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Abstract: For constructing inferential procedures from a random sample of size n,

Graham et al: (1990) proposed second order balanced bootstrap designs that reduce

the variance in the usual, unbalanced bootstrap simulation. Their methods, however,

do not cover the following cases: (i) n, a composite odd number; (ii) n = 4m+ 1, a

prime number. Here we �rst give two methods that provide second-order balanced

designs for all cases. We then extend the results to strati�ed multistage samples,

and construct balanced bootstrap designs, for the important special case of equal

�rst-stage sample sizes within strata, yielding second-order balance.
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matrices, quadratic residues, second-order balance, strati�ed sampling.

1. Introduction

Bootstrap resampling methods are simulation methods for constructing in-

ferential procedures from a random sample x = (x1; : : : ; xn)
0 of size n. To reduce

the variance in the usual, unbalanced bootstrap simulation, several e�cient boot-

strap simulation methods have been proposed: balanced bootstrap by Davison

et al: (1986) and Graham et al: (1990); centering method by Efron (1990); ex-

plicit use of linear approximation of the statistic by Davison et al: (1986). Hall

(1989) studied the properties of these methods in the case of statistics expressible

as smooth functions of means. He showed that the three methods are asymp-

totically equivalent and superior to the usual bootstrap in the sense that the

simulation variance is of smaller order. The advantage of the balanced boot-

strap, however, is that it is totally automatic for any statistic as in the case of

the usual bootstrap.

The method of Davison et al: (1986) yields �rst-order balance which mainly

a�ects bootstrap estimation of bias, while the method of Graham et al: (1990)

provides second-order balance which mainly a�ects bootstrap estimation of vari-

ance. Graham et al: give balanced designs yielding second-order balance, but

their methods do not cover the following cases: (a) n, a composite odd number;
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(b) n = 4m+1, a prime number. In Section 2, we give two methods that provide

second-order balanced designs for all cases. The solutions obtained include those

of Graham et al: as particular cases.

Balanced resampling methods have long been used in sample surveys in the

context of strati�ed multistage samples. For example, McCarthy (1969) pro-

posed the well-known method of balanced repeated replication (BRR) which

yields second-order balance. Rao and Wu (1988) and Rao, Wu and Yue (1992)

extended the usual bootstrap to strati�ed multistage samples with strata �rst-

stage sample sizes nh (h = 1; : : : ; L), where nh is small and the number of strata,

L, is relatively large. In Section 3, we construct balanced bootstrap designs yield-

ing second-order balance for the important special case of equal nh by employing

the balanced designs of Section 2 in conjunction with Hadamard matrices. An

advantage of these designs is that they may require fewer replicates than the BRR

and cover cases where BRR designs, based on orthogonal arrays of strength two,

are not available; for example nh = 6 in each stratum h. Sitter (1993) proposed

an extension of the BRR using orthogonal multi-arrays that allow the number

of resampled units per stratum to be greater than one, unlike the BRR. Sitter's

method is particularly suited for the case of even nh.

Results of a simulation study on the performance of the balanced bootstrap

for strati�ed samples are reported in Section 4.

2. Simple Random Sampling

2.1. Second-order balance

Let T = t(x) be an estimator of a parameter of interest, �, computed from

the random sample x = (x1; : : : ; xn)
0, where t(x) is symmetric. Suppose we are

interested in estimating E(T ) and Var(T ). The bootstrap estimators of E(T ) and

Var(T ) are then given by E�(T ) = E(T �jx) and Var�(T ) = Ef(T � � E�T )
2jxg,

where T � = t(x�) and x
� = (x�1; : : : ; x

�

n
)0 denotes a random sample drawn with

replacement from x. The bootstrap estimators E�(T ) and Var�(T ) are generally

not computable, except in special cases. For example in the linear case T
� =

�x� = n
�1�f�

i
xi, we have

E�(�x
�) = �x; Var�(�x

�) = (n� 1)s2=n2
; (2:1)

where �x = �xi=n, s
2 = �(xi� �x)2=(n� 1) and f

�

i
is the frequency count of xi in

the bootstrap sample.

