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Abstract: With reference to an s
m factorial, this paper shows that for 0 < u � s

t+1,

if any u runs are added to an s-symbol orthogonal array of strength 2t then the

resulting plan is E-optimal of resolution 2t + 1 within the class of plans involving

the same number of runs. This result has been partially extended to asymmetric

factorials and utilized in proving the E-optimality of certain other plans which are

nearly saturated and not derivable by augmenting orthogonal arrays.
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1. Introduction

In recent years, there has been a revival of interest in the e�cient designing

of fractional factorial plans; see Dey (1985), Wang and Wu (1991, 1992) and

the references therein. It is well-known (Cheng (1980a)) that fractional factorial

plans given by orthogonal arrays are universally optimal. As discussed in Wang

and Wu (1992) with examples, in a given experimental setting with a speci�ed

number of runs an orthogonal array is not always available. The issue of opti-

mality in such irregular cases has been addressed by several authors. For a 2m

factorial, Cheng (1980b) explored plans obtained by the addition of extra runs

to a two-symbol orthogonal array of strength 2t and established the optimal-

ity of such resolution 2t + 1 plans, within the class of plans involving the same

number of runs, with respect to (a) a wide range of criteria if any single run is

added, and (b) the E-criterion if up to any three runs are added. Kolyva-Machera

(1989) and Collombier (1988) investigated extensions of the result (a), appropri-

ate under the addition of a single run, to 3m and general (possibly asymmetric)

factorial settings. In addition, there has been some work on optimal saturated or

nearly saturated main e�ect plans in the two- or three-factor cases; see Collom-

bier (1992), Chatterjee and Mukerjee (1993) and the references therein. Besides,

various optimality results, within the class of balanced plans, are also available -

see, e.g., Srivastava and Chopra (1971) and Bose and Iyer (1984).

In the present work, with reference to an sm factorial, it has been shown that
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for 0 < u � st + 1, if any u runs are added to an s-symbol orthogonal array of

strength 2t then the resulting plan is E-optimal of resolution 2t + 1 within the

class of plans involving the same number of runs. The result, which strengthens

and generalizes the work of Cheng (1980b) mentioned in (b) above, has been

partially extended to asymmetric factorials as well. Furthermore, this and some

allied results have been employed to prove the E-optimality of certain other plans

which are nearly saturated and not obtainable by augmenting orthogonal arrays.

As a consequence, it is seen that in many situations resolution 3 plans based

on nearly orthogonal arrays due to Wang and Wu (1992) can be E-optimal in

addition to being highly e�cient under other criteria. This provides further jus-

ti�cation for their technique of construction. The Kronecker calculus for factorial

arrangements (Kurkjian and Zelen (1963), Gupta and Mukerjee (1989)) has been

of much use in the derivation of the results.

2. Preliminaries

Consider a set-up involving m (� 1) factors F1; : : : ; Fm at s1; : : : ; sm (� 2)

levels respectively. Interest lies in the case m > 1 but inclusion of the case m = 1

at this stage facilitates the presentation of our results. There are v =
Qm

j=1 sj

level combinations to be denoted by ordered m-tuples i1 : : : im (0 � ij � sj �

1; 1 � j � m). Let F denote the set of the v level combinations. We intend to

study resolution 2t + 1 plans (1 � t � m) and thus our linear model includes

only parameters representing the general mean and complete sets of orthogonal

contrasts belonging to interactions involving at most t factors; we follow the

convention of calling a 1-factor interaction a main e�ect. The following notation

helps in presenting the linear model explicitly.

For 1 � j � m, let Pj be an (sj � 1)� sj matrix such that

Pj1sj = 0; PjP
0

j
= sjIsj�1; (2:1)

where for positive integer a; 1a is the a� 1 vector with all elements unity and Ia
is the a� a identity matrix. Let 
t be the set of binary m-tuples with at most t

components unity. For any x = x1 : : : xm 2 
t, de�ne the �(x)� v matrix

P x =
mN
j=1

P
xj

j
= P x1

1

N
� � �
N
P xm

m
; (2.2a)

where
N

denotes the Kronecker product, �(x) =
Q

m

j=1(sj�1)xj , and for 1 � j �

m,

P
xj

j =

�
10
sj
; if xj = 0;

Pj ; if xj = 1:
(2.2b)

For i1 : : : im 2 F and x = x1 : : : xm 2 
t; let p
x

i1:::im
denote the i1 : : : imth column

of P x obtained as a Kronecker product of m terms given by the ijth column of
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P
xj

j
; 1 � j � m. In particular, if x = 00 : : : 0; then by (2.2a), (2.2b) P x

i1 :::im
equals

the scalar unity.

LetYi1���im be any observation corresponding to the level combination i1 : : : im.

Then, according to our linear model, �i1:::im = E(Yi1 :::im) is given by

�i1:::im =
X
x2
t

(px
i1:::im

)0�x; (2:3)

where the scalar parameter �00���0 represents the general mean and for each x 2


t; x 6= 00 : : : 0; the �(x) � 1 vector �x represents a complete set of orthogonal

contrasts belonging to the interaction F x1
1 : : : F xm

m
. As usual, we shall assume

that the errors are uncorrelated and homoscedastic.

