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Abstract: The problem of constructing designs to minimize the squared covariance

or correlation between the estimates of two linear combinations of the parameters

of a linear regression model is �rst considered. When the minimum is non-zero the

covariance criterion can be equivalent to the c-optimal criterion. When the minimum

is zero it often can be attained by a class of designs. It is then of interest to optimize a

standard criterion over the class. Some analytic and algorithmic results are reported.
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1. Introduction

In this contribution we develop what we believe to be two new items in the

realm of optimal linear regression design theory. It is convenient to review this

area.

In a linear design problem a general linear model is assumed i.e. we (min-

imally) assume independence between observations on a response variable y,

constant variance �2 and the conditional expectation E(yjv) = v
t
�, v 2 V:

Here � 2 Rk is a vector of unknown parameters and V = fv 2 Rk : v =

(f1(x); f2(x); : : : ; fk(x))
t;x 2 �g with f(x) = (f1(x); f2(x); : : : ; fk(x))

t a vec-

tor of known regression functions and � a practical closed compact design space.

Thus V is the image under f of � � an induced design space.

In this context an approximate design is characterized by a probability mea-

sure p de�ned on � and hence on V. In reality these spaces must be discretized.

Suppose that V = fv1; v2; : : : ; vJg. Then p is characterized by a set of weights

p1; p2; : : : ; pJ satisfying pj � 0, j = 1; 2; : : : ; J , and
PJ

j=1 pj = 1, weight pj being

assigned to vj . We wish to choose p = (p1; p2; : : : ; pJ) optimally. If �̂ is the least

squares estimator of � derived from observations obtained under the design p,

then Cov(�̂) /M�(p), where M(p) is the k � k design matrix:

M(p) =
JX

j=1

pjvjv
t
j = V PV t;
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V the k � j matrix[v1; v2; : : : ; vJ ] and P = diag(p1; p2; : : : ; pJ).

A good design will make the matrix M(p) \large" in some sense.

Standard choices are designs which maximize �(p) =  fM(p)g where  (M)

= logdet(M) (D-optimality; appropriate if there is interest in all the parameters

in �) or  (M) = �ctM�

c for a given vector c (c-optimality; appropriate if there is

interest only in c0�) or  (M) = �Trace(AM�At) and  (M) = �logdet(AM�At)

for a given s� k matrix A, s < k (Linear optimality and DA-optimality respec-

tively; appropriate if there is interest in inference only for A�).

We add to this list by �rst considering the problem of designing to ensure that

two linear combinations of the components of � are estimated as independently

of each other as possible. Interest in this problem was prompted by a practical

problem arising in Chemistry which will be discussed later and was �rst reported

by Torsney (1981). We formalize this problem in the next section. In Section 3

we explore an interesting problem, namely that of maximizing a standard design

criterion subject to zero covariance.

2. Designing To Minimize Covariances and Correlations

2.1. New criteria

For given vectors a; b 2 Rk we consider designing to minimize numerical

covariances or correlations between the estimates of at� and b
t
�. This leads to

the following two problems:

Problem 1. Maximize �c(p)=�[atM�(p)b]2 subject to theconstraint
PJ

i=1 pi=1,

pi � 0; i = 1; : : : ; J , where a; b 2 Rk:

Problem 2. Maximize �%(p) = �[atM�(p)b]2=([atM�(p)a][btM�(p)b]) subject

to the constraint
PJ

i=1 pi = 1, pi � 0, i = 1; : : : J .

We call these two criteria the covariance criterion and the correlation cri-

terion respectively. These seem to be new criteria except if a / b, when the

covariance criterion is equivalent to a c-optimal criterion and the correlation cri-

terion is constant. The covariance and c-optimal criteria are likely to have similar

properties.

2.2. Simplifying the covariance criterion

For simplicity �rst consider the case J = k. Also assume that the matrix

M(p) is non-singular . Then the covariance criterion will be of the form:

�c(p) = �[atM�1(p)b]2 = �[at(V PV t)�1b]2;
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where V as de�ned in Section 1 is now k� k. Hence we obtain the simpli�cation

�c(p) = �[ctP�1
d]2 = �

h kX
i=1

cidi=pi

i2
; (1)

where c = V �1
a and d = V �1

b.

Clearly from (1) we can write the covariance criterion as the square of a

linear combination of the reciprocals of the weights, the coe�cients being the

products cidi, i = 1; 2; : : : ; k. A crucial feature is that these can be positive or

negative. We distinguish two cases:

Case a: when all cidi, i = 1; 2; : : : ; k, have the same sign;

Case b: when the cidi, i = 1; 2; : : : ; k, have di�ering signs.

