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Abstract: D-optimal regression designs under random block-e�ects models are con-

sidered. In addition to selecting design points, an experimenter also needs to specify

how they are grouped into blocks. We �rst consider minimum-support designs, which

are supported on the minimum number of design points. In this case, it is shown that

a D-optimal design can be obtained by combining a D-optimal block design (for treat-

ment comparisons under random block-e�ects models) with a D-optimal regression

design under the usual uncorrelated model. Such a design, however, is not optimal

when there are no restrictions on the competing designs. To attack the general prob-

lem of constructing optimal designs without restrictions on the competing designs,

we sketch an approach based on the approximate theory, and apply it to quadratic

regression on [�1; 1].

Key words and phrases: Approximate design, balanced incomplete block design, D-

optimality, equivalence theorem.

1. Introduction

Optimal regression designs under the usual homoscedastic uncorrelated linear

models have been studied extensively. The discovery of the Equivalence Theorem

of Kiefer and Wolfowitz (1960) was a major impetus. By now there has been a

large and diverse body of work. An excellent account of this rich literature can

be found in the recent book by Pukelsheim (1993).

The purpose of this article is to study a variant of the traditional regression

design problem. Instead of uncorrelated observations, we shall consider the situ-

ation where the observations are taken in blocks, wherein it is natural to assume

that the observations in the same block are correlated. The presence of random

block e�ects complicates the solution and requires special care. Our motivation

comes from an optometry experiment, described in Chasalow (1992), for explor-

ing the dependence of a measure of corneal hydration control on the CO2 level (a

continuous-valued treatment) in a gaseous environment applied through a goggle

covering a human subject's eyes. A response is measured for each eye, so each

human subject's pair of eyes provides a block of two possibly correlated obser-

vations. The question is how to allocate the CO2 levels to estimate the response
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function e�ciently. Khuri (1992) described an experiment for investigating the

e�ects of temperature and curing time on shear strength in the manufacture of an

adhesive for bonding galvanized steel bars together. The experiment was run on

a random set of days over a 4-month period during which batches of experimental

material were drawn randomly from the warehouse supply. In this experiment,

the block e�ect (batches) should be treated as random. While there is a large lit-

erature on optimal block designs for treatment comparisons, (see the monograph

by Shah and Sinha (1989) for an extensive review), very few results on optimal

block designs for regression models, if any, are available. Khuri (1992) discussed

the analysis of response surface models with random block e�ects, but did not

consider the design aspect except for orthogonal blocking.

Consider the following general setup. Given a compact design region � in

Rn, let y
x
be an observation at x 2�. Assume the usual parametric model

E(y
x
) =

tX
i=1

fi(x)�i and Var(y
x
) = �2; (1:1)

where f1(x); : : : ; ft(x) are real-valued functions de�ned on �, and �1; : : : ; �t
are unknown parameters. A total of N observations will be taken (hence N

points x1; : : :, xN 2 �, not necessarily all distinct, are to be selected). Let

y = (y1; : : : ; yN)
T be the vector of observations at x1; : : : ;xN . Then the usual

uncorrelated linear model can be expressed as

E(y) =A� (1:2)

and

Cov(y) =�2IN ; (1:3)

where IN is the identity matrix of order N , � = (�1; : : : ; �t)
T , and A is

the N � t matrix with the (i; j)th entry fj(xi). For convenience, we denote

(f1(x); : : : ; ft(x))
T by f(x), and the set of distinct points among x1; : : : ;xN is

called the support of the design. A design is said to be D-optimal if it mini-

mizes the determinant of the covariance matrix of the least squares estimators of

�1; : : : ; �t, or equivalently, maximizes the determinant of the information matrix

ATA. This problem has been well studied and many results are available. For

example, it is clear that in order to estimate all the t parameters, a design must

be supported on at least t distinct points, and in many situations, a D-optimal

design is supported on exactly t points. One notable example is D-optimal de-

signs for the dth-degree polynomial regression on [�1; 1] with t = d + 1, and

fi(x) = xi�1, i = 1; : : : ; d + 1. In this case, the D-optimal design with N = t
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consists of the t = d+ 1 roots of the equation (1� x2) _Pd(x) = 0, where _Pd(x) is

the derivative of the dth-degree Legendre polynomial. When tjN , a D-optimal

design has each of these points replicated the same number of times.

