; if i and j are orthogonal or diagonal neighbors,

0; otherwise.

This is a translation-invariant kernel and is thus characterized by its values cij
for any �xed i, which can be written spatially as

Ci =
1

8

1 1 1

1 0 1

1 1 1

;

with the coe�cients centered at the pixel j = i.

To get the second order approximation, we compute C2, which again is char-

acterized by its neighborhood structure for any i:

(C2)i =
1

64

1 2 3 2 1

2 2 4 2 2

3 4 8 4 3

2 2 4 2 2

1 2 3 2 1

;

again centered at j = i. Then an approximate �t to C2 that is linear in C is

C2 � 1

8
I +

3

8
C; (6)

and (5) can be approximated as

S /
1 1 1

1 W 1

1 1 1

;

where W is given by (4). The linear approximation (6) supplies an approximate

smoother S with the same neighborhood structure as C or, to look at it an-

other way, an approximate conditional autoregressive model with neighborhood

structure C the same as the given smoother S.

In addition, we can reduce the error in the approximation in equation (6)

by further theoretical argument. Using only the eight nearest neighbors, we can

make C2 look most like a linear combination of I and C by setting

Ci =
1

4 + 4
p
2

1
p
2 1p

2 0
p
2

1
p
2 1

;
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which leads to a smoother of the approximate form,

S /
1

p
2 1p

2 W
p
2

1
p
2 1

:

Such a smoother is a better approximation to the Bayes estimate corresponding

to a model with all-positive conditional autoregression coe�cients.

The Bayesian formulation is also useful in practice because it treats �2 and

� 2 as hyperparameters that can be estimated from data. Thus, W does not need

to be pre-speci�ed. One might also consider estimating W using a non-modeling

approach, such as cross-validation: estimate the image using several values of W ,

then choose the W that minimizes some error measure. Suppose this is done,

and the best estimate is a value such as W = 1 that is too low (based on the

above Bayesian reasoning). In this case, the correct response is probably not to

use W = 1, and not to \arti�cially" set W to a higher value, but to expand the

class of estimators to allow smoothing over a larger neighborhood.

5. De�nitions of Scale Invariance

The above examples show how consideration of scaling and implicit prior

distributions can help one understand and criticize probability models and sta-

tistical procedures. It seems desirable to avoid statistical methods corresponding

to unnatural models, especially when such methods can be identi�ed before any

data have been observed; this is related to the \device of imaginary results" of

Good (1950). A model that violates an invariance principle can still be of practi-

cal use, but as in goodness-of-�t testing, it is important to understand its aws.

In this discussion, we consider how the principles of scaling that arose in Sections

2 and 3 can be formalized in the context of time series and image models.

Scale invariance, as applied here, is a subtler principle than translational or

rotational invariance. Instead of requiring that a single probability model be

invariant under scaling (i.e., self-similarity or fractal behavior), we demand a

family of models, indexed by scale, that are mutually consistent. This is some-

what similar to sieve methods for estimation (see, e.g., Grenander (1981)). It

is the family, not any individual model, that should be closed under the scaling

operation.

We propose several di�erent de�nitions of scale invariance. The strongest

condition of consistency under scaling is that all discrete models should be de-

rived from a single underlying distribution for the continuous variable, with any

parameters in the model present in the underlying continuous distribution. In

spatial statistics, it is sometimes easier, and more physically plausible, to con-
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struct an underlying continuous model in space-time, with the spatial distribu-

tion obtained by averaging over the time parameter (see Whittle (1962)). Our

practical goal, however, is to ensure that our inferences under any given class

of models are not a�ected by an arbitrary scale of analysis; construction of an

underlying continuous model can be a useful mathematical way of demonstrating

scale invariance but is not generally an end in itself.

Many useful families of time series and image models, such as intrinsic autore-

gressions (Kunsch (1987)), cannot be derived from a continuous spatial model,

but can still satisfy the following weaker condition of scaling invariance. Consider

an image divided into square pixels of linear dimension �. Now model the image

using pixels of size � that are nested within the larger pixels, and consider the

probability distribution obtained by aggregating to the larger grid. The weaker,

limiting scale invariance principle states that for any �, the distribution obtained

by aggregating smaller pixels should approach a non-degenerate limiting distri-

bution (that will be a function of �) as � ! 0; thus, in that limit, the large-scale

distribution is invariant to �. Another approach that has been suggested is the

hierarchical, or multi-grid, model, with components at an in�nite series of �ner

scales. Of course, such models should also satisfy other invariance properties that

are applicable in a given problem, such as translational invariance (homogeneity)

and rotational invariance (isotropy).

The de�nitions of scale invariance can be further weakened by considering

posterior distributions rather than prior distributions. For example, if the re-

stricted class of ARMA(1,1) models in Section 2 were actually true, then it would

be acceptable in practice to estimate the parameters (�; �) under the unrestricted

model, because with enough data, the parameter estimates would almost cer-

tainly fall along the line of \legal" parameter values pictured in Figure 1. Thus,

the model class is inconsistent in the prior but not in the posterior distribution.

In contrast, the uniform models in Section 3 violate posterior as well as prior

scale invariance. For an example in spatial statistics, the long-range dependence

of the Ising model disappears in the posterior distribution that is obtained by

conditioning on data observed on the lattice, as is noted by Besag (1991). An

important area for further research is to understand which classes of models and

procedures are consistent under scaling when applied to a �xed set of data.
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Appendix: Derivation of the Restricted ARMA (1,1) Model Using a

Continuous Underlying Model

Start by modeling f(t) as an Ornstein-Uhlenbeck process, a Gaussian pro-

cess with spectral density function, fcontinuous(!) / (1 + (!�0)
2)�1, where �0 is

a characteristic scale of the continuous process, without reference yet to any dis-

cretization. To obtain the spectrum of averages of width �, the spectral density

must be multiplied by the spectrum of the moving average operator of width �:

faveraged(!) / sin2(!�=2)

(!�=2)2
fcontinuous(!):

Finally, the spectrum of the desired time series, �1; �2; : : :, which are averages in

intervals [0;�]; [�; 2�]; : : :, is obtained by aliasing out wavelengths lower than

�:

fdiscrete(!) =
1X

k=�1

faveraged (! + 2�k=�)

/ sin2
�
1

2
!�

� 1X
k=�1

1

(! + 2�k=�)2 (1 + (! + 2�
�
k)2�2

0)
:

The in�nite series can be evaluated using partial fractions and complex inte-

gration. Pulling out constant factors that do not depend on ! and simplifying

yields,

fdiscrete(!) / 1� sinh(�=�0)

�=�0

1� cos(!�)

cosh(�=�0)� cos(!�)
:

When considered as a function of !, this expression is proportional to the

ARMA(1,1) spectrum,

fARMA(1,1)(!) / 1 + �2 � 2�� � 2(� � �) cos(!�)

1 + �2 � � cos(!�)
;

with � and � de�ned as in (1) above.
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