Case a will be considered in Section 2.2.1 and Case b in Section 3.

2.2.1. Explicit solution

Suppose cidi > 0, i = 1; 2; : : : ; k, i.e. Case a. Then �c(p) is proportional

to the square of a positive linear combination of the reciprocals of the weights

and so is equivalent to a c-optimal criterion. An explicit solution for the optimal

weights is available. It is

p�i =
q
jcidij

. kX
j=1

q
jcjdj j; i = 1; 2; : : : ; k; (2)

which yields a maximum value for (1) of

��c(p
�) =

n kX
i=1

q
jcidij

o4
: (3)

A similar explicit result would be possible if the support points consists of s

linearly independent points, s < k, (in which case M(p) is singular) as happens

for the c-optimal criterion. See Pukelsheim and Torsney (1991).

Note that when all the cidi < 0, i = 1; 2; : : : ; k, the optimal weights p� and

the maximum value for �c(p) are again given by (2) and (3) respectively.

As an example of this case, consider the quadratic regression model E(y) =

�1+ �2x+ �3x
2, 1 � x � 2, suppose we wish to estimate the unknown parameter

�1 as independently of �3 as possible. Thus we want to solve Problem 1 under

the choice of a = (1; 0; 0)t and b = (0; 0; 1)t. Suppose that the support points are

f1; x0; 2g, 1 < x0 < 2. Then

(c1d1; c2d2; c3d3)
t = S2[2x0(2� x0)2; 2; x0(x0 � 1)2]t; (4)
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where S = 1=Det(V ) and Det(V ) = 3x0 � x20 � 2, for the appropriate choice of

V of Section 1.

Clearly from (4) all the cidi are greater than zero. Substituting from (4) in

(2) we �nd the optimal weights and their support points to be as recorded in the

following table:

Support points 1 x0 2

Optimal weights (2� x0)
p
2x0=w

p
2=w (x0 � 1)

p
x0=w

where w = (2� x0)
p
2x0 +

p
2 + (x0 � 1)

p
x0.

With a view to �nding the best three point design subject to the endpoints

being support points, we must choose x0 to maximize the criterion ��c(p
�) in (3)

with respect to x0. The optimal value is x�0 = 1:5.

Similarly, for the same model we have an example for which the cidi are

less than zero by taking a = (0; 1; 0)t and b = (0; 0; 1)t. This means we are

interested in making the numerical covariance between �2 and �3 as small as

possible. Corresponding results are:

Support points 1 x0 2

Optimal weights (2� x0)
p
2 + x0=w

p
3=w (x0 � 1)

p
(x0 + 1)=w

where w = (2 � x0)
p
2 + x0 +

p
3 + (x0 � 1)

p
x0 + 1. The optimal choice of the

support point x0 is again x0 = 1:5.

2.3. Algorithm

Apart from the above case there are no other general explicit solutions either

for the covariance criterion (particularly if J > k) or for the correlation criterion

(whatever the value of J). We need an algorithm to determine optimal weights

in general, as of course is the case with standard design criteria.

Suppose we wish to maximize a di�erentiable criterion �(p) subject to pi � 0,PJ
j=1 pj = 1. One class of iterations for this problem are:

p
(r+1)
i =

p
(r)
i f(d

(r)
i ; �)Pk

j=1 p
(r)
j f(d

(r)
j ; �)

; i = 1; 2; : : : ; J; (5)

where d
(r)
i = @�

@pi

���
p=p(r)

and f(d; �) is a function which satis�es the following

conditions:

(a) f(d; �) > 0;

(b) f(d; �) is strictly increasing in the scalar variable d for some set of �-values,
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say � > 0;

(c) f(d; 0) = constant 6= 0;

(d) the variable � is a free parameter.

Under these conditions iterations (5) guarantee that F�(p
(r); p(r+1)) � 0,

where F�(p
(r); p(r+1)) is the directional derivative of the criterion �(p) at p(r) in

the direction of p(r+1). This follows since F�(p; q) =
PJ

i=1(qi�pi)di (di = @�=@pi,

qi � 0,
PJ

i=1 qi = 1) under the di�erentiability assumption on �(p). Hence

F�(p
(r); p(r+1)) = Cov(D; f(D; �))=Eff(D; �)g, where D is a random variable

satisfying P (D = d
(r)
i ) = p

(r)
i . Since f(d; �) is postive and increasing in d we have

guarantees that the two terms in this ratio are nonnegative.