Now, unlike the usual setup, suppose the N observations must be grouped

into b = N=k blocks of size k (hence kjN). Furthermore, the observations in

the same block are correlated. For simplicity, we shall assume that any two

observations in the same block have the same positive correlation �, and any

two observations in di�erent blocks are uncorrelated. This covers the model

y = A�+(Ib
1k)�+ � with additive random block e�ects, where lk is the k� 1

vector of 1's, � is a b� 1 vector of random block e�ects, and � is a bk � 1 vector

of random errors, with E(�) = 0, E(�) = 0, Cov(�) = �2
b
Ib, Cov(�) = �2

e
Ibk, and

Cov(�; �) = 0. In this case, �2 = �2
b
+ �2

e
, and � = �2

b
=(�2

b
+ �2

e
).

As a �rst step, assume that � is known, and use the generalized least squares

estimators �̂1; : : : ; �̂t. We consider the problem of determining D-optimal designs

for estimating the unknown parameters �1; : : : ; �t. Suppose the entries of y are

ordered so that the [(i� 1)k + j]th entry is the jth observation in the ith block,

1 � i � b, 1 � j � k; then instead of (1.3), we have

Cov(y) = �2(Ib 
V); with V = [(1� �)Ik + �Jk]; (1:4)

where Jk is the k � k matrix with all the entries equal to 1. Again, a design

is called D-optimal if it minimizes the determinant of the covariance matrix of

�̂1; : : : ; �̂t, or equivalently, maximizes the determinant of the information matrix

M � AT (Ib 
V)�1A.

Here, in addition to selecting x1; : : : ;xN , an experimenter also needs to spec-

ify how they are grouped into blocks of size k. Suppose there are s (� t) distinct

points among x1; : : : ;xN , say x
�

1
; : : : ;x�

s
. Then there are two phases in a design:

selecting s distinct points x�
1
; : : : ;x�

s
, and then constructing a block design with

b blocks of size k for these s \treatments". Notice that the same x�
i
may be as-

signed to more than one unit in the same block, i.e., the blocks are not necessarily

binary.

Intuitively, it seems natural to start with a D-optimal design for the uncor-

related model (1.2) and (1.3), and then allocate the points in this design into the

blocks of an \optimal" block design. For instance, balanced incomplete block

designs (BIBD) are well known to be optimal for treatment comparisons with

respect to many criteria including the D-criterion (Kiefer (1958, 1975)). There-

fore if f~x1; : : : ; ~xtg is a D-optimal design with t observations for the uncorrelated

model, and there exists a BIBD with t treatments and b blocks of size k, then one

could try the BIBD formed by the t \treatments" ~x1; : : : ; ~xt. For example, in the

quadratic regression on [�1; 1], a D-optimal design for the uncorrelated model is

supported on �1, 0 and 1. If N = 2b observations are to be taken in b correlated
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pairs, where b is a multiple of three, then the above procedure suggests that one

may replicate each of the three blocks (1;�1), (1; 0) and (0;�1) the same number

of times. How good is this design? Does it have any optimality property?

It turns out that a design constructed in this way is not D-optimal. After

all, one would expect the optimal designs to depend on �. However, it does have

some optimality property. If we consider only designs which are supported on

exactly t distinct x's, then the above design is the best under the D-criterion for

all positive �. Such designs with minimum number of distinct x's will be called

minimum-support designs. For instance, in the quadratic regression on [�1; 1],
the design given in the preceding paragraph is at least as good as any b blocks of

size two formed by any three values x1, x2, x3 2 [�1; 1] under the D-criterion, for
all positive �. Without such a restriction on the competing designs, a D-optimal

design consists of three di�erent kinds of blocks (1;�1), (�1;�a) and (1; a),

where a (< 0) and the relative frequencies of these blocks depend on �. Note

that such a design has four distinct x values. Even though a BIBD supported

on 1, 0 and �1 is not optimal, it turns out to be highly e�cient.

Section 2 is devoted to the result described in the preceding paragraph for

BIBD's (and other optimal block designs for treatment comparisons) supported

on the design points of D-optimal designs for the uncorrelated model. The prob-

lem of determining D-optimal designs without restricting to minimum-support

designs is discussed in Section 3. Here we resort to the approximate theory of op-

timal design. Some deviation from the standard theory is needed to deal with the

special feature of within-block correlation. Speci�cally, the observations in the

same block can be considered as a multivariate response at a point in the design

space �k. A multivariate version of the Equivalence Theorem as described in

Fedorov (1972) and Kiefer (1974) can be used. The case of quadratic regression

on [�1; 1] is treated in details.