The usual bootstrap approximates E�(T ) and Var�(T ) by drawing a large

number, S, of independent samples x�
s
= (x�

s1; : : : ; x
�

sn
)0 from x and then using

�T � = S
�1

SX
s=1

T
�

s
; V

� =
SX

s=1

(T �

s
� �T �)2=(S � 1); (2:2)
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where T �

s
= T (x�

s
). The simulation error is not zero even in the linear case (2.1);

for example,

�x� = n
�1

nX
i=1

xi

�
S
�1

SX
s=1

f
�

si

�
6= n

�1

nX
i=1

xi

unless

S
�1

SX
s=1

f
�

si
= 1 (i = 1; : : : ; n); (2:3)

where f�
si
is the frequency count of xi in the s-th bootstrap sample x�

s
. Note that

(2.3) is in agreement with the multinominal expectation E(f�
i
jx) = 1.

The method of Davison et al: (1986) ensures �rst-order balance as given by

(2.3). As a result, it eliminates the linear term in a Taylor expansion of �T � when

T is a smooth function of �x, but does not a�ect V �. In particular, V � is not

equal to Var�(T ) in the linear case where T = �x.

Second-order balanced bootstrap designs satisfy

S
�1

SX
s=1

f
�

si
f
�

sj
= �(i� j) + 1� n

�1 (2:4)

in addition to (2.3), where �(k) = 0 or 1 according as k 6= 0 or k = 0. Conditions

(2.3) and (2.4) ensure that �T � = E�(T ) and V
� = Var�(T ) in the linear case.

Note that (2.4) is in agreement with the multinominal expectation E(f�
i
f
�

j
jx).

2.2. Second-order balanced bootstrap designs

We now give two general methods for constructing second-order balanced

bootstrap (SBB) designs.

Case 1. n = tm (m � t � 2)

Graham et al: (1990) considered the special case of n = 2m or t = 2. Note

that Case 1 covers composite odd numbers n; for example m = 5 and t = 3 gives

n = 15.

Suppose a balanced incomplete block design (BIBD) with parameters v =

n = tm, b; r; k = m;� exists, where each of b blocks contains k plots, each of v

treatments appears in r blocks, and each pair of treatments appears in � blocks.

To construct a SBB design from this BIBD, repeat each treatment within a block

t times and add ~s complete blocks, where ~s = S�b and S = (r��)t2. Identifying

the treatments with the sample units f1; 2; : : : ; ng, we get S balanced bootstrap

samples satisfying the conditions (2.3) and (2.4). This follows by using the BIBD

relations b = rt, �(n� 1) = r(m� 1).



202 A. K. NIGAM AND J. N. K. RAO

Note that S = bt(n�m)=(n�1) so that S is minimized by choosing a BIBD

with the smallest possible b(� n). Also, note that ~s = b[n(t� 2)+1]=(n� 1) � 1

since t � 2.

Many series of BIBD with v = tm and k = m exist and are catalogued in

Hall (1967), Raghavarao (1971), Rao (1961), Sprott (1962) and Takeuchi (1962).

Some of the well-known series which exist for every p, a prime or a prime power,

are as follows:

(i) v = (p+ 1)(p2 + 1), k = p+ 1, b = (p2 +1)(p2 + p+ 1), r = p
2 + p+ 1, � = 1;

(ii) v = p
2
; k = p; b = p(p+ 1), r = p+ 1; � = 1;

(iii) v = p
3
; k = p; b = p

2(p2 + p+ 1); r = p
2 + p+ 1, � = 1;

(iv) v = p
3
; k = p

2
; b = p(p2 + p+ 1), r = p

2 + p+ 1, � = p+ 1.

For instance, when t = m is a prime or a prime power, we can use series (ii) with

p = m, giving ~s = m
3 �m

2 �m and S = m
3. This series is also called Yates'

orthogonal series.

Example 1 (t = 3;m = 3). A BIBD belonging to series (ii) with parameters

v = n = 9, b = 12, r = 4, k = m = 3; � = 1 exists from which a set of S = 27

balanced bootstrap samples is obtained; see Table 1.