Further, �rst order conditions for a local maximum p� are

F �

i

�
= 0; p�i > 0;

� 0; p�i = 0,

where Fi = F�(p; ei) = di �
PJ

j=1 pjdj , di = @�=@pi, ei = ith unit vector. Hence,

derivatives corresponding to nonzero p�i must share a common value. Moreover

if p(r) = p� then p(r+1) = p(r) so that F�(p
(r); p(r+1)) = 0 and p� is a �xed point

of the iteration.

This type of algorithm was �rst proposed by Torsney (1977), taking f(d; �) =

d�, � > 0. Subsequent empirical studies include Silvey et al. (1978), which is a

study of the choice of � when f(d; �) = d�, and Torsney (1988), which mainly

considers f(d; �) = e�d in a variety of applications, including estimation and image

processing problems. Torsney and Alahmadi (1992) continue these investigations

exploring other choices of f(d; �) for which an approximate optimal � has been

found.

If �(p) is the covariance criterion it can have negative derivatives while the

correlation criterion always has negative and positive derivatives since, being a

homogeneous function of degree zero,
PJ

i=1 pi(@�%=@pi) = 0. So we need a choice

of f(d; �) which is de�ned for negative d. Indeed this was the main reason why

Torsney (1988) considered choices of f(d; �) such as e�d. In its original conception

algorithm (5) was evolved for standard optimal design criteria which have positive

derivatives with the choice of f(d; �) = d�; in particular � = 1 for D-optimality

and � = 1=2 for c-optimality and the linear criterion yields monotonic iterations.

See Titterington (1976) and Torsney (1983).

For the covariance and correlation criteria we have explored the use of f(d; �)

= (1 + sd)s� where s = sign(d).

Now consider the Chemical example referred to in Section 1. This concerns

the relationship between the Viscosity y and the Concentration x of a chemi-

cal solution. The model is E(yjv) = �
t
v; where � = (�1; �2; �3)

t, v = f(x) =
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(x; x1=2; x2)t with x a scalar restricted to (0:0; 0:2]. It was desired to estimate �3

as independently of �1 and �2 as possible. To encompass the desire to minimize

two numerical covariances or correlations, three choices of a were considered,

namely a = (1; 0; 0)t, a = (0; 1; 0)t and a = (�1; 1; 0)t, while b = (0; 0; 1)t al-

ways.

Consider Problem 1 �rst. Taking the design interval to be [0:02; 0:20] we

believe, from running the algorithm, that the optimal support points are the

same for each of our choices of a and b, namely f:02; :12; :20g. Given this, the

conditions of Section 2.2.1 are satis�ed so that Equation (2) identi�es the optimal

weights which are listed in Table 1.

Table 1. Optimal weights for di�erent choices of a and b in the case of the

covariance criterion for the model E(y) = �1x+�2x
1=2+�3x

2, x 2 (0:0; 0:2].

Support points

a .02 .12 .20 a
tM�1(p)b

a= (1; 0; 0)t .423 .405 .172 �38565:6

a= (0; 1; 0)t .509 .347 .144 6909.34

a= (�1; 1; 0)t .437 .396 .167 45649.5

Corresponding optimal weights

Table 2. The number of iterations needed to achieve maxFi � 10�n,

n = 1; 2; 3; 4 under the choice of a = (1; 0; 0)t and b = (0; 0; 1)t in the case

of the covariance criterion for the above model.

J � p(0) n = 1 n = 2 n = 3 n = 4

19 .95 1/19 637 747 821 889

10 .9 1/10 131 145 158 170

3 .5 1/3 2 2 2 2

Table 3. The number of iterations needed to achieve maxFi � 10�n,

n = 1; 2; 3; 4 under the choice of a = (0; 1; 0)t and b = (0; 0; 1)t in the case

of the covariance criterion for the above model.

J � p(0) n = 1 n = 2 n = 3 n = 4

19 .95 1/19 313 353 393 433

10 .9 1/10 88 98 110 120

3 .5 1/3 2 2 2 2
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Table 4. The number of iterations needed to achieve maxFi � 10�n,

n = 1; 2; 3; 4 under the choice of a = (�1; 1; 0)t and b = (0; 0; 1)t in the

case of the covariance criterion for the above model.