It may be worthwhile to discuss the parametrization given by (2.3) in a little

more detail. To that e�ect, let

P (t) = [: : : ; P x
0

; : : :]0
x2
t

; �(t) = (: : : ; �0
x
; : : :)0

x2
t
: (2:4)

For example, if m = 2; t = 1, then

P (t) =
h
P 000 ; P 010 ; P 100

i0
; �(t) = (�000; �

0

01; �
0

10)
0:

By (2.1), (2.2), (2.4),

P (t)P (t)0 = vI; (2:5)

where I is an identity matrix of appropriate order. Now, let � be the v�1 vector

with elements �i1���im arranged lexicographically. Then by (2.3), (2.4),

� =
X
x2
t

P x
0

�x = P (t)0�(t);

so that by (2.5), �(t) = v�1P (t)�, i.e.,

�x = v�1P x�; x 2 
t: (2:6)

The relation (2.6) (see also (2.1), (2.2)) explains why �00:::0 represents the general

mean and for x 2 
t; x 6= 00 : : : 0, �x represents a complete set of orthogonal

contrasts belonging to F x1
1 � � �F xm

m
; cf. Kurkjian and Zelen (1963) and Gupta

and Mukerjee (1989). If s1 = � � � = sm = 2, then with Pj = [�1; 1] for each j, the

model (2.3) is easily seen to be in agreement with the one considered by Cheng

(1980b). We further remark that none of our results depends on the speci�c

choices of P1; : : : ; Pm as long as they satisfy (2.1).

With reference to an s1 � � � � � sm factorial, let D(T ; s1 � � � � � sm) denote

the class of all designs or plans involving T level combinations (i.e., T runs)
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which are not necessarily distinct. If among s1; : : : ; sm; there are �i which equal

�i (1 � i � w); where �1; : : : ; �w; �1; : : : ; �w are positive integers (�1; : : : ; �w �

2; �1+ � � �+�w = m), then we shall often write D(T ;�
�1

1 �� � ����w
w
) for D(T ; s1�

� � � � sm): For any plan d 2D(T ; s1 � � � � � sm), let rd(i1 � � � im) be the number of

times the level combination i1 : : : im appears in d (i1 : : : im 2 F), Rd be a v � v

diagonal matrix with diagonal elements rd(i1 � � � im) arranged in the lexicographic

order, and rd = Rd1v. Then by (2.4), it is easily seen that under the model (2.3)

the information matrix of d, with reference to the parametric vector �(t), is

proportional to

Id(t) = P (t)RdP (t)
0: (2:7)

In the sequel, we shall also require the principal submatrix I�
d
(t) of Id(t) obtained

by deleting the �rst row and the �rst column of the latter, i.e., by (2.4), (2.7),

I�
d
(t) = P �(t)RdP

�(t)0; (2.8a)

where

P �(t) = [: : : ; P x
0

; : : :]0
x2
t;x6=00:::0

: (2.8b)

A plan d0 2 D(T ; s1 � � � � � sm) will be said to be E-optimal [E�-optimal] of

resolution 2t+1 in D(T ; s1�� � ��sm) if Id0(t) [I
�
d0
(t)] is positive de�nite and if it

maximizes �min(Id(t)) [�min(I
�
d
(t))] over D(T ; s1 � � � � � sm): Here �min(�) stands

for the smallest eigenvalue. It may be made explicit that we are not interested

in E�-optimality as such but that this notion will help in deriving results on

E-optimality.

For subsequent use, we now present a lemma which is proved in Appendix.

For x = x1 : : : xm 2 
t, de�ne the �(x)� v matrix

Zx =
mN
j=1

Z
xj

j
; (2.9a)

where

Z
xj

j =

�
10
sj
; if xj = 0;

Isj ; if xj = 1;
(2.9b)

and

�(x) =
mY
j=1

s
xj

j : (2:10)

For d 2 D(T ; s1 � � � � � sm) and x 2 
t, let

rx
d
= Zxrd (2:11)

and let min(rx
d
) denote the smallest element of rx

d
: Thus, with d = f000; 011; 100,

101g 2 D(4; 23) and x = 011; one gets rx
d
= (2; 1; 0; 1)0 and min(rx

d
) = 0: The
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elements of rx
d
represent, in the lexicographic order, the frequencies with which

the level combinations of the factors Fj with xj = 1 appear in d.

Lemma 2.1. For each d 2 D(T ; s1 � � � � � sm) and x 2 
t; �min(Id(t)) �

�(x)min(rx
d
):

For ease in reference, we now recall a de�nition. An orthogonal array

OA(N; s1�� � �� sm; 2t) of strength 2t (� m) is an N �m array, with elements in

the jth column from a set of sj (� 2) distinct symbols (1 � j � m), in which all

possible combinations of symbols appear equally often as rows in every N � 2t

subarray (Rao (1973)). If the level combinations in �d 2 D(N ; s1 � � � � � sm)

constitute an OA(N; s1 � � � � � sm; 2t), then by (2.1), (2.2), (2.4), (2.7),

I �d(t) = N I; (2:12)

where I is an identity matrix of appropriate order. If among s1; : : : ; sm, there are

�i which equal �i (1 � i � w); where �1; : : : ; �w; �1; : : : ; �w are positive integers

(�1; : : : ; �w � 2; �1 + � � �+ �w = m), then we shall often write OA(N;�
�1

1 � � � � �

��w
w
; 2t) for OA(N; s1 � � � � � sm; 2t).

3. E-Optimal Plans via Augmentation of Orthogonal Arrays

3.1. The symmetric case

The case s1 = � � � = sm = s (� 2) will be considered in this subsection. The

following lemma is proved in Appendix.

Lemma 3.1. Let T � �s2t + st + 1; where � and t are positive integers. Then

max
d2D(T ;sm)

�min(Id(t)) � �s2t;

provided either (a) st � 3;m � 2t; or (b) s = 2; t = 1;m � 3:

Theorem 3.1. Let there exist an orthogonal array OA(�s2t; sm; 2t) of strength

2t (� m): For 0 < u � st + 1; let d0 2 D(�s2t + u; sm) be a plan obtained by

adding any u runs to the orthogonal array. Then d0 is E-optimal of resolution

2t+ 1 in D(�s2t + u; sm) if any one of the following holds:

(i) s � 3; t � 1, (ii) s = 2, t � 2, (iii) s = 2, t = 1, m � 3:

Proof. As m � 2t; under each of (i)-(iii), either condition (a) or condition (b)

of Lemma 3.1 holds. Hence by Lemma 3.1, noting that u � st + 1,

max
d2D(�s2t+u;sm)

�min(Id(t)) � �s2t: (3.1a)

On the other hand, d0 contains a subdesign, say �d, given by the orthogonal array

as in the statement of the theorem. Hence by (2.12),

�min(Id0(t)) � �min(I �d(t)) = �s2t: (3.1b)
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From (3.1a,b), the result follows.