2. Optimal Minimum-Support Designs

Suppose f~x1; : : : ; ~xtg is a D-optimal design with t observations for the un-

correlated model (1.2) and (1.3). In this section, we restrict our attention to

minimum-support designs, i.e., those supported on exactly t points (although not

necessarily the same as ~x1; : : : ; ~xt). As mentioned earlier, in the present setup,

a design has two phases: selecting support points x1; : : : ;xt and constructing a

block design with t treatments and b blocks of size k. The blocks can be described

by b k � t incidence matrices N1; : : : ;Nb, where the (i; j)th entry of Ns is 1 if

xj is assigned to the ith observation in the sth block; otherwise, it is equal to 0.

Let N = [NT

1
; : : : ;NT

b
]T . Then the design matrix A in (1.2) can be expressed as

A = N�, where � is the t� t matrix with the (i; j)th entry equal to fj(xi), and
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the information matrix becomes

M = �TNT (Ib 
V)�1N�: (2:1)

For convenience, for any x1; : : : ;xt 2�, let D(t, b, k; x1; : : : ;xt) be the set of all
the designs in b blocks of size k supported on x1; : : : ;xt, and let D(t, b, k) be the
set of all the designs in b blocks of size k supported on t points. We �rst consider

the determination of D-optimal designs in D(t, b, k; x1; : : : ;xt) with �xed support
points x1; : : : ;xt. Lemma 2.1 in this section shows that this is equivalent to the

classical problem of D-optimal designs for treatment comparisons.

In the usual block design set-up, let B(t, b, k) be the set of all the block

designs with t treatments and b blocks of size k. This is, of course, the same

as D(t, b, k; x1; : : : ;xt) if we think of x1; : : : ;xt as the treatments. Much work

has been done on optimal block designs for estimating treatment contrasts under

the usual additive homoscedastic uncorrelated models with �xed block e�ects.

We cite Kiefer's (1958, 1975) fundamental result on the universal optimality of

BIBD's and Cheng's (1978) result on the optimality of some group-divisible de-

signs. Some of these results have been extended to random block-e�ects models;

see, e.g. Mukhopadhyay (1981) and Bagchi (1987). Let � be the t � 1 vector

of unknown treatment e�ects, and let O = [1t=
p
t
...P]T be a t � t orthogonal

matrix, where 1t is the t � 1 vector of ones. Then the problem is to �nd an

optimal design for estimating PT
� under the linear model

E(y) = N�; Cov(y) = �2(Ib 
V); where V = [(1� �)Ik + �Jk]: (2:2)

For example, a D-optimal design minimizes det[Cov(PT
�̂)]. Many results on

optimal block designs for �xed block e�ects carry over to this case. For instance,

Kiefer's (1975) method can be used to show that a balanced incomplete block

design remains universally optimal in this setup for all positive �; see, e.g., p: 86

of Shah and Sinha (1989).

For convenience, for each d 2 B(t, b, k), we use d(x1; : : : ;xt) to denote the

design in D(t, b, k; x1; : : : ;xt) obtained by allocating x1; : : : ;xt into the blocks

of d. Then we have the following

Lemma 2.1. Suppose x1; : : : ;xt are t points in� such that the vectors f(x1); : : :

and f(xt) are linearly independent. Let d be D-optimal over B(t, b, k) for es-

timating the treatment contrasts PT
� under (2:2). Then d(x1; : : : ;xt) is D-

optimal over D(t, b, k; x1; : : : ;xt) under (1:2) and (1:4).

Proof. By (2.1), det(M) = det[�TNT (Ib 
 V)�1N�] = [det(�)]2 � det[NT (Ib

V)�1N]. Since f(x1); : : : and f(xt) are linearly independent, det(�) > 0. Also,

x1; : : : ;xt are �xed; so det(�) is a constant. Therefore we need to

�nd a design in B(t; b; k) which maximizes det[NT (Ib 
V)�1N]: (2:3)



490 CHING-SHUI CHENG

Since O is an orthogonal matrix,

det[NT (Ib 
V)�1N] = det[ONT (Ib 
V)�1NOT ]; (2:4)

also, in (2.2), we have

E(y) = N� = NO
T
O� = [N1t=

p
t
...NP] [1t=

p
t
...P]T�:

The information matrix ON
T (Ib 
 V)�1NOT for O� can be partitioned as�

A BT

B D

�
, where A = 1T

t
NT (Ib 
V)�1N1t=t, B = PTNT (Ib 
 V)�1N1t=

p
t,

and D = PTNT (Ib 
 V)�1NP. Then the information matrix for estimating

PT
� under (2.2) is equal to D�A�1BB

T ; in other words, under (2.2), a design

d 2 B(t, b, k) is D-optimal for estimating treatment contrasts PT
� if it

maximizes det (D�A�1BB
T ): (2:5)

On the other hand,

det[ONT (Ib 
V)�1NOT ] = A � det(D�A�1BB
T ): (2:6)

Since N is a (0; 1)-matrix in which each row contains exactly one 1 (Only one

x 2 � is assigned to each observation), we have N1t = 1bk. Therefore A is a

constant independent of the designs. From (2.4) and (2.6), we see that (2.3) and

(2.5) are equivalent. This proves Lemma 2.1.

From the proof of Lemma 2.1, we have det(M) = det[(�)]2 � A � det(D �
A�1BB

T ), in which A � det(D � A�1BB
T ) does not depend on x1; : : : ;xt, and

is maximized by the D-optimal design in B(t, b, k). Suppose x1; : : : ;xt are no

longer �xed. Then det(M) can be maximized by maximizing det(�). Recall that

� is the t�tmatrix with (i; j)th entry fj(xi), which is precisely the design matrix

under the uncorrelated model (1.2) and (1.3) for t design points. In this case the

information matrix is �T�. Since [det(�)]2 = det(�T�), it is maximized by the

D-optimal design ~x1; : : : ; ~xt for the uncorrelated model (1.2) and (1.3). Thus we

have proved the following:

Theorem 2.2. Suppose f~x1; : : : ; ~xtg is a D-optimal design with t observations

for the uncorrelated model (1:2) and (1:3), and d is a D-optimal design in B(t,
b, k) for estimating treatment contrasts PT

� under (2:2). Then the design

d(~x1; : : : ; ~xt) is D-optimal over D(t, b, k) under (1:2) and (1:4).

In particular, we have

Corollary 2.3. Suppose f~x1; : : : ; ~xtg is a D-optimal design with t observations

for the uncorrelated model (1:2) and (1:3), and there exists a balanced incomplete
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block design d� with t treatments and b blocks of size k. Then d�(~x1; : : : ; ~xt) is

D-optimal over D(t, b, k) under (1:2) and (1:4) for all positive �.

Chasalow (1992) conducted a computer search to �nd optimal designs with

blocks of size two for the quadratic regression on [�1; 1]. Several optimality

criteria including the D-criterion were used, but the search was restricted to

binary designs supported on 1, 0 and �1. When the number of blocks is a

multiple of 3, the D-optimal designs he obtained are BIBD's as expected.

3. Approximate Theory

In the preceding section, for the minimum-support case, it was shown that

a D-optimal design can be obtained by combining a D-optimal block design for

treatment comparisons with a D-optimal regression design for the uncorrelated

model. This design, however, is not optimal if the number of support points

is allowed to be more than the number of unknown parameters. The general

problem of constructing optimal designs without restricting to those with mini-

mum support is quite di�cult. In this section, we sketch an approach based on

approximate theory, and apply it to the quadratic regression on [�1; 1].
The standard theory for (1.2) and (1.3) de�nes an approximate design � as

a (discrete) probability measure on �. The information matrix of � is

M(�) =

Z
�
f(x)f(x)T �(dx);

and a design �� is said to be D-optimal if it maximizes det[M(�)]. The Kiefer-

Wolfowitz Equivalence Theorem implies that �� is D-optimal if and only if it is

supported on points where the maximum of f(x)TM(��)�1f(x) over x 2 � is

attained. This is a powerful tool for �nding optimal designs.