J � p(0) n = 1 n = 2 n = 3 n = 4

19 .95 1/19 603 668 734 809

10 .9 1/10 128 141 154 168

3 .5 1/3 2 2 2 2

In Tables 2 to 4 we record for di�erent choices of a and b the value of � which

attained max Fi � 10�4 in the smallest number of iterations when p(0) assigns

equal weight to J points in [0:02; 0:2] for J = 19; 10; 3. Also recorded are the

number of iterations needed to achieve max Fi � 10�n, n = 1; 2; 3; 4.

For J = 19; 10 these points were equally spaced and therefore included the

set f:02; :12; :20g which were the three points chosen for J = 3. We note that for

J = 19; 10 algorithm (5) with f(d; �) = (1+ sd)s�, s = sign(d), always converged

to the optimal design for these three design points under the above choices of a

and b.

Clearly the number of iterations needed to achieve max Fi � 10�n, n =

1; 2; 3; 4, depends on the number of design points in the initial design and on the

value of �. For instance, if the initial design consists only of the three support

points of the optimal design and if � = :5 then the optimal design may be obtained

in two steps although, of course, we do have an explicit formula in this case. In

contrast, when the initial design consists of J points for J = 10; 19 a higher

value of �, namely, � = :95; :9 respectively, attains max Fi � 10�4 in the smallest

number of iterations. In terms of the number of iterations the convergence is

slow especially when J � 10, but it can be improved by setting weights to zero

when pj < "1 and Fj < �"2 for some small "1; "2 or just when pj goes below a

small �xed value ".

Similar results have been obtained by Fellman (1989) for the c-optimal crite-

rion when f(d; �) = d�. (Note that '(p) = �cTM�(p)c, the c-optimal criterion,

has the positive derivatives dj = (cTM�(p)vj)
2 if pj > 0, so that d�j is de�ned).

In particular as noted by Torsney (1983) f(d; �) = d1=2 attains the optimum

in one step for the c-optimal criterion when the support points form a linearly

independent set of vectors. Clearly f(d; �) = (1 + sd)s�, s = sign(d) has similar

e�ects.

We note �nally that it would be unwise to take � to be large since p(r+1) ! em
as � ! 1 where em is the mth unit vector, assuming that dm = @�c=@pmjp=p(r)
is a unique maximum derivative at p(r).
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Table 5. The Optimal support points and corresponding optimal weights

in the case of the correlation criterion for the above model.

a = (1; 0; 0)t a = (0; 1; 0)t a = (�1; 1; 0)t

supp(p�) .02 .12 .2 .02 .14 .2 .02 .12 .12

p� .0133 .9845 .0022 .0158 .9810 .00032 .0132 .9849 .0019

��(p
�) �:8155 �:5537 �:7755

Now consider the example of Problem 2 arising from the above model and

the same choices of a and b. The optimal support points and corresponding

optimal weights were determined by the same algorithm. These results are

listed in Table 5. From this table algorithm (5) again converges to three de-

sign points, namely supp(p�) = f:02; :14; :2g under the choice of a = (0; 1; 0)t

while supp(p�) = f:02; :12; :2g under the other two choices of a. These designs

have the unusual feature of one large weight corresponding to the middle sup-

port point. Also the convergence is slow in terms of the number of iterations.

This would seem to be due to a combination of small weights and zero homo-

geneity of the correlation criterion, the latter implying zero partial derivatives at

the optimum corresponding to the positive weights. This is because the partial

derivatives and the directional derivatives are equal under zero homogeneity. In

general Fj = (@�%=@pj)�
PJ

i=1 pi(@�%=@pi), j = 1; 2; : : : ; J ; but since �%(p) is ho-

mogeneous of degree zero in the weights p then
PJ

i=1 pi(@�%=@pi) = 0��
Q
(p) = 0.

(Note a function �(p) is homogeneous of degree h if, for scalar c, �(cp) = ch�(p)

and then
PJ

i=1 pi(@�=@pi) = h�(p)). Thus, in this example when the algo-

rithm approaches the optimum the derivatives and some weights are small. Ac-

cordingly, proceeding from p(r) to p(r+1) will only slightly change criterion and

weights values. In order to improve convergence in such cases, we might use

f(d; �) = (1 + s�d)s� instead of f(d; �) = (1 + sd)s�, for some appropriate �.

