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Abstract: Suppose the posterior distribution has a limiting distribution with respect

to each member of a family of conjugate priors. Subject to a uniform boundedness

condition on the prior parameters, the posterior distribution with respect to a mixture

of member priors has the same limiting distribution. This result is used to show that

a posterior distribution (given complete data) with respect to a mixture of Dirichlet

processes prior can be approximated by a Brownian bridge. It also follows from this

result that the limiting posterior distribution (given censored data) with respect to a

mixture of beta-neutral processes prior is identical to the limiting sampling distribu-

tion of the Kaplan-Meier estimator.
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1. Introduction

Normal approximations to posterior distributions originated in work by

Laplace, Bernstein, von Mises, and LeCam (1953); (see LeCam (1986)). The

technique developed can be conveniently applied if the parameter of interest lies

in a �nite dimensional space, and the prior distribution is smooth. In the case

of an in�nite dimensional parameter space, the usual way of studying normal

approximations for nonparametric models consists of showing that a posterior

distribution with respect to a class of conjugate priors has a limiting Gaussian

distribution. See, for example, Lo (1993) for some recent results and references in

this direction. In this paper we show that the limiting posterior distribution with

respect to conjugate priors is preserved for posterior distributions with respect

to mixtures of conjugate priors. More precisely, we show that, subject to a

uniform boundedness condition on the mixing prior parameters, limiting posterior

distributions can be obtained for mixture priors. The idea of this approach is

rather simple: a posterior distribution with respect to a mixture of a family of
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member priors is a mixture of posterior distributions with respect to member

priors of the family. That is, a posterior with respect to a mixture prior is a

mixture of sub-posteriors. A consequence is that if the sub-posteriors are well

behaved, so is their mixture.

If a family of priors forms a conjugate family, the posteriors are also members

of this family, and the limiting posterior distribution of the mixture of sub-

posteriors can be identi�ed. The dimension of the parameter space is irrelevant in

this approach, and hence this method can be used to yield asymptotic posterior

distributions with respect to mixtures of conjugate priors for parametric and

nonparametric models alike. The application of this method to derive a limiting

posterior distribution with respect to a mixture of conjugate priors for parametric

models (see DeGroot (1970), Dalal and Hall (1983)) is quite direct and will not

be given. It should also be pointed out that the Bayesian hierarchical models

discussed by Lindley and Smith (1972) concern mixtures of normal priors for

linear models, and is another instance where the present method can be applied.

In this paper, the emphasis is on Bayesian nonparametric problems. Our

technique is used to transfer the limiting posterior distribution with respect to

a conjugate prior to that with respect to a mixture of conjugate priors; two

examples are given. Section 2 discusses the case of mixtures of Dirichlet pro-

cesses priors (Ferguson (1973), Antoniak (1974)) for complete data. In this case,

Freedman and Diaconis (1983), Section 5 showed that the posterior distribu-

tion is consistent if the prior parameters are subject to a uniform boundedness

condition; our technique applied to this case actually identi�es the limiting pos-

terior distribution, under the same boundedness condition. Section 3 discusses

the right censored data case and a beta-neutral processes prior (Hjort (1990),

Lo (1993)). Mixtures of beta-neutral processes priors are de�ned. A limiting

posterior distribution with respect to a mixture of beta-neutral process priors

given right-censored data is obtained in this section. As a consequence, the pos-

terior distribution of the survival function given right-censored data converges to

a point mass at the \true" survival function, settling a conjecture of Doss (1991).

We discuss some basic techniques of the method in the rest of this section.

A mixture prior for a parameter � is de�ned by

Lf�g = v(d�); Lf� j �g = �(d� j �): (1:1)

In this setting, � can be conveniently regarded as an mixing index of the prior

distribution of the parameter �. The model distribution is de�ned by

LfXj�; �g = P (dxj�): (1:2)
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[Note that the model indicates that �, �, X is a three term Markov chain in

the order written.] Given X = x, the posterior distribution of the parameter

of interest is �(d�jx) =
R
�(d�j�;x)v(d�jx), where v(d�jx) is the conditional

distribution of � given X = x.

Our method depends on an explicit construction of random variables with

distributions identical to the posterior distributions with respect to conjugate

priors. Suppose the mixing variable � 2 T and that the parameter � is an

element of �, which is a subset of a linear space equipped with a convex norm

j � j.