Table 1. Balanced design for n = 9; S = 27; unstrati�ed case

Sample Frequency of sample units

s 1 2 3 4 5 6 7 8 9

1 3 3 3 0 0 0 0 0 0

2 0 0 0 3 3 3 0 0 0

3 0 0 0 0 0 0 3 3 3

4 3 0 0 3 0 0 3 0 0

5 0 3 0 0 3 0 0 3 0

6 0 0 3 0 0 3 0 0 3

7 3 0 0 0 0 3 0 3 0

8 0 3 0 3 0 0 0 0 3

9 0 0 3 0 3 0 3 0 0

10 3 0 0 0 3 0 0 0 3

11 0 3 0 0 0 3 3 0 0

12 0 0 3 3 0 0 0 3 0

13|27 1 1 1 1 1 1 1 1 1 (repeat 15 times)

Example 2 (t = 3;m = 7). A BIBD with parameters v = n = 21, b = 30; r =

10; k = m = 7, � = 3 exists from which a set of S = 63 balanced bootstrap

samples can be constructed. This BIBD does not belong to any of the above
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series.

Case 2. n = 4m+ 1 or 4m+ 3, a prime or a prime power

Graham et al: (1990) considered the case of n = 4m + 3, and we extend

their argument to cover n = 4m + 1. A design with S = n balanced bootstrap

samples is obtained by �rst constructing an initial block of size n consisting of

the quadratic residues (i.e., even or odd powers of the primitive root) of the

Galois �eld of n elements, each repeated twice together with the element n once.

The remaining blocks are then obtained by developing the initial block full cycle

modulo n. It follows from Saha and Dey (1973, Theorem 2.2) that this is a

balanced ternary design satisfying (2.3) and (2.4).

Example 3 (n = 13). The primitive root of 13 is 2, and taking its even powers

we get the quadratic residues as 1, 3, 4, 9, 10 and 12. The resulting design has

the initial block (1, 1, 3, 3, 4, 4, 9, 9, 10, 10, 12, 12, 13) which when developed

full cycle modulo 13 gives the desired balanced design; see Table 2.

Table 2. Balanced design for n = 13; S = 13; unstrati�ed case

Sample Frequency of sample units

s 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 0 2 2 0 0 0 0 2 2 0 2 1

2 1 2 0 2 2 0 0 0 0 2 2 0 2

3 2 1 2 0 2 2 0 0 0 0 2 2 0

4 0 2 1 2 0 2 2 0 0 0 0 2 2

5 2 0 2 1 2 0 2 2 0 0 0 0 2

6 2 2 0 2 1 2 0 2 2 0 0 0 0

7 0 2 2 0 2 1 2 0 2 2 0 0 0

8 0 0 2 2 0 2 1 2 0 2 2 0 0

9 0 0 0 2 2 0 2 1 2 0 2 2 0

10 0 0 0 0 2 2 0 2 1 2 0 2 2

11 2 0 0 0 0 2 2 0 2 1 2 0 2

12 2 2 0 0 0 0 2 2 0 2 1 2 0

13 0 2 2 0 0 0 0 2 2 0 2 1 2

Quadratic residues for prime numbers up to n = 97 are reported in Vino-

gradov (1954). The number of quadratic residues is 2m when n = 4m + 1 and

2m+ 1 when n = 4m+ 3.

The case n = 4m+ 1 leads to n = 5 when m = 1. In this case we get a new

design with only S = 5 samples which is obtained by developing the initial block
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(20021) modulo 5 (see Table 3) whereas Graham et al: (1990, p.192) obtained

two designs through trial and error requiring 10 and 15 samples. This reduction

in S is particularly useful in the strati�ed case studied in Section 3.

Table 3. Balanced design for n = 5; S = 5; unstrati�ed case

Sample Freq. of sample units

s 1 2 3 4 5

1 2 0 0 2 1

2 1 2 0 0 2

3 2 1 2 0 0

4 0 2 1 2 0

5 0 0 2 1 2

3. Strati�ed Multistage Sampling

3.1. Second-order balance

Large-scale surveys often employ strati�ed multistage designs with a large

number of strata, L, and relatively few �rst stage units or clusters, nh, sampled

within each stratum independently. It is a common practice to sample the clusters

with probabilities proportional to sizes and without replacement, but at the

stage of variance estimation the calculations are greatly simpli�ed by treating

the sample as if the clusters are sampled with replacement and subsampling

done independently each time a cluster is selected. This approximation leads to

overestimation of variance of T = t(x), but the relative bias is likely to be small

if the �rst stage sampling fractions within strata are small.