We report �nally that since we wished to minimize two squared covariances or

two squared correlations in this example we also considered minimizing convex

combinations of these i.e.

 c(p) =�
n
�
�
a
t
1M

�1
b

�2
+(1��) �at2M�1

b

�2o
; for 0 � � � 1; and a1;a2; b 2 Rk

or

 %(p) = �
(

� (at1M
�1
b)

2

(at1M
�1a1) (b

tM�1b)
+

(1� �) (at2M�1
b)

2

(at2M
�1a2) (b

tM�1b)

)
:

Starting from an initial uniform design on the discretization fx : x = :02; :04;

: : : ; :2g (p
(0)
j = 1=10), we determined, using the above algorithm, the optimal

design under the choices of a1 = (1; 0; 0)t, a2 = (0; 1; 0)t and b = (0; 0; 1)t for

each of the cases � = 0; :1; : : : ; :9; 1.
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For the covariance criterion the support points are always f:02; :12; :20g and
there is little change in the weights. For the correlation criterion the initial sup-

port gradually changes from f:02; :14; :20g (the support for a2) to f:02; :12; :20g
(the support for a1) as � travels from 0 to 1. For � roughly in the range .2 to .4

there is the suggestion of a four point support namely f:02; :12; :14; :2g. However
since the pair .12 and .14 are two neighbouring points in our discretization of

the interval [:02; :2] the pair probably represent a cluster `replacing' a single sup-

port point which must lie in [:12; :14]. Under the recommendations of Atwood

(1976) a good approximation to this point is the convex combination of .12 and

.14 based on their optimal weights. Further it should be assigned the total of

these weights. For example in the case of � = 0:3, the support points .12 and

.14 are assigned the weights .30 and .39 respectively. Instead, a total weight of

.69 should be assigned to the value x = (:30 � :12 + :39� :14)=:69 �= :13.

3. Optimal Selection of Designs Satisfying Zero Covariance

It is possible, of course, that the optimal value of the covariance criterion is

zero. This, in fact, is true in case b of Section 2.2 which also serves to illustrate

that when zero is a possible value for the criterion, then typically there are many

designs which attain this optimum. It then seems natural to choose one of these

optimally. This leads us to consider the following problem:

Problem 3. Maximize a standard design criterion, �(p), subject to a zero

covariance condition and
PJ

i=1 pi = 1, pi � 0, i = 1; : : : ; J .

For simplicity we restrict attention to the case J = k and hence to Case b of

Section 2.2. A subsequent publication will be devoted to the case J > k.

We consider three di�erent cases.

3.1. Case 1

A simple case is when one of the cidi is greater than zero, say c1d1, one less

than zero, say ckdk, and all the others are equal to zero. Equating (1) to zero,

then implies

c1d1

p1
= �ckdk

pk
) pk = � p1; (6)

where � = �ckdk=c1d1.
Thus there are many designs guaranteeing zero covariance. We consider an

optimal choice of p1; p2; : : : ; pk by maximizing some of the DA� , c- or the linear

optimality criteria which we denote by �1, �2 or �3 respectively. Consider �rst

�3. Our aim in this case is to maximize �3 subject to zero covariance i.e. subject
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to pk = � p1. The criterion is of the form

�3(p) = �Trace
�
AM�1(p)At

�
=

kX
i=1

�2i =pi; (7)

where the �i
2 are the diagonal elements of the matrix V �1AtA(V t)�1. Then, by

substituting from (6) in (7) we �nd

�3(p) = �
"
k�1X
i=1

�2i
pi

+
�2k
� p1

#
= �

"
k�1X
i=2

�2i
pi

+
�21 + (�2k=�)

p1

#
:

But since
Pk

i=1 pi = 1, pi � 0 then �p1+
Pk�1

i=1 pi = 1) (1+�)p1+
Pk�1

i=2 pi = 1.

If we let q+1 = (1 + �)p1 and q
+
j = pj , j = 2; : : : ; k � 1, then

Pk�1
i=1 q

+
i = 1 and

�3(q
+) = �

"
(1 + �) (�21 + �2k=�)

q+1
+

k�1X
i=2

�2i
q+i

#
= �

k�1X
i=1

�+
2

i

q+i
; (8)

where �+
2

1 = (1+�)[�21 + (�2k=�)] and �
+2

j = �2j , j = 2; : : : ; k� 1. Hence (8) leads

to the explicit solution for the optimal weights

q+
�

j =
����+j ��� =

k�1X
i=1

���+i �� ; j = 1; 2; : : : ; k � 1; (9)

and the maximum value for �3(p) subject to zero covariance is

��3(q
+�) = �

"
k�1X
i=1

j��i j
#2
: (10)

A particular case of this criterion is c-optimality (�2) when At = c
+ for some

vector c+. Then � = (�1; �2; : : : ; �k)
t = V �1

c
+.