As noted in Introduction, with reference to 2m factorials, Cheng (1980b)

showed that for u � 3, E-optimality is retained under the addition of any u runs

to a two-symbol orthogonal array of strength 2t. For s = 2; t = 1, Theorem 3.1

is identical with his result while for s = 2; t � 2, Theorem 3.1 strengthens his

result by showing its validity for u � 2t + 1; for example, by Theorem 3.1, E-

optimality (of resolutoin 5) is retained under the addition of up to any �ve runs

to a two-symbol orthogonal array of strength four. Also, Theorem 3.1 extends

Cheng's ideas to sm factorials. It will be interesting to examine whether this

theorem can be strengthened further leading to an increased upper bound for u.

This, however, seems to be di�cult even for t = 1.

It may be remarked that Theorem 3.1 does not hold if s = 2; t = 1;m = 2.

This follows, for example, considering the plans d1 = f00; 01; 10; 11; 11; 11; 11g

and d2 = f00; 01; 10; 11; 00; 01; 10g; both belonging to D(7; 22) and both obtained

by the addition of three runs to a trivial OA(4; 22; 2). Then �min(Id1(1)) = 4 and

�min(Id2(1)) = 5, so that d1 is not E-optimal of resolution 3 in D(7; 22).

3.2. The asymmetric case

Even for t = 1; it is di�cult to extend Theorem 3.1, in full generality, to

the asymmetric case. However, Theorem 3.2 below gives a partial extension.

Part (b) of this theorem shows that at least in an important special case a full

extension of Theorem 3.1 is possible. The following lemma, proved in Appendix,

will be helpful.

Lemma 3.2. Consider the set-up of an s1 � � � � � sm asymmetric factorial

experiment where s1 � � � � � sm (� 2) and s1; : : : ; sm are not all equal. Let

s1 = � � � = s2t = s for some positive integer t such that 2t < m: Then for

T � �s2t + st + 1, where � is a positive integer,

max
d2D(T ;s1�����sm)

�min(Id(t)) � �s2t:

Theorem 3.2. Let there exist an orthogonal array OA(N; s1 � � � � � sm; 2t) of

strength 2t (� m); where s1 � � � � � sm (� 2) and s1; : : : ; sm are not all equal.

(a) For 0 < u � (
Qt

j=1 sj)�1, let d0 2 D(N +u; s1�� � �� sm) be a plan obtained

by adding any u runs to the orthogonal array. Then d0 is E-optimal of resolution

2t+ 1 in D(N + u; s1 � � � � � sm):

(b) If, in addition, s1 = � � � = s2t = s then for 0 < u � st + 1, a plan d0 2

D(N + u; s1 � � � � � sm); obtained by adding any u runs to the orthogonal array,

is E-optimal of resolution 2t+ 1 in D(N + u; s1 � � � � � sm).
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Proof. (a) Consider a �xed x = x1 � � � xm (2 
t) given by x1 = � � � = xt = 1,

xt+1 = � � � = xm = 0: By (2.10), �(x) = �, where � =
Q

t

j=1 sj : By (2.9), (2.11),

for each d 2 D(N +u; s1� � � �� sm), the elements of rx
d
represent the frequencies

with which the � level combinations of factors F1; : : : ; Ft occur in d. Hence these

elements are non-negative integers with sum N + u. Since the existence of an

orthogonal array, as in the statement of the theorem, implies that N=� is an

integer and since u < �, it follows that at least one element of rx
d
must be less

than or equal to N=�. Therefore, by Lemma 2.1,

max
d2D(N+u;s1�����sm)

�min(Id(t)) � N:

The result now follows from (2.12) and the de�nition of d0.

(b) The existence of an orthogonal array, as in the statement of the theroem,

implies that N=s2t (= �; say) is a positive integer. Thus N + u � �s2t + st + 1;

and the result follows from Lemma 3.2 exactly as Theorem 3.1 could be obtained

from Lemma 3.1.

Example 3.1. It is known (Wu (1989), Wang and Wu (1991)) that the following

orthogonal arrays exist:

(i) OA(18; 6 � 36; 2), (ii) OA(32; 49 � 24; 2), (iii) OA(36; 312 � 211; 2).

By Theorem 3.2, plans obtained by adding up to any �ve, �ve or four runs

respectively to the arrays in (i), (ii), (iii) will be E-optimal of resolution 3 in the

relevant classes.

It would be of interest to examine how the E-optimal plans d0, obtained by

the addition of u runs to an N -run orthogonal array, say �d, as in Theorems 3.1,

3.2, perform under other commonly used criteria. Clearly, d0 should be highly

e�cient under other criteria if u is small compared to N . Even otherwise, our

computations suggest that if the rows of the design matrix (cf: (2.3)) correspond-

ing to the u extra runs are mutually orthogonal or at least linearly independent

then d0 tends to behave satisfactorily under other criteria; see Jacroux, Wong and

Masaro (1983), Chadjiconstantinidis, Cheng and Moyssiadis (1989) and Masaro

and Wong (1992) for comparable results under general optimality criteria with

reference to 2m factorial designs. In particular, if �d is saturated then, following

Mukerjee and Wu (1995), this orthogonality requirement can be met by choosing

the u extra runs as u distinct runs of �d itself. Table 3.1 shows lower bounds on

the D- and A-e�ciencies of d0 in some typical cases. In each of these cases, d0
is obtained by augmenting a saturated N -run orthogonal array, �d, by u distinct

runs of �d itself and, by Theorems 3.1, 3.2, d0 is E-optimal in the relevant class.