Let whik be the survey weight attached to the k-th sample element, or ulti-

mate unit, in the i-th sample cluster belonging to h-th stratum. The estimator

T = t(x) of a parameter of interest � is computed using the survey weights whik.

For example, an estimator of population total X is of the form

X̂ =
X

(hik)2s

whikxhik; (3:1)

where s denotes the sample of elements and xhik is the value of a characteristic

of interest associated with the sample element (hik) 2 s. Under the assumption

of with-replacement sampling of clusters, an unbiased estimator of variance of X̂
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is given by

var(X̂) =
LX

h=1

s
2
rh
=nh; (3:2)

where

(nh � 1)s2
rh
=

nhX
i=1

(rhi � �rh)
2 (3:3)

rhi =
X
k

(nhwhik)xhik; �rh =
X
i

rhi=nh: (3:4)

Unbiasedness of var(X̂) follows by noting that the rhi's are independent and

identically distributed random variables with the same mean and the same vari-

ance in each stratum h.

Turning to the bootstrap for strati�ed multistage sampling, Rao and Wu

(1988) and Rao, Wu and Yue (1992) have shown that a scale adjustment should

be made on the weights whik in order to have valid variance estimation in the case

of small nh. Their method works as follows: (i) Draw a simple random sample

of mh clusters with replacement from the nh sample clusters, independently for

each h. Let f�
hi

be the number of times the (hi)-th sample cluster is selected,P
i
f
�

hi
= mh. De�ne the bootstrap weights

w
�

hik
=
hn
1� (mh=(nh � 1))

1

2

o
+ (mh=(nh � 1))

1

2 (nh=mh)f
�

hi

i
whik (3:5)

and calculate T
�, the bootstrap estimator of �, using the weights w

�

hik
in the

formula for T ; (ii) Independently replicate step (i) a large number, S, of times and

calculate the corresponding estimates T �

1 ; : : : ; T
�

S
; (iii) The bootstrap estimator,

E�T , and variance estimator, Var�(T ) = E�(T
� �ET

�)2, are approximated by

�T � = S
�1

SX
s=1

T
�

s
; V

� =
SX

s=1

(T �

s
� �T �)2=(S � 1): (3:6)

One could also use T in place of �T � in the formula for V
�. As before, the

simulation error is not zero in the linear case where T = X̂ .

To construct second-order balanced bootstrap designs, we con�ne ourselves

to the important special case mh = nh = n for all h. The conditions for second-

order balance are then given by

S
�1

SX
s=1

f
�

shi
= 1; (3:7)
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S
�1

SX
s=1

f
�

shi
f
�

shj
= �(i � j) + 1� n

�1
; i 6= j; (3:8)

and

S
�1

SX
s=1

f
�

shi
f
�

skj
= 1; h 6= k; (3:9)

for all i = 1; : : : ; n; h = 1; : : : ; L, where f�
shi

is the frequency count of the (hi)-th

sample cluster in the s-th balanced bootstrap sample, s = 1; : : : ; S. Conditions

(3.7){(3.9) ensure that �T � = E�(T ) and V
� = Var�(T ) in the linear case, not-

ing that they are in agreement with the multinominal expectations E(f�
hi
jx),

E(f�
hi
f
�

hj
jx), and E(f�

hi
f
�

kj
jx) = E(f�

hi
jx)E(f�

kj
jx), h 6= k.

3.2. Second-order balanced bootstrap designs

Case 1. n = 2m

As noted in the Introduction, second-order balanced bootstrap designs are

obtained by employing the balanced designs of Section 2 in conjunction with

Hadamard matrices.

For the case n = 2m and L strata, we construct a balanced design as follows:

(i) Take L columns of a Hadamard matrix of order p, consisting of +1's and �1's,

where p = 0 (modulo 4) if L � 3 and p = 2 if L = 2. (ii) Replace each +1 and

�1 in the Hadamard matrix by

N =

"
N1

E

#
and Nc =

"
N1c

E

#

respectively, where N1 is a b � n matrix obtained by changing 1 to 2 in the

transpose of the incidence matrix of a BIBD with parameters v = n = 2m,

b = 2r, r, k = m; �, and E is a f4(r� �)� bg � n matrix of all 1's (see Graham

et al: (1990)). The matrix N1c is obtained from N1 by changing 0 to 2 and 2 to

0 in N1. For the BIBD under consideration, we have � = r(m� 1)=(2m� 1), an

integer. Therefore, r = x(v � 1), a multiple of v � 1. This gives b = 2x(v � 1).