3.2. Equivalent criteria

We have considered general A or c+ so far. It seems natural that these would

be inuenced by a and b. Simplest choices would be At = [a
...b] and c

+ = a+ b.

In fact these lead to equivalent criteria for any choice of a, b since

c
+t

M�1(p)c+ /Var
h�
a
t + b

t
�
�̂
i

=Var(at�̂) + Var(bt�̂) if Cov(at�̂; bt�̂) = 0

/Trace
�
AtM�1(p)A

�
:
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Note this result is true also when the number of support points exceeds the

number of parameters. We focus attention on these choices later.

3.3. Case 2

We now consider the case when some of the cidi are greater than zero and all

the others are less than zero. Without loss of generality suppose that cidi > 0 for

i = 1; : : : ; n1; cn1+jdn1+j < 0 for j = 1; : : : ; n2, where n1 + n2 = k. Let ei = cidi
and qi = pi if i = 1; : : : ; n1; fj = �cn1+jdn1+j and wj = pn1+j if j = 1; : : : ; n2.

We can then rewrite (1) as follows:

�c(q; w) = �
"

n1X
s=1

es

qs
�

n2X
t=1

ft

wt

#2
; (11)

where qi; wj > 0 and
Pn1

i=1 qi +
Pn2

j=1 wj = 1. Clearly (11) can be zero ifPn1

s=1 es=qs =
Pn2

t=1 ft=wt. In fact there are many designs which will guaran-

tee this and hence �c(q; w) = 0. We seek to choose q, w optimally by maximizing

a standard design criterion with a view to good estimation of (at�; bt�). The

complete class of such designs are given by the following transformation:

(q;w) (g;h) :
qi =

gi
Pn1

s=1
es
gs

z
; i = 1; : : : ; n1;

wj =
hj
Pn2

t=1
ft
ht

z
; j = 1; : : : ; n2;

(12)

where gi; hj > 0 and

z =
h� n1X

i=1

gi

�
�
� n1X
s=1

es

gs

�i
+
h� n2X

j=1

hi

�
�
� n2X
t=1

ft

ht

�i
:

3.4. Properties of the transformation

1. This transformation satis�es zero covariance.

2. The transformation satis�es the constraint
Pn1

i=1 qi +
Pn2

j=1 wj = 1.

3. The transformation (q;w)! (g;h) is unique up to a constant multiple because

the qi and wj and �[q(g;h);w(g;h)] are all homogeneous of degree zero in both

g and h. For this reason we invoke the constraints
Pn1

i=1 gi =
Pn2

j=1 hj = 1.

3.5. Case 3

A �nal case which attains zero covariance is when some of the cidi are greater

than zero, some less than zero and the others are equal to zero. This case can

be transformed, in a manner similar to Case 2, to a problem involving three sets

of weights, two of them de�ned similarly to g and h above.
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Without loss of generality suppose that cidi > 0 for i = 1; : : : ; n1; cn+jdn+j <

0 for j = 1; : : : ; n2 and cn1+n2+mdn1+n2+m = 0 for m = 1; : : : ; n3,
P3

i=1 ni = k.

Then the covariance criterion in this case will be of the form

�c(q; w; r) = �
2
4 n1X
i=1

ei

qi
�

n2X
j=1

fj

wj

+

n3X
m=1

om

rm

3
5
2

; (13)

where ei = cidi and qi = pi for i = 1; : : : ; n1; fj = �cn1+jdn1+j and wj = pn1+j

for j = 1; : : : ; n2 and om = 0 and rm = pn1+n2+m for m = 1; : : : ; n3,
P3

i=1 ni = k.

As in Case 2 the complete class of designs which guarantee zero covariance is

given by the transformation:

(q;w; r) (g;h;u) :

qi = un3+1

gi
Pn1

s=1
es
gs

z
; i = 1; : : : ; n1;

wj = un3+1

hj
Pn2

t=1
ft
ht

z
; j = 1; : : : ; n2;

rm = um; m = 1; : : : ; n3;

(14)

where un3+1 =
Pn1

i=1 qi +
Pn2

j=1 wj , and z is as above.