Also, then Id0(t) is an N � N matrix and one can check that its eigenvalues

are N and 2N with multiplicities N � u and u respectively. Hence the tabu-

lated lower bounds for the D- and A-e�ciencies of d0 equal 2
u=NN=(N + u) and



522 RAHUL MUKERJEE

2N 2=f(2N � u)(N + u)g respectively. These are based on comparison with an

imaginary plan given by an orthogonal array of strength 2t and involving the

same number of runs as d0. The lower bounds for D-e�ciency, as shown inTable

3.1, appear to be quite impressive. The corresponding �gures for A-e�ciency

are also satisfactory in consideration of the fact that the bound is somewhat

conservative.

Table 3.1. Lower bounds for D- and A-e�ciencies of d0

Serial Construction of d0 Lower bounds for

number �d u t D-e�ciency A-e�ciency

1 OA(16; 25; 4) 5 2 0.946 0.903

2 OA(18; 6� 36; 2) 5 1 0.949 0.909

3 OA(20; 219; 2) 3 1 0.965 0.940

4 OA(25; 56; 2) 6 1 0.952 0.916

5 OA(27; 313; 2) 4 1 0.965 0.941

6 OA(32; 49 � 24; 2) 5 1 0.964 0.938

7 OA(36; 312 � 211; 2) 4 1 0.972 0.953

4. E-Optimal Plans via Nearly Orthogonal Arrays

4.1. Preliminary results

The following preliminary results will be useful in this section. Of these,

Lemma 4.1 is proved in Appendix, Theorem 4.1 follows from Lemma 4.1 exactly

as Theorem 3.1 was proved using Lemma 3.1, and Theorem 4.2 is a consequence

of Lemma 2.1 (cf: Shah and Sinha (1989, Ch: 3)).

Lemma 4.1. Let T � �s2t + st, where s (� 2), � and t are positive integers.

Then

max
d2D(T ;sm)

�min(I
�

d
(t)) � �s2t;

provided either (a) st � 3, m � 2t; or (b) s = 2, t = 1, m � 3:

Theorem 4.1. Let there exist an orthogonal array OA(�s2t; sm; 2t) of strength

2t (� m): For 0 < u � st, let d� 2 D(�s2t + u; sm) be a plan obtained by adding

any u runs to the orthogonal array. Then d� is E�-optimal of resolution 2t+ 1

in D(�s2t + u; sm) if any one of the following holds:

(i) s � 3, t � 1, (ii) s = 2, t � 2, (iii) s = 2, t = 1, m � 3:

Theorem 4.2. Let m = t = 1, s1 = s, T > s and r0 denote the largest integer

that does not exceed s�1T . Then a plan d0 2 D(T ; s) with min0�i�s�1 rd0(i) = r0

is E-optimal (of resolution 3) in D(T ; s).
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Note that Theorem 4.1 does not hold if s = 2, t = 1, m = 2. As in

Section 3, this follows considering, for example, d�1 = f00; 01; 10; 11; 00; 00g and

d�2 = f00; 01; 10; 11; 00; 01g and noting that d�1 is E
�-inferior to d�2.

4.2. Main results

We now consider s1 � � � � � sm factorials and specialize to the case t = 1

with the objective of investigating plans based on nearly orthogonal arrays due

to Wang and Wu (1992). We show that in many situations their construction

can yield E-optimal plans apart from ensuring very high e�ciency under other

criteria. The plans to be considered now are nearly saturated and not obtainable

by directly augmenting orthogonal arrays.

Consider any plan d 2 D(T ; s1 � � � � � sm). For 1 � j � m, let R
(j)

d
be an

sj� sj diagonal matrix with diagonal entries given by the replication numbers of

the levels of Fj in d and r
(j)

d
be an sj�1 vector de�ned as r

(j)

d
= R

(j)

d
1sj : Also, for

1 � j; ` � m; j 6= `; let M
(j;`)

d
be the sj � s` incidence matrix between factors Fj

and F` relative to the plan d, i.e., for 0 � ij � sj�1; 0 � i` � s`�1, the (ij ; i`)th

element of M
(j;`)

d
equals the number of times the level ij of Fj appears together

with the level i` of F` among the level combinations in d. Since the case t = 1

is being considered, we also write Id � Id(1) and I
�
d
� I�

d
(1) in this subsection.

Then by (2.2), (2.4), (2.7), (2.9),

Id =

2
6666664

T r
(1)0

d
P 0
1 r

(2)0

d
P 0
2 � � � r

(m)0

d
P 0
m

P1r
(1)

d
P1R

(1)

d
P 0
1 P1M

(1;2)

d
P 0
2 � � � P1M

(1;m)

d
P 0
m

P2r
(2)

d
P2M

(2;1)

d
P 0
1 P2R

(2)

d
P 0
2 � � � P2M

(2;m)

d
P 0
m

...

Pmr
(m)

d
PmM

(m;1)

d
P 0
1 PmM

(m;2)

d
P 0
2 � � � PmR

(m)

d
P 0
m

3
7777775
; (4:1)

and I�
d
is a principal submatrix of Id obtained by deleting the �rst row and the

�rst column of the latter.

The following preliminaries help in presenting our next theorem. Let m � 2,

q be a positive integer (1 � q < m) and T = T1T2 where T1; T2 (> 1) are positive

integers. Let d01 2 D(T ; s1 � � � � � sq) be resolvable into T1 mutually exclusive

and exhaustive parts, each consisting of T2 runs, such that for 1 � j � q, the

levels of Fj appear equally often in each part. Then T2 is clearly an integral

multiple of each of s1; : : : ; sq. For 1 � ` � T1, let the level combinations in the

`th part of d01 be  `1; : : : ;  `T2
. Let bd02 2 D(T1; sq+1 � � � � � sm) consist of the

level combinations b 1; : : : ;
b T1
: Finally, let d0 2 D(T ; s1 � � � � � sm) be given by

d0 = f ``0
b ` : 1 � ` � T1; 1 � `0 � T2g: (4:2)

From each level combination in d0, if the levels of Fq+1; : : : ; Fm are deleted then

one gets the plan d01; on the other hand, if the levels of F1; : : : ; Fq are deleted
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then one gets the plan d02 (2 D(T ; sq+1 � � � � � sm)) which is a T2-fold repetition

of bd02:
Theorem 4.3. With reference to the set-up described in the last paragraph,

if d01 is E�-optimal of resolution 3 in D(T ; s1 � � � � � sq) and d02 is E-optimal

of resolution 3 in D(T ; sq+1 � � � � � sm) then d0 is E-optimal of resolution 3 in

D(T ; s1 � � � � � sm).