Lemma 1.1. Assume model (1:1) and (1:2). Let X = x be given, and n be

the sample size. Suppose random variables f�n;� : � 2 T g are de�ned on a

probability space such that, for each �, �n;� has distribution �(d�j�;x). Let

Exf�g be the expectation (conditional on X = x) on this probability space, and

�̂ =
R R

��(d�j�;x)v(d�jx) =
R
Exf�n;�gv(d�jx) be the posterior mean. Suppose

there exist random variables �n which are independent of � with �̂n = Exf�ng,

and an increasing sequence b(n), such that

lim sup
n

sup
�

Exfb(n)j�n � �n;�jg = 0: (1:3)

Then Lfb(n)(�n � �̂n)jxg and the posterior distribution Lfb(n)(� � �̂n)jxg have

the same limit; (1:4)

furthermore, b(n)j�̂n � �̂j ! 0, and (1:4) remains valid if either one of �̂n is

replaced by �̂.

Proof. It su�ces to note that for each bounded and contracting Lipschitz func-

tion h,

jExfh[b(n)(�n � �̂n)]g �

Z Z
h[b(n)(� � �̂n)]�(d�j�;x)v(d�jx)j ! 0; (1:5)

see for example Pollard (1984) and LeCam (1986). The left side of (1.5) equals

���Exfh[b(n)(�n � �̂n)]g �

Z
Exfh[b(n)(�n;� � �̂n)]gv(d�jx)

���
=
���
Z
Exfh[b(n)(�n � �̂n)]� h[b(n)(�n;� � �̂n)]gv(d�jx)

���
� b(n)

Z
Exj�n � �n;�jv(d�jx) � sup

�

Ex[b(n)j�n � �n;�j]! 0;

where the �rst inequality follows from Jensen's inequality. Similarly, the second
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statement follows from

b(n)j�̂n � �̂j = b(n)
���Exf�ng �

Z
Exf�n;�gv(d�jx)g

���
� b(n)

Z
Exj�n � �n;�jv(d�jx) � sup

�

Exfb(n)j�n � �n;�jg;

where the �rst inequality follows from Jensen's inequality.

Lemma 1.1 states that, subject to the uniform convergence condition (1.3),

the behavior of the mixing distribution v(d�jx) is irrelevant. This is of inter-

est since Diaconis and Freedman (1986) showed that v(d�jx) may not behave

appropriately in location models; see Section 2.

As we indicated in the beginning, an interesting case for the application of

Lemma 1.1 is that f�(d�j�) : � 2 T g is a conjugate family of priors for the

model distribution fP (dxj�) : � 2 �g. Lemma 1.1 transfers the limiting posterior

distribution based on a member of a conjugate family of priors (i.e., the limit

of Lfb(n)(�n � �̂n)jxg) to that with respect to a mixture of conjugate priors

(i.e., the limit of Lfb(n)(� � �̂n)jxg). In nonparametric problems where a model

density does not exist, the method based on Lemma 1.1 would appear to be

promising. A case in point is where � is the space of distribution functions or

cumulative hazards on a Euclidean space. Here, � is a subset of the \cadlag"

space, i.e., the space of right continuous functions with left limits equipped with

the uniform norm and the projection �-�eld. Lemma 1.1 can be applied if the

limit of Lfb(n)[�n � �̂n]jxg is concentrated on a separable subset of the \cadlag"

space. This is the usual case of interest in statistics; (see Pollard (1984)).

In the following sections, we use Lemma 1.1 to derive limiting posterior

distributions with respect to mixtures of conjugate nonparametric priors in the

setting described above.

Remark 1.1. Lemma 1.1 states that for each sample sequence ! =

(x1; : : : ; xn; : : :) such that Assumption (1.3) is valid, the conclusion of Lemma

1.1 is also valid (note that x is the initial segment of the sequence !). Therefore,

if ! is random and has a (joint) distribution, the validity of Assumption (1.3)

with probability one implies that the conclusion of Lemma 1.1 is also valid with

probability one. In case Assumptions (1.3) is valid in probability, the conclusion

of Lemma 1.1 is also valid in probability.

Remark 1.2. Lemma 1.1 is also useful for sample theorists. Suppose Assump-

tion (1.3) is valid in probability; then the sampling distributions Lfb(n)[�̂n �

�0]j�0g and Lfb(n)[�̂ � �0]j�0g have the same limit (for each �0). This provides



MIXTURE OF PRIORS 191

an easy proof for those who are interested in the limiting sampling distribution

of the posterior mean; (see for example Susarla and Van Ryzin (1979)).