We minimize b by choosing x = 1 in which case r = v � 1, b = 2(v � 1) and

4(r��)� b = 2. (iii) Identify the �rst n columns of the resulting matrix of order

S � (Ln) with the n sample clusters in stratum 1, the next n columns with the

n sample clusters in stratum 2, and so on, where S = 4p(r � �).

We now show that the above method gives S balanced strati�ed bootstrap

samples by verifying the conditions (3.7){(3.9) for second-order balance. Clearly,
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the conditions (3.7) and (3.8) for balance within each stratum are satis�ed since

both N and Nc satisfy (2.3) and (2.4) with t = 2 and S changed to ~S = S=p =

4(r��). Turning to across strata balance (3.9), we �rst note that each of the pairs

(N;N); (N;Nc) (Nc; N); (Nc; Nc), corresponding to two di�erent strata h and k,

appears the same number p=4 of times, if 2 < L < p and the column of all +1's or

�1's excluded from the Hadamard matrix; if p = L we would also have each of the

pairs (N;N); (N;Nc) or (Nc; N), (Nc; Nc) appear the same number, p=2, of times.

Next, we note that the sums of f�
shi
f
�

ski
for (N;N); (Nc; Nc), (N;Nc); (Nc; N) are

respectively 4r+f4(r��)� bg, 4r+f4(r��)� bg, f4(r��)� bg, f4(r��)� bg.

Similarly, the sums of f�
shi
f
�

skj
, i 6= j for (N;N); (Nc; Nc), (N;Nc); (Nc; N) are

respectively 4�+ f4(r � �)� bg, 4�+ f4(r � �)� bg, 4(r � �) + f4(r � �)� bg,

4(r � �) + f4(r � �)� bg. Therefore, for every strata pairs (h; k), we have

SX
s=1

f
�

shi
f
�

ski
=

p

4
[8r + 4f4(r � �)� bg] = 4p(r � �) = S;

and
SX

s=1

f
�

shi
f
�

skj
=

p

4
[8�+ 8(r � �) + 4f4(r � �)� b)g = 4p(r � �) = S

if 2 < L < p. In the case p = L we also have strata pairs (h; k) with

SX
s=1

f
�

shi
f
�

ski
=

p

2
[4r + 2f4(r � �)� bg] = 4p(r � �) = S

and
SX

s=1

f
�

shi
f
�

skj
=

p

2
[4�+ 4(r � �) + 2f4(r � �)� bg] = 4p(r � �) = S:

Thus the across strata balance condition (3.9) is also satis�ed.

Example 4. For simplicity, consider the case L = 2 and n = 6. In this case

H =

"
+1 +1

+1 �1

#
;

and using N1 given in Table 6 of Graham et al: (1990) and its complement N1c,

we get the desired design with S = 24 given in Table 4. For example, the �rst

row (220020j220020) means that the �rst balanced bootstrap sample consists of

sample clusters 1, 2 and 5 in stratum 1 repeated twice and sample clusters 1, 2

and 5 in stratum 2 repeated twice. Similarly, the thirteenth row (220020j002202)
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means that the thirteenth balanced bootstrap sample consists of sample clusters

1, 2 and 5 in stratum 1 repeated twice and sample clusters 3, 4 and 6 in stratum

2 repeated twice.