Proof. For any d 2 D(T ; s1� � � � � sm), one can de�ne d1 (2 D(T ; s1� � � � � sq))

obtained by deleting the levels of Fq+1; : : : ; Fm from each level combination in

d, and d2 (2 D(T ; sq+1 � � � � � sm)) obtained by deleting the levels of F1; : : : ; Fq

from each level combination in d. By (4.1), there exists a permutation matrix P

such that for each d 2 D(T ; s1 � � � � � sm),

PIdP
0 =

�
Id2 Wd

W 0
d

I�
d1

�
; (4:3)

where Id2 and I
�
d1

are analogous to (4.1) and

Wd =

2
66664

r
(1)0

d
P 0
1 � � � r

(q)0

d
P 0
q

Pq+1M
(q+1;1)

d
P 0
1 � � � Pq+1M

(q+1;q)

d
P 0
q

...

PmM
(m;1)

d
P 0
1 � � � PmM

(m;q)

d
P 0
1

3
77775 : (4:4)

By (4.3), for each d 2 D(T ; s1 � � � � � sm),

�min(Id) � minf�min(Id2); �min(I
�

d1
)g: (4:5)

By our construction, for 1 � ` � q, q + 1 � j � m; each row vector of M
(j;`)

d0
is

proportional to 10
s`
: Furthermore, for 1 � ` � q; the levels of F` occur equally

often in d01 and hence in d0. Therefore, by (2.1) and (4.4), Wd0
is a null matrix

so that by (4.3),

�min(Id0) = minf�min(Id02); �min(I
�

d01
)g:

From (4.5) and the given conditions on d01 and d02, it is now easy to complete

the proof.

In particular, if d01 and bd02 are both orthogonal arrays of strength 2, then

as in Wang and Wu (1991), d0 is also an orthogonal array of strength 2 and the

conclusion of Theorem 4.3 becomes obvious.

A substantial part of the constructions due to Wang and Wu (1992) can

be linked with (4.2). It will be convenient to recall some de�nitions at this

stage. For positive integers c; q; s (� 2), a di�erence matrix Dc;q;s is a c � q
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matrix, with elements from an additive group G of cardinality s, such that among

the di�erences of the corresponding elements of every two distinct columns the

elements of G occur with equal frequency (Wang and Wu (1991); see also Beth,

Jungnickel and Lenz (1985, Ch: 8)). Similarly, a nearly di�erence matrix is one

where among the di�erences of the corresponding elements of every two distinct

columns the elements of G occur as evenly as possible (Wang and Wu (1992)).

Also, for two matrices �1 = [�1ij ] of order a1 � a2 and �2 of order a3 � a4, both

with entries from the same additive group, their Kronecker sum is de�ned as

�1 ��2 = [�
�1ij

2 ]1�i�a1;1�j�a2 ;

where �
�1ij

2 is obtained by adding �1ij to each element of �2.

Now, with reference to (4.2), let q � 2; s1 = � � � = sq = s (� 2) and suppose

d01 consists of level combinations represented by the rows or  � �, where �

is a T1 � q di�erence matrix or nearly di�erence matrix with elements from

an additive group G = f0; 1; : : : ; s�1g and the s � 1 vector  is given by

 = (0; 1; : : : ; s�1)
0 (the treatment will be essentially similar if d01 is generated

from � using an s-symbol orthogonal array instead of ; vide Wang and Wu

(1992)). Then d01 2 D(T ; sq), where T = T1s, and d01 is resolvable into T1

parts, each consisting of s runs, such that in each part the levels of every factor

involved in d01 occur equally often. Note that each row of � accounts for one

of the parts into which d01 is resolvable. Next suppose the level combinations inbd02 2 D(T1; sq+1 � � � � � sm) are represented by the rows of a T1 � (m� q) array

L. Finally, following Wang and Wu (1992; see their equations (6.5) or (6.8)), let

d0 2 D(T ; s
q� sq+1� � � � � sm) consist of level combinations given by the rows of

[ ��; 0s � L]; (4:6)

where 0s is an s� 1 vector with each element 0. It is easily seen that (4.6) is in

conformity with (4.2). With reference to (4.6), d02 is given by the T � (m � q)

array 0s � L.

Theorem 4.3 is applicable in proving the E-optimality of d0, given by (4.6),

provided d01, given by  ��, is E�-optimal and d02, given by 0s �L; is E-optimal

of resolution 3 in relevant classes. If � is a di�erence matrix then d01 is given

by an orthogonal array of strength 2 and is, therefore, E�-optimal of resolution

3. On the other hand, if � is a nearly di�erence matrix obtained by augmenting

any single row to a (T1 � 1) � q di�erence matrix then d01 consists of an s-

symbol orthogonal array of strength 2 together with s extra runs and hence, by

Theorem 4.1, is E�-optimal of resolution 3 if either s � 3; q � 2 or s = 2; q � 3;

see Examples 4.1(b), (c), (f) below for illustration. Again, if bd02 is given by

an orthogonal array of strength 2 then so is d02 and hence d02 is E-optimal of
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resolution 3. On the other hand, if bd02 is a nearly orthogonal array obtained

by the augmentation of bu runs to an orthogonal array of strength 2, then d02

consists of an orthogonal array of strength 2 together with bus extra runs, and

if ûs is su�ciently small then Theorem 3.1 or 3.2 can be employed to establish

the E-optimality of d02; see Examples 4.1(d), (e), (g) below for illustration. As

Examples 4.1 (a), (c) indicate, if q = m � 1 then Theorem 4.2 is also useful in

this regard.