This transformation has similar properties to the transformation mentioned

in Case 2. In particular the criterion �[q(g;h; un3+1);w(g;h; un3+1); r(u)] is again

homogeneous of degree zero in g and h. In addition it will also be homogenous in

u if �(�) is homogenous in the original weights p as is usually the case with design

criteria. We therefore invoke the constraints
Pn1

i=1 gi =
Pn2

j=1 hi =
Pn3+1

m=1 um = 1.

Under this array of transformations Problem 3 changes to: Either maximize

 (g;h) = �[q(g;h);w(g;h)] subject to

n1X
i=1

gi =

n2X
j=1

hj = 1 and gi; hj > 0

or maximize  (g;h;u) = �[q(g;h; un3+1);w(g;h; un3+1); r(u)] subject to

n1X
i=1

gi =
n2X
j=1

hi =
n3+1X
m=1

um = 1 and gi; hj ; um > 0:

Here �(�) is one of the criteria �1; �2 or �3. We denote the  (�) derived from

these under the above process by  1,  2 or  3 respectively.

3.6. Proposed algorithm

In Section 2.3 we described and subsequently used algorithm (5) for maxi-

mizing a criterion with respect to one set of weights p1; : : : ; pJ . In Problem 3 we
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have two sets of weights gi, i = 1; 2; : : : ; n1, and hj , j = 1; 2; : : : ; n2, and possibly

a third set um, m = 1; 2; : : : ; n3. A natural extension of this algorithm is:

g
(r+1)
i =

g
(r)
i f1(d

(r)
1i ; �)Pn1

s=1 g
(r)
s f1(d

(r)
1s ; �)

; i = 1; : : : ; n1;

h
(r+1)
j =

h
(r)
j f2(d

(r)
2j ; �)Pn2

t=1 h
(r)
t f2(d

(r)
2t ; �)

; j = 1; : : : ; n2;

9>>>=
>>>;
(16a)

and if necessary

u(r+1)m =
u(r)m f3(d

(r)
3m; �)Pn3+1

v=1 u
(r)
v f3(d

(r)
3v ; �)

; m = 1; : : : ; n3 + 1;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(16b)

where fi(d; �), i = 1; 2; 3, are choices of f(d; �) satisfying the conditions listed in

Section 3.2, and d
(r)
1i , d

(r)
2j and d

(r)
3m are the �rst partial derivatives with respect to

the variables gi, hj and um respectively, at current iterate values, of the criterion

( 1;  2;  3) to be maximized.

Our choices of fi(d; �), must respect the fact that these criteria like the

covariance criterion, can have negative derivatives. We again consider the case

fi(d; �) = (1 + sd)s�, s = sign(d).

3.7. Examples and discussion

We now explore two examples.

Example 1. An example of Case 1 and Case 3 can be derived from the �rst

example considered by Silvey et al. (1978) and also by Wu (1978). The design

space for this example is: V = f(1;�1;�1)t; (1;�1; 1)t(1; 1;�1)t; (1; 2; 2)tg.
Consider a = (1; 0; 0)t and b = (0; 0; 1)t and for the linear criterion (�3)A

t =

[a
...b]. Then a subset of the design space which satis�es Case 1 and hence Case 3

is

V = f(1;�1; 1)t; (1; 1;�1)t; (1; 2; 2)tg:
Values which emerge are: cd = (0:0625;�0:1875; 0:0)t , � = 0:1875=0:0625 = 3

and �
2 = (0:2656; 0:3906; 0:0625)t . Substituting these results into (9) and (10)

we obtain a maximum value for the linear optimality criterion of �2:2750 while

the optimal weights are q+
�

= (:8343; :1657)t , p� = (:208; :626; :166)t . Of course

we had explicit formulae for calculating q
+� and p

�. But this example is an

illustration of Case 3 although with n1 = n2 = n3 = 1 and hence g1 = h1 = 1.

Starting from u
(0)
1 = u

(0)
2 = 1=2 algorithm (16b) converged to the optimal solution

attaining maxFj � 10�5 in six iterations.

Example 2. Finally, we consider an example for both Case 2 and Case 3.

Consider the cubic regression model E(y) = �0 + �1x+ �2x
2 + �3x

3, x 2 [��; �],
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� = 1; 2; : : : ; 5 and choose a = (1; 0; 0; 0)t , b = (0; 0; 1; 0)t and At = [a
...b].

Table 6. This table shows the optimal support points and corresponding

optimal weights for the criteria  2 and  3 in the case of the cubic regression

model (Example 2) when the design space is the interval [��; �] where �

takes the values 1, 2, 3, 4 and 5.