In the case of random block-e�ects models considered in this article, it is

appropriate to think of each block as a point in �k. Therefore a design is to

choose a collection of points from �k. Instead of �, now the design region is

�
k. We shall denote each point in �k by X = (x1; : : : ;xk). The k observations

yx1
; : : : ; yxk

in each block (or at each X 2 �k) can be thought of as a k-variate

response. Denote this k-variate response by Y
X
: Y

X
� (yx1

; : : : ; yxk
)T . Then we

have

E(Y
X
) = [f(x1)

T
�; : : : ; f(xk)

T
�]T = F(X)T�;

where F(X) is the t� k matrix [f(x1); : : : ; f(xk)], and

Cov(Y
X
) = �2V; where V = [(1� �)Ik + �Jk]:

An approximate design is then a probability measure � on �k. The infor-

mation matrix of � is

M(�) =

Z
�k

F(X)V�1F(X)T �(dX):
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Again, a D-optimal design maximizes det[M(�)]. Notice that because the order

of the k observations in each block is not important, for each X 2 �k, all the

points obtained by permuting the components x1; : : : ;xk of X should also be

indistinguishable. The approach described above is appropriate if the weights of

all the permutations of the components x1; : : : ;xk of X are lumped together as

the weight of the corresponding block.

The Equivalence Theorem still applies in this multivariate problem except for

some necessary modi�cation. The quadratic form f(x)TM(��)�1f(x) is replaced

by F(X)TM(��)�1F(X)V�1. Also, since F(X)TM(��)�1F(X)V�1 is a matrix,

we need to take its trace: a design �� is D-optimal if and only if it is supported

on points where the maximum of tr[F(X)TM(��)�1F(X)V�1] over X 2 �k is

attained. If one can guess a candidate �� for a D-optimal design, then this

necessary and su�cient condition can be used to verify the optimality.

As an example, we shall specialize to the quadratic regression on [�1; 1]
with blocks of size two. Then � = [�1; 1], k = 2, and f1(x) = 1, f2(x) = x,

f3(x) = x2. Consider a BIBD supported on 1, 0, and �1, which was shown in

Section 2 to be D-optimal over D(3, b, 2). An approximate version of this design

is the uniform measure on the three points (1; 0)T , (�1; 0)T and (1;�1)T . Denote
this design by �B. Then its information matrix is

M(�B) =
1

3

2
4 1 1

1 0

1 0

3
5
�
1 �

� 1

�
�1 �

1 1 1

1 0 0

�
+
1

3

2
4 1 1

�1 0

1 0

3
5
�
1 �

� 1

�
�1 �

1 �1 1

1 0 0

�

+
1

3

2
4 1 1

1 �1
1 1

3
5
�
1 �

� 1

�
�1 �

1 1 1

1 �1 1

�
:

Let

g(x; y) � tr

�
1 x x2

1 y y2

�
[M(�B)]

�1

2
4 1 1

x y

x2 y2

3
5
�
1 �

� 1

�
�1

:

One can verify that g(1; 0) = g(�1; 0) = g(1;�1). Therefore, if the design region

is �2, where � = f0; 1; �1g, instead of [�1; 1]2, then �B is D-optimal. This

con�rms what we have shown earlier that a BIBD supported on 0, 1, �1 is D-

optimal over all the block designs supported on 0, 1, �1. However, it can easily

be seen that the maximum of g(x; y) over �1 � x; y � 1 is not achieved at

(x; y) = (1; 0), (�1; 0) or (1;�1). For example, the maximum of g(1; y) over

�1 � y � 1 is attained at a certain y with �1 < y < 0. Therefore �B is

not D-optimal without restrictions on the competing designs. Of course, not

being optimal over the approximate designs does not automatically rule out its

optimality over exact designs, but later on we shall use the optimal approximate
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design to obtain an exact design which performs better than the BIBD supported

on 1, 0 and �1. Since the maximum of g(1; y) over �1 � y � 1 is attained at a

certain y with �1 < y < 0, this seems to suggest that a D-optimal approximate

design may have (1; a) in its support, where a is a certain number such that

�1 < a < 0. Then by symmetry, (�1;�a) should also be in the support with

the same weight as (1; a). This leads to the guess that a D-optimal design may

be supported on (�1;�a), (1; a), each with weight �=2, and (�1; 1) with weight

1 � �, where 0 < � < 1. Denote such a design by ��, where a and � are to be

determined. If we can calculate a and �, then the Equivalence Theorem can be

used to verify whether it is, indeed, D-optimal. The power and beauty of the

Equivalence Theorem is that it can also be used to determine a and � to complete

the guess. We shall demonstrate that this guess does lead to a solution.