On the basis of the above considerations, in many cases one can employ

Theorem 4.3 to establish the E-optimality of the plans due to Wang and Wu

(1992). Some representative examples are given below. In all these examples,

d0 is constructed using (4.6). We only present � and L and indicate the results

required in addition to Theorem 4.3 to show that d0 is E-optimal in the relevant

class.

Example 4.1. The following are some E-optimal resolution 3 plans.

(a) (16-run plan for 28�7 factorial) Take � = D8;8;2; given by a 8�8 Hadamard

matrix, and L = (0; 1; 2; 3; 4; 5; 6; 0)0 : Use Theorem 4.2.

(b) (18-run plan for 28 � 34 factorial) Take � as a 9� 8 nearly di�erence matrix

obtained by the augmentation of the single row (0; 0; : : : ; 0) to D8;8;2. Let L be

given by OA(9; 34; 2). Use Theorem 4.1.

(c) (21-run plan for 36 � 7 factorial) Take � as a 7 � 6 nearly di�erence matrix

obtained by the augmentation of the single row (0; 0; : : : ; 0) to D6;6;3 (see Wang

and Wu (1991)). Let L = (0; 1; 2; 3; 4; 5; 6)0 . Use Theorems 4.1 and 4.2.

(d) (27-run plan for 39�4�24 factorial) Take � = D9;9;3 (Bose and Bush (1952))

and obtain L by adding the single run 00 � � � 0 to OA(8; 4� 24; 2)). Use Theorem

3.2.

(e) (40-run plan for 220 � 6� 36 factorial) Take � = D20;20;2, given by a 20� 20

Hadamard matrix. Obtain L by adding two runs (say, the runs 0000000 and

0111111 are added) to OA(18; 6 � 36; 2). Use Theorem 3.2.

(f) (50-run plan for 224�56 factorial) Take � as a 25�24 nearly di�erence matrix

obtained by the augmentation of the single row (0; 0; : : : ; 0) to D24;24;2, given by

a 24� 24 Hadamard matrix. Let L be given by OA(25; 56; 2). Use Theorem 4.1.

(g) (56-run plan for 228 � 313 factorial) Take � = D28;28;2; given by a 28 � 28

Hadamard matrix. Obtain L by adding the single run 00 : : : 0 to OA(27; 313; 2):

Use Theorem 3.1.

In each of the situations covered by Example 4.1, d0 is nearly saturated.

It leaves 1; 1; 2; 1; 2; 1 and 1 degrees of freedom for error respectively under (a)-

(g) above. It is satisfying to note from Table 4.1 that these plans are highly

e�cient under other criteria as well. The lower bounds in Table 4.1 are calculated

essentially along the lines of Section 3.
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Table 4.1. Lower bounds for D- and A-e�ciencies for the plans in Example 4.1

Plan given by (a) (b) (c) (d) (e) (f) (g)

Lower D-e�ciency 0.984 0.986 0.976 0.990 0.987 0.994 0.995

bound for A-e�ciency 0.972 0.975 0.958 0.983 0.977 0.990 0.991

While concluding, we remark that versions of Theorem 4.3 with regard to

D- or A-optimality can be easily worked out. However, it is di�cult to �nd

nontrivial examples illustrating the use of such versions. This is because (i) it is

hard to �nd plans d01, other than those given by orthogonal arrays, which are

D�- or A�-optimal (these notions are analogous to that of E�-optimality) and

resolvable in the sense of the paragraph preceding Theorem 4.3, and (ii) results

analogous to Theorems 3.1, 3.2 do not hold with respect to D- or A-optimality.

These issues deserve further attention.
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Appendix: Proofs of Some Lemmas

We �rst introduce some notation following Mukerjee and Dean (1986). Con-

sider any �xed x = x1 : : : xm(2 
t) and de�ne the set


(x) = f� = �1 : : : �m : � 2 
t; �j � xj (1 � j � m)g: (A:1)

If x 6= 00 : : : 0, then also de�ne 
�(x) as the subset of 
(x) obtained by deleting

the element 00 : : : 0 from the latter. Note that if � = �1 : : : �m 2 
(x) then �j = 0

for each j such that xj = 0. For each � 2 
(x), de�ne the �(�)� �(x) matrix

A�;x =
Nm

j=1A
�j ;xj

j
; (A.2a)

where

A
�j ;xj

j =

8<
:
1; if xj = 0,

10
sj
; if xj = 1, �j = 0,

Pj ; if xj = �j = 1.

(A.2b)

By (2.2), (2.9) and (A.2), P � = A�;xZx for � 2 
(x). Hence for x 2 
t, de�ning

Qx = [: : : ; P � 0; : : :]0
�2
(x); V x = [: : : ; P � 0; : : :]0

�2
�(x); (A.3)
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it follows that

Qx = �QxZx; V x = �V xZx; (A.4)

where
�Qx = [: : : ; A�;x

0

; : : :]0
�2
(x);

�V x = [: : : ; A�;x
0

; : : :]0
�2
�(x): (A.5)

The second relation in each of (A.3)-(A.5) arises only when x 6= 00 : : : 0.

Lemma A.1. For each d2D(T ; s1�� � ��sm) and every x 2 
t, (a) f�(x)g
�1=2 �Qx

is an orthogonal matrix of order �(x), (b) ZxRdZ
x
0

is a diagonal matrix with

diagonal entries given by the elements of rx
d
, (c) Zx

0

1�(x) = 1v; 1
0

�(x)r
x

d
= T , (d)

if x 6= 00 : : : 0, then �V x is of order f�(x) � 1g � �(x) and satis�es �V x �V x
0

=

�(x)I�(x)�1, �V x1�(x) = 0.