2. Mixtures of Dirichlet Process Priors for Complete Data Models

Suppose v(d�) is the distribution of �, LfF j�g is a Dirichlet process (Fergu-

son (1973)) with shape �� (denoted by D(dF j��)), and X1; : : : ;Xnj(�; F ) are iid

F . Let x = fx1; : : : ; xng be the data (i.e. X = x), and let F̂n(�) = n�1
P

i
�xi(�)

be the empirical distribution function, giving mass n�1 to each xi, i = 1; : : : ; n.

(�y is a point mass at y.) The posterior distribution of F given x is �(dF jx) =R
D(dF j�� + nF̂n)v(d�jx); (see Antoniak (1974), who also derived v(d�jx) ex-

plicitly). Let Zi's be iid exponential random variables, and given the data x, let

Dn(�) =
P

i
Zi�xi(�)=(

P
i
Zi).

Given � and the data x, let �� be a gamma process with shape measure ��,

and let �� and the Zi's be independent. Then

Fn;�(�) = [��(�) +
P

i
ZiDn(�)]=[��(1) +

P
i
Zi]

is a D(dF j�� + nF̂n) process. Easy computation shows that

nEx[sup
t

jFn;�(t)�Dn(t)j] � ��(1): (2:1)

Therefore,

Theorem 2.1. Under the uniform boundedness condition sup
�
��(1) <1,

Lfn1=2[F (�)� F̂n(�)]jxg and Lfn1=2[Dn(�)� F̂n(�)]jxg

have the same limit in D[�1;1] with the uniform norm and the projection

�-�eld; the conclusion also holds if either one of F̂n is replaced by the posterior

mean F̂ (t) =
R
F (t)�(dF jx).

Freedman and Diaconis (1983) showed that the �niteness of sup
�
��(1) en-

sures consistent posterior distributions. Theorem 2.1 states that the �niteness of

sup
�
��(1) actually yields a limiting posterior distribution.

Since the simulation of Dn(�) is the basis of the Bayesian bootstrap (Rubin

(1981)), Theorem 2.1 implies that the Bayesian bootstrap is asymptotically cor-

rect in approximating posterior distributions of F with respect to a mixture of

Dirichlet processes priors.

Let us close this section with a discussion of the special case of a nonpara-

metric location model. Suppose ��(A) = �(A� �) for any event A where � is a

�nite measure. Then

LfF j�g = D(dF j�(� � �)); and X1; : : : ; Xnj(�; F ) are iid F
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is equivalent to

LfGj�g = D(dGj�(�)); and X1 � �; : : : ;Xn � �j(�;G) are iid G(�): (2:2)

In this notation, F (�) = G(� � �).

Model (2.2) is the location model with a Dirichlet prior on the shape dis-

tribution G. Diaconis and Freedman (1986), and Doss (1985), showed that the

posterior distribution of the location parameter �, v(d�jx), does not converge

to a point mass at the \true" location �0 in general. On the other hand, since

sup
�
�(A � �) � �(1) < 1, the above mentioned result of Freedman and Di-

aconis (1983) implies that the posterior distribution of F (�) = G(� � �) (given

complete data) is consistent; Theorem 2.1 and the following Remark 2.1 identify

the limiting posterior distribution of F (�) as a Brownian bridge.

Remark 2.1. The limit of Lfn1=2[Dn(�) � F̂n(�)]jxg was studied in Lo (1987).

The arguments there show that: sup
t
jF̂n(t)� F0(t)j ! 0 implies Lfn1=2[Dn(�)�

F̂n(�)]jxg ! LfB(F0(�))g, where F0 is a distribution function, and B(s) =W (s)�

sW (1), 0 � s � 1, is a Brownian bridge.

Remark 2.2. The choice of Dn(�) to play the role of �n in Lemma 1.1 is

technically convenient in view of the large-sample theory developed in Lo (1987).