We �rst compute

M(��) = (1� �)

2
4 1 1

�1 1

1 1

3
5
�
1 �

� 1

�
�1 �

1 �1 1

1 1 1

�

+
�

2

2
4 1 1

�1 �a
1 a2

3
5
�
1 �

� 1

�
�1 �

1 �1 1

1 �a a2

�

+
�

2

2
4 1 1

1 a

1 a2

3
5
�
1 �

� 1

�
�1 �

1 1 1

1 a a2

�
:

Then, except for a multiplicative constant,

[M(��)]�1 /
2
4� 0 �

0 � 0

� 0 

3
5 ; (3:1)

where

� = [�(1 � 2�a+ a2) + 2(1� �)(1 + �) [�(1 � 2�a2 + a4) + 2(1� �)(1� �)]; (3:2)

� = (1� �)[2�(1 � 2�a2 + a4) + 4(1� �)(1� �)� (1� �)(�a2 + 2� �)2]; (3:3)

 = 2(1 � �)[�(1� 2�a+ a2) + 2(1� �)(1 + �)]; (3:4)

� =� (1� �)(�a2 + 2� �)[�(1� 2�a+ a2) + 2(1 � �)(1 + �)]: (3:5)

Let g(x, y; a, �, �) = tr

�
1 x x2

1 y y2

� 2
4� 0 �

0 � 0

� 0 

3
5
2
4 1 1

x y

x2 y2

3
5
�
1 �

� 1

�
�1

. If �� is

D-optimal, then by the Equivalence Theorem, the maximum of g(x; y; a; �; �) over
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�1 � x; y � 1 must be attained at (�1; 1), (�1;�a) and (1; a). In particular, we

must have

g(�1; 1; a; �; �) = g(�1; �a; a; �; �) (3:6)

and
@

@y
g(�1; y; a; �; �)jy=�a = 0: (3:7)

Tedious calculations lead to the following two equations:

(2� 2a2 + 4�+ 4�a)[�(1 � 2�a2 + a4) + 2(1� �)(1� �)]

+(�a2 + 2� �)2(a2 � 1� 2a�+ 2a�2 � a2�+ 2�2 � �)� 2(1� a2)[�(1� 2�a+ a2)

+2(1� �)(1 + �)] [(1 � �)(�a2 + 2� �)� a2 � 1 + 2�] = 0 (3:8)

and

2(a� �)[�(1� 2�a2 + a4) + 2(1� �)(1 � �)]� (1� a2)(2a � a�+ a��)

� [2�(1� 2�a+ a2) + 4(1 � �)(1 + �)] + (1� �)(�� a)(�a2 + 2� �)2 = 0: (3:9)

For any given �, we have two equations in two unknowns, which can be used to

calculate � and a. Therefore both a and � depend on �. After (3.8) and (3.9)

are solved, one can verify whether the maximum of the resulting g function over

(x; y), �1 � x; y � 1, is indeed attained at the three points (�1; 1), (�1;�a) and
(1; a) in the support of ��. This task is considerably simpli�ed by the following

result:

Lemma 3.1. Suppose for a given �, (3:8) and (3:9) have a solution (a�; ��) with

0 < �� < 1 and �1 < a� < 0. Suppress a�, ��, �, and write g(x, y; a�, ��, �)

as g(x; y). Also, let ��, ��, �, �� be the values of �, �,  and � in (3:2)-(3:5)

when a� and �� are substituted for a and �, respectively. If �� + � + 2�� > 0,

then the maximum of g(x; y) over �1 � x; y � 1, is attained at (�1; 1), (1; a�)
and (�1;�a�).
Proof. It is clear that g(�1;�a�) = g(1; a�). Also, by (3.6), g(�1;�a�) =

g(�1; 1). So it is enough to verify that the maximum is attained at (x; y) =

(�1;�a�).
We �rst show that the maximum is attained at a point (x; y) with x = �1

and 0 � y � 1. By (3.1), we can write g(x; y) as p(x; y) + q(x; y), where

p(x; y) = (1� �)[2�� + 2��x
2 + 2��y

2 + ��x
2 + ��y

2 + �x
4 + �y

4]

and

q(x; y) = �[��(x� y)2 + �(x
2 � y2)2]:
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Since M[(��)]�1 is positive de�nite,

��; ��; � > 0: (3:10)

Clearly,

p(x; y) = p(�x; y) = p(x;�y) = p(�x;�y) = p(y; x); (3:11)

and

q(x; y) = q(�x;�y) = q(y; x); (3:12)

while (3.10) implies that q(�x; y) � q(x; y) if xy � 0. Therefore, without loss

of generality, we may assume that x � 0 and y � 0. By using the assumption

�� + � + 2�� > 0, it is easy to see that

for any � 1 � x � 0 and 0 � y � 1; p(x; y) � p(�1; y): (3:13)