Proof. (a) By (2.10) and (A.1), for x 2 
t,

�(x) =
mY
j=1

(sj � 1 + 1)xj =
X

�2
(x)

�(�):

Hence by (A.5), �Qx is a square matrix of order �(x). Now (a) follows noting that
�Qx �Qx

0

= �(x)I�(x), in consideration of (2.1), (A.2) and (A.5).

(b) Follows from (2.9) and (2.11) noting that each column of Zx has exactly one

element unity and the rest zeros.

(c) Evident from (2.9) and (2.11).

(d) For x 6= 00 : : : 0, by (A.2) and (A.5), �Qx = (1�(x) �V
x
0

)0. Hence (d) is a simple

consequence of (a).

Proof of Lemma 2.1. By (2.4), (2.7), (A.1) and (A.3), for x 2 
t, Q
xRdQ

x
0

is

a principal submatrix of Id(t). Hence by (A.4) and Lemma A.1(a), (b),

�min(Id(t)) � �min( �Q
xZxRdZ

x
0 �Qx

0

) = �(x)�min(Z
xRdZ

x
0

) = �(x)min(rx
d
):

We now present the proofs of Lemmas 3.1, 3.2 and 4.1. To that e�ect,

hereafter, suppose m � 2t and s1 = � � � = s2t = s (� 2). Consider two �xed

members x = x1 : : : xm and y = y1 : : : ym of 
t such that

xj =

�
1; if 1 � j � t,

0; otherwise,
and yj =

�
1; if t+ 1 � j � 2t,

0; otherwise.
(A.6)

Then by (2.10), �(x) = �(y) = g, where g = st. For d 2 D(T ; s1 � � � � � sm),

de�ne the g � g matrices

Hd = ZxRdZ
x
0

; Kd = ZyRdZ
y
0

; Bd = ZxRdZ
y
0

: (A.7)
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In consideration of Lemma A.1(b), then

Hd =diag(h1d; : : : ; hgd); Kd = diag(k1d; : : : ; kgd); (A.8a)

where

rx
d
=(h1d; : : : ; hgd)

0; r
y

d
= (k1d; : : : ; kgd)

0; (A.8b)

and h1d; : : : ; hgd, k1d; : : : ; kgd are non-negative integers. Similarly by (2.9), (A.7),

Bd = ((bijd)); (A.8c)

where, for 1 � i, j � g, bijd is a non-negative integer. From (2.11), (A.7), (A.8)

and Lemma A.1(c),
gX

i=1

hid = T;

gX
j=1

kjd = T; (A.9a)

gX
j=1

bijd = hid (1 � i � g);

gX
i=1

bijd = kjd (1 � j � g): (A.9b)

With reference to the above set-up, the following lemmas hold.

Lemma A.2. Let d 2 D(T ; s1 � � � � � sm). Then

(a) for every choice of g � 1 vectors �1, �2 satisfying (i)�011g = �021g = 0 and

(ii) �01�1 + �02�2 > 0,

�min(I
�

d
(t)) � g(�01Hd�1 + �02Kd�2 + 2�01Bd�2)=(�

0

1�1 + �02�2);

(b) for every choice of g� 1 vectors �̂1, �2 satisfying (i)�
0
21g = 0 and (ii) �̂01�̂1+

�02�2 > 0,

�min(Id(t)) � g(�̂01Hd�̂1 + �02Kd�2 + 2�̂01Bd�2)=(�̂
0

1�̂1 + �02�2):

Proof. (a) By Lemma A.1(d) and condition (i) on �1, �2, there exist (g� 1)� 1

vectors �1, �2 such that

�1 = �V x
0

�1; �2 = �V y
0

�2; �
0

1�1 + �02�2 = g(�01�1 + �02�2): (A.10)

Now by (2.8), (A.1), (A.3) and (A.6), Sd = [V x
0

V y
0

]0Rd[V
x
0

V y
0

] is a principal

submatrix of I�
d
(t). Hence de�ning � = (�01; �

0
2)
0,

�min(I
�

d
(t)) � �0Sd�=�

0�: (A.11)

After a little simpli�cation using (A.4), (A.7) and (A.10), the right-hand side of

(A.11) reduces to the right-hand side of the inequality in (a).
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(b) Follows exactly along the line of proof of (a) above using Lemma A.1(a) and

(d) and noting that [Qx
0

V y
0

]0 Rd[Q
x
0

V y
0

] is a principal submatrix of Id(t).

Lemma A.3. For any d 2 D(T ; s1 � � � � � sm) and positive integral �, if

�min(I
�
d
(t)) > �g2 then

bijd �
1

2
fhid + kjd � 2�(g � 1)� 1g; 1 � i; j � g: (A:12)

Proof. For 1 � i � g, let ei be a g�1 vector with 1 at the ith position and zeros

elsewhere. For any i; j (1 � i; j � g), taking �1 = gei � 1g and ��2 = gej � 1g
in Lemma A.2(a), under the given condition, it follows from (A.8a, c) and (A.9)

that 2�(g � 1) < hid + kjd � 2bijd, on simpli�cation. Since hid, kjd and bijd are

integers, the result is now evident.

Proof of Lemma 3.1. If T < T 0 then each d 2 D(T ; sm) is embedded in some

d0 2 D(T 0; sm) in which case, by (2.7), Id0(t) � Id(t) is non-negative de�nite.

Thus for T < T 0,

max
d2D(T ;sm)

�min(Id(t)) � max
d2D(T 0;sm)

�min(Id(t));

and it is enough to prove the result for T = �s2t + st + 1 = �g2 + g + 1, where

g = st. This is done in what follows.