Table 4. Balanced design for L = 2; n = 6; S = 24; strati�ed case

Sample Frequency for stratum 1 Frequency for stratum 2

s 1 2 3 4 5 6 1 2 3 4 5 6

1 2 2 0 0 2 0 2 2 0 0 2 0

2 2 2 0 0 0 2 2 2 0 0 0 2

3 2 0 2 2 0 0 2 0 2 2 0 0

4 2 0 2 0 2 0 2 0 2 0 2 0

5 2 0 0 2 0 2 2 0 0 2 0 2

6 0 2 2 2 0 0 0 2 2 2 0 0

7 0 2 0 2 2 0 0 2 0 2 2 0

8 0 2 2 0 0 2 0 2 2 0 0 2

9 0 0 2 0 2 2 0 0 2 0 2 2

10 0 0 0 2 2 2 0 0 0 2 2 2

11 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 1

13 2 2 0 0 2 0 0 0 2 2 0 2

14 2 2 0 0 0 2 0 0 2 2 2 0

15 2 0 2 2 0 0 0 2 0 0 2 2

16 2 0 2 0 2 0 0 2 0 2 0 2

17 2 0 0 2 0 2 0 2 2 0 2 0

18 0 2 2 2 0 0 2 0 0 0 2 2

19 0 2 0 2 2 0 2 0 2 0 0 2

20 0 2 2 0 0 2 2 0 0 2 2 0

21 0 0 2 0 2 2 2 2 0 2 0 0

22 0 0 0 2 2 2 2 2 2 0 0 0

23 1 1 1 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1 1 1 1

In Section 2 we considered the general case n = tm when L = 1. This

cannot be readily extended to the strati�ed case using the above method since

the sample size for N1c will be (mt �m)t which is not equal to n = mt unless

t = 2.

Case 2. n = 4m+ 1 or 4m+ 3, a prime or a prime power

As in case 1, we take L columns of a Hadamard matrix of order p. We then
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replace +1 by N and �1 by Nc, where N is the n � n incidence matrix of the

balanced design for the unstrati�ed case based on even powers of the primitive

root, and Nc is obtained from N by interchanging 0 and 2. Clearly, Nc is also

balanced since it can be obtained by developing modulo n the initial block with

odd powers of the primitive root occurring twice and the element n occurring

once. The conditions for second order balance within each stratum are therefore

satis�ed. The proof of the cross strata balance is established in the Appendix by

showing that �sf
�

shi
f
�

skj
= pn = S for all pairs of strata (h; k).

4. Simulation Study

We now present the results of a limited simulation study on the �nite-sample

performance of the proposed balance bootstrap for strati�ed random samples.

For this purpose, we employed a synthetic population of N = 14; 000 pairs

(xi; zi) generated from a bivariate gamma distribution in which the variable z

has a gamma distribution with density function f(z) = 0:04z exp(�z=5) and the

conditional density of x given z is also a gamma given by

f(xjz) = fbc�(c)g�1
x
c�1 exp(�x=b);

where

b = 1:15z3=2(8 + 5z)�1
; c = 0:04z�3=2(8 + 5z)2:

Hansen et al: (1983) used this model to study the e�ect of model misspeci�cation

on estimators of a population mean. After generating the synthetic population,

we divided it into 32 strata de�ned by intervals of z, such that the aggregate

values of z were approximately the same from each stratum. Then 10,000 sam-

ples, each of size n = 160, were drawn by strati�ed random sampling with equal

allocation nh = 5, in order to simulate the mean square error (MSE) of an esti-

mator T (x) or T (x; z). The parameters considered here are the �nite population

ratio, X=Z, and the regression and correlation coe�cients of x on z. From each

sample, the corresponding estimates were computed using the survey weights

whi = Nh=nh, where Nh is the number of population units in stratum h (see

Kovar et al: (1988) for details on computation). The true MSE of an estimator

T was simulated as MSE =
P

`
(T` � �)2=10; 000, where T` is the estimate from

`-th sample, ` = 1; : : : ; 10; 000.

To study the properties of various variance estimators and con�dence inter-

vals, we selected an independent set of 2,000 samples as above. From each sample,

the following variance estimates were computed: (i) the jackknife (JACK) with

n = 160 replicates, (ii) the BRR replicates obtained from an orthogonal array

with 250 runs, (iii) the balanced bootstrap (BBOOT) replicates obtained from

the design in Table 3 in conjunction with a Hadamard matrix of order 32 giving
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S = 32 � 5 = 160; (iv) the Rao-Wu bootstrap (BOOT) replicates using S = 160

for comparability (see Kovar et al: (1988) for details on (i), (ii) and (iv)). Us-

ing these variance estimates and the simulated MSE, we simulated the relative

bias (RB) and coe�cient of variation (CV) of the variance estimators. Table 5

reports these values for the ratio, regression and correlation coe�cients (RB and

CV are de�ned in the footnotes to Table 1). It is clear from Table 5 that the

four methods behave similarly with respect to RB and CV, except that BBOOT

is more stable than BOOT as expected (% CV of 16.3 compared to 19.7 for the

ratio and 30.9 compared to 32.4 for the regression coe�cient).