On the other hand, LfDn(�)jxg is not a posterior distribution with respect to

some genuine prior distribution. Perhaps a more desirable choice is a particular

member of the conjugate family of priors in question. In the present situation,

such a choice is given by a �xed Fn;�(�), say,

Fn;�0(�) = [��0(�) + nDn(�)]=[��0 (1) + n]:

Theorem 2.1 remains valid since the key inequality (2.1) is

nEx[sup
t

jFn;�(t)� Fn;�0(t)j] � Ex��(1) +Ex��0(1) = ��(1) + ��0(1):

3. Mixtures of Beta-Neutral Processes Priors for Right Censored

Data Models

Let � and � be two �nite measures on [0;1), and �� and �� be two inde-

pendent gamma processes with shapes � and �, respectively. In Lo (1993), a

beta-neutral (�;�) survival process (Hjort (1990)) is de�ned as

S�;�(t) =
Y
y:y�t

f1����(y)=[��[y;1) + ��[y;1)]g;
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where ���(y) is the size of the jump of �� at y. Lo (1993) called S�;� a Bayesian

copy of the Kaplan-Meier function (based on �� and ��). The beta-neutral

process is a special case of the neutral process discussed by Doksum (1974); see

also Ferguson and Phadia (1979). A result of Hjort (1990) implies that beta-

neutral (�;�) processes are conjugate priors when the data are right-censored.

Right censored data are de�ned as follows.

Let F be a distribution on [0;1), and S = 1�F be the corresponding survival

function. Suppose T1; : : : ; TnjS are iid S. Let LfCig = Gi where Ci's are censor-

ing variables; the Ci's and the Ti's are independent. De�ne Yi = minfTi; Cig, and

Xi = (Yi; IfTi�Cig
) for i = 1; : : : ; n. Denote the Yi's corresponding to IfTi�Cig

= 1

by Yu, the other Yi's by Yc.

According to Hjort (1990), (see, however, Remark 3.2 below)

LfSg is a beta-neutral (�;�) process

implies LfSjxg is a beta-neutral (�+
X
u

�yu ;� +
X
c

�yc) process:

Next we de�ne a mixture of beta-neutral processes prior for S. Let v(d�)

be the distribution of � = (k; �). LfSj�g is a beta-neutral (�k;��) process, and

T1; : : : ; Tnj(�; S) are iid S. Then the above arguments already showed that

LfSj�;xg is a beta-neutral (�k +
X
u

�yu ;�� +
X
c

�yc) process: (3:1)

Let BN(dSj�;�) be the distribution of a beta-neutral (�;�) process. With

obvious notation, averaging out the � = (k; �) in (3.1) results in a posterior

distribution of S given x

�(dSjx) =

Z Z
BN(dSj�k +

X
u

�yu ;�� +
X
c

�yc)v(d(k; �)jx);

where v(d(k; �)jx) is the conditional distribution of � given x. Denote the pos-

terior mean
R
S(t)�(dSjx) by Ŝ(t).

We begin by establishing an equality similar to (2.1) in Section 2; this equal-

ity will then imply (1.3) in Lemma 1.1. First, we construct a probability space

in which all \member posteriors" are de�ned. Suppose the data x are given. Let

Zi's be iid exponential random variables. De�ne independent gamma processes

�n;u =
P

u
Zu�xu and �n;c =

P
c
Zc�xc . Let �n = �n;u + �n;c, and de�ne

Sn(t) =
Y
y:y�t

f1���n;u(y)=�n[y;1)g:
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Let Ŝn(t) = ExSn(t) be the Kaplan-Meier estimator.

For each � = (k; �) and given x, let ��k and ��� be two independent gamma

processes with shapes �k and ��, respectively. The ��k and ��� are assumed to

be independent of the Z 0
i
s. Let �� = ��k + ��� , and ��n = ��k + �n;u. For each

�, construct a \posterior beta-neutral process" by

Sn;�(t) =
Y
y:y�t

f1����n(y)=[��[y;1) + �n[y;1)]g:

Sn;�(�) has a beta-neutral (�k +
P

u
�xu ; �� +

P
c
�xc) distribution.

Lemma 3.1. Suppose

lim
n!1

Ŝn(b) = S0(b) > 0 and lim
n!1

n�1
X
i

Ifyi�bg = H0[b;1)�1 > 0: (3:2)

Then

lim sup
n

sup
�

Ex sup
t�b

njSn(t)� Sn;�(t)j=Ŝn(t)

� [sup
k

�k(b) + sup
�

��(b)]� S0(b)
�1H0[b;1)�1[1 +H0[b;1)�1]:

Proof. Use the elementary inequality j
Q

i
ai �

Q
i
bij �

P
i
jai � bij for ai's and

bi's with jaij � 1 and jbij � 1 to get,

sup
t�b

jSn(t)� Sn;�(t)jŜn(t)

� [��k(b) + ���(b)]Ŝn(b)
�1�n[b;1)�1[1 + �n(b)=�n[b;1)]:

Therefore, since ��k and ��� are independent of �n,

nEx[sup
t�b

jSn(t)� Sn;�(t)j=Ŝn(t)]

� nŜn(b)
�1Ex[��k(b) + ���(b)]Exf�n[b;1)�1[1 + �n(b)�n[b;1)�1]g

= [�k(b) + ��(b)]Ŝn(b)
�1Exfn�n[b;1)�1[1 + �n(b)�n[b;1)�1]g

� [�k(b) + ��(b)]Ŝn(b)
�1Exfn�n[b;1)�1[1 + n�n[b;1)�1]g:

Note that the assumption entails

lim sup
n

Ŝn(b)
�1Exfn�n[b;1)�1[1 + n�n[b;1)�1]g

� S0(b)
�1H0[b;1)�1[1 +H0[b;1)�1]:
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Let D[0; b] be the space of cadlag functions equipped with the uniform norm

and the projection �-�eld. In this section, random functions are regarded as

elements in D[0; b].

Theorem 3.1. Assume (3:2). Both sup
k
�k(b) and sup

�
��(b) are �nite imply

Lfn1=2[S(�)=Ŝn(�)� 1]jxg and Lfn1=2[Sn(�)=Ŝn(�)� 1]jxg have the same limit:

(3:3)

Furthermore, (3:3) continues to hold if either one of Ŝn is replaced by the pos-

terior mean Ŝ.

Since the simulation of Sn(�) is the basis for the censored data Baysian boot-

strap (Lo (1993)), Theorem 3.1 implies that the censored data Bayesian boot-

strap discussed in Lo (1993) is asymptotically correct in approximating posterior

distributions of S with respect to a mixture of beta-neutral processes priors.

Recently Doss (1991) conjectured the consistency of the posterior distribu-

tion of the distribution function F = 1 � S given right censored data with re-

spect to a mixture of Dirichlet processes priors. Theorem 3.1 shows more: since

a Dirichlet process with shape �� is a beta-neutral (��; 0) process (Hjort (1990)

and Lo (1993)), Theorem 3.1 and the following (3.5) specialize to yield a limiting

posterior distribution of S with respect to a mixture of Dirichlet processes priors,

implying that the posterior distribution of S converges to a point mass at S0 at

the rate of O(n�1=2).

Remark 3.1. The limiting distribution of Lfn1=2[Sn(�)=Ŝn(�)�1]jxg in Theorem

3.1 was derived in Lo (1993). The required assumption is that the data x obey

the following laws of large numbers:

Assumption 3.1. There exist (sub)distribution functions 1 � S0 and H0 such

that

sup
t�b

jŜn(t)! S0(t)j ! 0 and sup
t�b

���n�1
X
i

Ifyi�tg � [1�H0(t
�)]
���! 0; (3:4)

where b < infft : H0(t) � 1g.

The �rst condition is the consistency of the Kaplan-Meier estimator, and the

second one is the consistency of an empirical distribution function. Theorem 5.1

in Lo (1993) states that Assumption 3.1 implies

Lfn1=2[Sn(�)=Ŝ(�)� 1]jxg ! LfW (C0(�))g; (3:5)

where C0(t) =
R
t

0
fS0(s)[1 � H0(s

�)]g�1S0(ds), and W (s), s � 0 is a Brownian

motion. The limit in (3.5) is the limiting distribution of the Kaplan-Meier esti-
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mator; (see Breslow and Crowley (1974)). Since Assumption 3.1 implies (3.2),

conclusions of Theorem 3.1 are valid.

We have already noted in Remark 1.1 that if (3.4) in Assumption 3.1 is valid

for almost all x, the conclusions of Theorem 3.1 and (3.5) are valid for almost all

x.

Remark 3.2. Hjort (1990) proved the conjugate prior property of the beta-

neutral processes under the conditions that (i) both �(t) and �(t) are piecewise

continuous, and (ii) �(t) jumps only a �nite number of times.

4. Concluding Remarks

The proposed technique for �nding a limiting posterior distribution with

respect to mixtures of conjugate priors can also be applied to other Bayesian

nonparametric problems. A list includes sampling from a nonhomogeneous Pois-

son process with or without censored data (Grenander (1981), Lo (1982, 1992)),

and sampling without replacement from a �nite population (Lo (1988)). Details

are quite similar to those provided in Sections 2 and 3 and are omitted.
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