(a) Suppose st(= g) � 3 and m � 2t. If possible, let there exist a plan d 2

D(�g2 + g + 1; sm) such that

�min(Id(t)) > �g2: (A.13)

Then by (A.8b) and Lemma 2.1, hid > �g (1 � i � g). Since T = �g2+ g+1 and

hid is integral-valued for each i, by (A.9a), among h1d; : : : ; hgd, exactly one equal

�g+2 and the rest equal �g+1. A similar argument is applicable to k1d; : : : ; kgd.

Thus, without loss of generality, by (A.8a) one can write

Hd = Kd = diag(�g + 2; �g + 1; : : : ; �g + 1): (A.14)

Since I�
d
(t) is a principal submatrix of Id(t), by Lemma A.3 the conditions in

(A.12) hold under (A.13). Therefore, by (A.14),

bijd � � (2 � i; j � g); b1jd � �+1 (2 � j � g); bi1d � �+1 (2 � i � g): (A.15)

By (A.15), bi1d+ bi2d+ � � �+ bigd � �g+1 (2 � i � g) and b1jd+ b2jd+ � � �+ bgjd �

�g + 1 (2 � j � g). Comparing this with (A.9b) and (A.14), it follows that

equality must hold in (A.15), i.e.,

bijd = � (2 � i; j � g); b1jd = �+1 (2 � j � g); bi1d = �+1 (2 � i � g): (A.16a)
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Since by (A.9),
PP

g

i;j=1 bijd = T = �g2 + g + 1, from (A.16a) we get

b11d = �+ 3� g: (A.16b)

The above is impossible if �+ 3 < g.

Continuing with the case �+ 3 � g, by (A.8c), (A.16),

Bd = �1g1
0

g
+ 1ge

0

1 + e11
0

g
� (g � 1)e1e

0

1: (A.17)

Now taking �̂1 = ge1 � 21g and �2 = ge1 � 1g in Lemma A.2(b), it follows from

(A.13), (A.14) and (A.17) that

�g2 < [�g2(2g � 1)� (g � 3)f2(g � 1)2 + 1g]=(2g � 1): (A.18)

As g � 3, the above is impossible. This proves the result under condition (a).

(b) Let s = 2, t = 1, m � 3. Continuing with T = �s2t + st + 1 = 4� + 3, here

g = 2 and one cannot use (A.18) as was possible under (a). In this case, the

proof follows from Cheng (1980b) noting that by (2.1), (2.2), (2.4) and (2.7), for

d 2 D(4�+ 3; 2m), Id(1) = X 0
d
Xd, where Xd is a (4�+ 3)� (m+ 1) matrix with

elements �1.

Proof of Lemma 3.2. Since s1; : : : ; sm are not all equal, s1 > sm � 2. Hence

st = st1 � 3 and the result follows by a verbatim repetition of the arguments used

in proving Lemma 3.1 under condition (a).

Proof of Lemma 4.1. We proceed as in the proof of Lemma 3.1. As with that

lemma, it is enough to consider the case T = �s2t + st, which is done below.

(a) Suppose st � 3 and m � 2t. With g = st as before, if possible, let there exist

a plan d 2 D(�g2 + g; sm) such that

�min(I
�

d
(t)) > �g2: (A.19)

By (A.19) and Lemma A.3, the inequalities in (A.12) hold. Since T = �g2 + g,

summing (A.12) over j (1 � j � g) for �xed i and making use of (A.9) and the

fact that g � 3, we have

hid � �g (1 � i � g): (A.20)

Also, in view of (A.19), taking �1 = g(ei� ei0) (1 � i; i0 � g; i 6= i0) and �2 = 0 in

Lemma A.2(a), one obtains

hid + hi0d > 2�g (1 � i; i0 � g; i 6= i0): (A.21)

Since T = �g2 + g and h1d; : : : ; hgd are integers, from (A.9a), (A.20) and (A.21)

it is clear that either

h1d = � � � = hgd = �g + 1; (A.22a)

or
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hi1d =�g; hi2d = �g + 2; hid = �g + 1 (1 � i � g; i 6= i1; i2); (A.22b)

for some i1; i2 (1 � ii; i2 � g; i1 6= i2). Analogously to (A.20), (A.21), one can

also show that kjd � �g (1 � j � d) and kjd + kj0d > 2�g (1 � j; j0 � g; j 6= j0).

Hence as before either

k1d = � � � = kgd = �g + 1; (A.23a)

or

kj1d =�g; kj2d = �g + 2; kjd = �g + 1 (1 � j � g; j 6= j1; j2); (A.23b)

for some j1; j2 (1 � j1; j2 � g; j1 6= j2).

If (A.22a), (A.23a) hold then, recalling that the bijd's are integers, by (A.12),

bijd � � (1 � i; j � g), so that by (A.9b), hid � �g (1 � i � g), which contradicts

(A.22a). Next suppose (A.22a) and (A.23b) hold. Since g � 3, by (A.23b),

kjd = �g+1 for some j, say j = j0. As before, then by (A.12), bij0d � � (1 � i � g)

and hence by (A.9b), kj0d � �g, which leads to a contradiction. Similarly, (A.22b)

and (A.23a) cannot hold simultaneously. Now suppose (A.22b) and (A.23b) hold.

Again using (A.12) and recalling that the bijd's are integers, then bi1j1d � �� 1,

bi1jd � � (1 � j � g; j 6= j1), so that by (A.9b), hi1d � �g � 1, which contradicts

(A.22b). Thus (A.19) is impossible and the lemma is proved under condition (a).

(b) Let s = 2, t = 1, m � 3. Continuing with T = �s2t + st = 4� + 2, as in the

proof of Lemma 3.1, for d 2 D(4�+2; 2m), I�
d
(1) = X�

0

d
X�

d
, where X�

d
is of order

(4� + 2) �m with elements �1. Since m � 3, by well-known results (see, e.g.,

Theorem 2.4 in Cheng (1980b)), one gets �min(I
�
d
(1)) � 4�, which completes the

proof.
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