Table 5. % Relative bias (RB) and % CV of variance estimators and % error

rates (L,U) and standardized lengths (SL) of con�dence intervals (nominal

level of 5% in each tail) for the ratio, regression and correlation coe�cients

under strati�ed random sampling with 32 strata and 5 units from each

stratum

Method RBa CVb L U L+U SLc

Ratio

JACK �4.0 16.3 4.1 6.3 10.4 0.98

BRR �4.0 16.3 4.1 6.3 10.4 0.98

BBOOT �4.0 16.3 4.1 5.7 9.8 1.00

BOOT �4.4 19.7 4.2 6.3 10.5 0.99

Regression

JACK 0.3 31.0 4.7 7.6 12.3 0.99

BRR �0.1 30.6 4.7 7.5 12.2 0.99

BBOOT 0.5 30.9 4.6 6.5 11.1 1.06

BOOT �0.7 32.4 5.2 7.2 12.4 1.03

Correlation

JACK �3.0 37.0 9.1 3.4 12.5 0.97

BRR �8.9 32.2 9.8 3.7 13.5 0.94

BBOOT �3.8 35.3 4.9 5.7 10.6 1.08

BOOT �6.1 35.6 5.7 5.6 11.3 1.04

a
RB = 1

2000
(
P

`
V`=MSE)� 1� 100, where V` = variance estimate for `-th sample.

b
CV

2 = 1
2000

f

P
`
(V` � MSE)2g=MSE2.

c
SL = (average length of interval over `)=(2z0:05MSE

1

2 ), where z0:05 is the upper 5%

point of N(0; 1).

We have also studied the properties of normal-theory jackknife and BRR

con�dence intervals and bootstrap-t con�dence intervals; the latter intervals were
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obtained by approximating the distribution of t = (T � �)=VJ by its bootstrap

counterpart t� = (T � � T )=V �

J
, where VJ is the jackknife variance estimator and

V
�

J
is obtained from VJ by changing whik to w

�

hik
(see Rao et al: (1992) for details).

Table 5 also reports the simulated error rates in the lower and upper tails (L;U)

and standardized lengths (SL) of the above con�dence intervals (SL is de�ned in

the footnote to Table 5).

It is clear from Table 5 that the two bootstrap�t intervals track the error

rates in both the lower and upper tails better than the normal theory jackknife

and BRR intervals, especially for the correlation (L = 9:8; U = 3:7 for BRR

vs. L = 4:9; U = 5:7 for BBOOT). The balanced bootstrap interval seems to

perform somewhat better than the Rao-Wu bootstrap interval with respect to

L and U , but its standardized length is slightly larger. The jackknife and BRR

perform better than the bootstrap with respect to SL in the case of regression

and correlation.

5. Concluding Remarks

We have given methods for constructing second-order balanced bootstrap

designs under simple random sampling and strati�ed multistage sampling with

equal �rst-stage sample sizes within strata (i.e., nh = n). In the latter case,

the bootstrap sample sizes within strata, mh, are taken equal to nh (i.e., mh =

nh = n). We have also noted in Section 3.2 that our method for n = 2m in the

strati�ed case does not readily extend to the general case n = tm, unlike under

simple random sampling. It would be useful to develop a suitable method to

handle the general case n = tm. Also, it would be useful to extend the work to

the case where mh 6= n. In particular, the choice mh = n � 1 is useful since it

simpli�es the bootstrap weights w�

hik
to w

�

hik
= [n=(n � 1)]f�

hi
whik. Finally, we

need suitable methods to handle the general case of unequal �rst-stage sample

sizes, nh.
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Appendix: Across Strata Balance for the Cases n=4m+1 and 4m+3

We need to prove that the sum of f
�

shi
f
�

ski
for (N;N); (Nc; Nc); (N;Nc),

(Nc; N) are respectively 2n � 1; 2n � 1; 1; 1. Similarly, we need to show that

the sum of f�
shi
f
�

skj
, i 6= j, for (N;N); (Nc; Nc); (N;Nc); (Nc; N) are respectively
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n� 1; n� 1; n+ 1; n+ 1. Then

SX
s=1

f
�

shi
f
�

ski
=

p

4
(4n� 2 + 2) = np = S

and
SX

s=1

f
�

shi
f
�

skj
=

p

4
(2n� 2 + 2n+ 2) = np = S; i 6= j;

so that condition (3.9) for second-order balance is satis�ed. We need to consider

the two cases n = 4m+ 1 and n = 4m+ 3 separately.