Now suppose at least one of x2 and y2 is � 1=2. We shall show that g(x; y) �
g(�1; y0) for some 0 � y0 � 1. By (3.11) and (3.12), we may assume that

0 � y � 1=
p
2. Then clearly q(�1; y) � q(x; y). This together with (3.13) imply

that g(�1; y) � g(x; y). Therefore we only have to consider the case where both

x2 and y2 are > 1=2. Repeating the same argument over and over again, we can

successively eliminate the cases that both of x2 and y2 are < 1, but at least one

is � 3=4, 7=8, 15=16, etc, and conclude that the maximum must be attained at

a point (x; y) with x = �1 and 0 � y � 1.

Therefore one can �x x at �1, and consider the maximization of g(�1; y)
over 0 � y � 1. Since g(�1; y) is a fourth-degree polynomial in y with a positive

leading coe�cient, it has at most one local maximum and two local minima. Now

observe that

(i) @

@y
g(�1; y)jy=1 > 0, and

(ii) g(�1; 1) > g(�1;�1).
Also, by (3.6) and (3.7), we have g(�1; 1) = g(�1;�a�) and @

@y
g(�1; y)jy=�a� =

0. Using these facts, we can easily show that g(�1;�a�) is a local maximum,

and g(�1; 1) = g(�1;�a�) is the maximum of g(�1; y) over 0 � y � 1.

Therefore to show that the maximum of g(x; y) over �1 � x; y � 1 is attained

at (�1; 1), (�1;�a�) and (1; a�), it is enough just to verify �� + � + 2�� > 0,

which is a simple task.

At the end of this article is a table containing solutions (a�; ��) of (3.6) and

(3.7) for � = 0:1, 0:2; : : :, 0:9. In each case, there is a solution with 0 < �� < 1

and �1 < a� < 0; furthermore, the condition �� + � + 2�� > 0 is satis�ed.

Notice that the positive values �a�, instead of a�, are tabulated. For instance,

for � = 0:5, the D-optimal approximate design puts a weight of 0:28818 on the
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block (�1; 1), and 0:35591 each on (1;�0:131269) and (�1; 0:131269). It is clear
from the table that as � decreases, both �a� and �� decrease. When � gets closer

to zero, a� tends to 0, �� tends to 2=3, and the optimal design converges to that

for the uncorrelated case.

We de�ne the D-e�ciency of any given design � as fdet[M(�)]=det[M(��)]g1=t
(t = 3 for the quadratic regression), where �� is the D-optimal design. The table

also contains e�ciencies of the design �U with the same weight 1=3 on each of

the three blocks in the support of the D-optimal ��. It turns out that even when

optimal weights are not used, the e�ciencies are extremely high. Finally, we also

calculate the e�ciencies of the design �B with uniform weights on (1; 0), (�1; 0)
and (�1; 1), the approximate version of a BIBD supported on 1, 0, �1. We see

that �B is slightly less e�cient than �U ; therefore, a BIBD supported on 1, 0 and

�1 is not an optimal exact design. This design does not have optimal support

points nor optimal weights, but the table shows that its e�ciencies are also very

high. In practice, one might prefer such a design since its support points and

weights do not depend on the correlation �. So our original idea of combining

optimal block designs with optimal regression designs for uncorrelated models

does seem to work quite well. Such designs are not optimal over all possible

competing designs, but are expected to be highly e�cient.

Even for the simplest quadratic regression model on [�1; 1], the solution

presented here is already quite complex. We hope to extend the results in this

article to other models, design regions and block sizes in further studies.

Table. Optimal designs for the quadratic regression on [�1; 1] with blocks

of size two; e�ciencies of �U and �B

� �a� �� e�ciency of �U e�ciency of �B

0 0 2/3 1 1

0.1 0.031300 0.669064 0.999997 0.999503

0.2 0.059255 0.675536 0.999956 0.998204

0.3 0.084799 0.685203 0.999807 0.996314

0.4 0.108635 0.697439 0.999472 0.993969

0.5 0.131269 0.711820 0.998871 0.991262

0.6 0.153065 0.728065 0.997932 0.988257

0.7 0.174281 0.745990 0.996590 0.985001

0.8 0.195104 0.765487 0.994785 0.981532

0.9 0.215667 0.786501 0.992463 0.977876
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