� = 1 � = 2 � = 3 � = 4 � = 5

The maximum �9:45062 �2:29000 �1:53441 �1:29294 �1:17614

value for  2 and  3

Weights 0.16440 0.21991 0.24656 0.25422 0.25034

g� and h� 0.14852 0.07006 0.04216 0.02631 0.01529

0.85148 0.92994 0.95784 0.97369 0.98471

0.83560 0.78009 0.75344 0.74578 0.74966

Weights 0.03166 0.02300 0.01422 0.00900 0.00600

g� and w� 0.11992 0.06273 0.03973 0.02538 0.01492

0.68751 0.83269 0.90261 0.93923 0.96110

0.16091 0.08158 0.04344 0.02639 0.01798

Corresponding �1 �2 �3 �4 �5

design points �:97 �1:93 �2:74 �3:65 �4:64

�0:01 �0:01 �0:02 �0:02 �0:01

1 2 3 4 5

Table 7. This table shows the number of iterations needed to achieve

maxFj � 10�n; n = 1; 2; 3; 4; 5 and j = 1; 2; 3; 4 in the intervals [��;��]

for the criterion  2 where �3 where � takes the values 1; 2; 3; 4 and 5 when

a = (1; 0; 0; 0)t, b = (0; 0; 1; 0)t, in the case of the cubic regression model

(Example 2) when the design space is the interval [��; �], � = 1; 2; : : : ; 5.

� �nn n = 1 n = 2 n = 3 n = 4 n = 5

� = 0:072 � = 1 3 4 4 6 6

� = 0:33 � = 2 5 6 8 11 13

� = 0:6 � = 3 4 8 12 18 24

� = 0:7 � = 4 3 10 20 29 39

� = 0:8 � = 5 3 13 25 37 49

In Table 6 we report the optimal four point designs for the criteria  2 and  3

on [��; �] subject to the endpoints being support points for � = 1; 2; : : : ; 5. In
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Table 7 we report the number of iterations needed to achieve maxFi � 10�n for

n = 1; 2; 3; 4; 5 for those values of � which attain maxFi � 10�5 in the smallest

number of iterations when �nding the optimal weights of these particular support

points.

The two middle points were found by a search through the supports

f��; x1; x2; �g where x1 < x2 and x1; x2 < 0 or x1; x2 > 0, algorithms (16a) or

(16b) being used for each pair x1 and x2. (Note that we exclude the case when

x1 and x2 have opposite signs because then the cidi are either all negative or all

positive, so that no design satis�es zero covariance). In particular algorithm(16b)

needed to be used when x1+x2 = ��. To see this consider the four point support
f�1; �; (1 � �); 1g, 0 < � < 1. Then if a = (1; 0; 0; 0)t , b = (0; 0; 1; 0)t we �nd

d = V �1
a = S[�2(�� 1)2(2�� 1); 2�(1 � �)(� � 2);

� 2�(�2 � 1); ��(1 � �)(2�3 � 3�2 � 3�+ 2)]t

and c = V �1
b = S[2�(1 � �)(2� � 1), 2�(2 � �)(1 � �), 2�(1 � �2); 0]t,

S = (1=Det(V )) and hence (c1d1; c2d2; c3d3; c4d4)
t = S2[�2�3(� � 1)3(2� � 1)2,

�4�2(1� �)2(�� 2)2, 4�2(1� �2); 0]t. So in this case we have one positive, two

negative and one zero cidi thus satisfying Case 3.

Again some optimal weights are small. This is because the zero covariance

constraint limits some weights to ranges of small values, a phenomenon which

has been noted in other examples.

4. Conclusion

We have introduced two new design criteria, the covariance criterion and

the correlation criterion, and have explored the use of a specialised algorithm

indexed by a free parameter � for constructing designs which optimize these

criteria. We have also considered the case of optimizing standard design criteria

subject to zero covariance when the number of support points equals the number

of parameters, transforming this problem to one of optimizing a criterion with

respect to two or three sets of weights and using a natural extension of the above

algorithm to solve this derived problem.

The examples considered are arguably small scale and the algorithm did not

always enjoy a reasonable rate of convergence even for good choices of the free

parameter �. There is need for further work on improving the algorithm and on

considering larger scale examples. We have also still to report on the case when

the number of support points exceeds the number of parameters when optimising

a standard design criteria subject to zero covariance.

Finally further investigations will include extensions of the above problems

to include several covariances or correlations.
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