Case 1. n = 4m+ 1

Consider a pair of columns in N with possible entries 20, 02, 21, 12, 00, 22,

01, 10. Now if there is an entry 12 then there must also be the entry 21 since

the sum of f�
shi
f
�

shj
for N equals n � 1 = 4m, a multiple of 4. Also in a pair

of columns with 12 and 21 occurring once, 10 and 01 do not occur since in any

given column 1 appears exactly once. Next consider the entry 22. Since the sum

of f�
shi
f
�

shj
for N equals 4m, 22 must appear m = (n� 1)=4 times if 21; 12 do not

appear; otherwise, 22 appears m� 1 times. Turning to the pair 20, we �rst note

that both 0 and 2 appear (n � 1)=2 = 2m times in any column. Therefore, 20

appears 2m�m = m times if 22 appears m times or 2m� (m�1)�1 = m times

if 22 appears m� 1 times; i.e., 20 always appears m times.

We are now in a position to evaluate the relevant sums of f�
shi
f
�

ski
and f�

shi
f
�

shj
.

First, for (N;N) we have f
�

ski
= f

�

shi
and f

�

skj
= f

�

shj
so that it readily follows

from (2.3) and (2.4) that the relevant sums are 2n � 1 and n � 1; similarly for

(Nc; Nc). It remains to evaluate the sums for (N;Nc); those for (Nc; N) follow by

symmetry. First, we note that the sum of f�
shi
f
�

ski
is equal to 1 since 1 appears only

once in any given column of N which remains unchanged in the corresponding

column of Nc while 2 and 0 are changed to 0 and 2 respectively. Turning to the

sum of f�
shi
f
�

skj
for (N;Nc), it is clear that the contribution comes only from the

entries 20, 21 and 10 in N which become 22, 21 and 12 in (N;Nc). Therefore,

this sum equals 4m+ 2 = n+ 1 when 21 appears in N , i.e., the frequency of 10

is 0. If instead 10 appears in N , then the sum again equals 4m+2 = n+1 since

21 does not appear in N .

Case 2. n = 4m+ 3

In this case we exploit the structure of the related BIBD with v = b =

4m + 3 = n, r = k = 2m + 1 = (n � 1)=2, � = m = (n � 3)=4. The incidence

matrix N
� of BIBD has the following structure: the pairs 11, 00, 01, 10 occur

with frequencies � = m, b� 2r + � = m+ 1, r � � = m+ 1 and r � � = m+ 1

respectively. The initial block of N is obtained by changing 1 to 2 and �xing a

1 in the n-th place. Also, as 2 occurs at quadratic residues and n = 4m + 3, it
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cannot occur at the (n� 1)-th position of the initial block. Thus, 1 is proceeded

by 0 and followed by 2 in N . It is therefore clear that 01 and 10 cannot occur

together and either of the two pairs 01, 12 or 10, 21 occur, each appearing exactly

once.

Now the pair 10 of the BIBD leads to two pairs in N , namely 20 and 21.

Since 10 in the BIBD appears m + 1 times, the pair 20 appears m+ 1 times in

N if 21 does not appear and m+ 1� 1 = m times if 21 appears once.

We therefore �nd the frequency structure of pairs 20, 10, 21 in N is one of

the following types: (a) m; 1; 1; (b) m+ 1; 0; 0. Since 20, 10, 21 become 22, 12,

21 in (N;Nc), the sum of f�
shi
f
�

skj
for (N;Nc) equals 4m + 2 + 2 = n + 1 for

structure (a) and 4(m+ 1) + 0+ 0 = n+ 1 for structure (b). Using the previous

arguments for case 1, the sum of f�
shi
f
�

ski
for (N;Nc) is 1. These results also

hold for (Nc; N) by symmetry. Finally, using (2.3) and (2.4) again the sums of

f
�

shi
f
�

ski
and f

�

shi
f
�

skj
for both (N;N) and (Nc; Nc) are equal to 2n� 1 and n� 1

respectively.
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