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Abstract: A new class of capability indices, containing Cp, Cpk, Cpm, and Cpmk, is

de�ned. By varying the parameters of the studied class, indices with di�erent prop-

erties can be found. Two estimators of the indices are considered and, assuming that

the studied characteristic of the process is normally distributed and that the target

value is equal to the mid-point of a two-sided speci�cation interval, their expected

values, variances, and mean square errors are derived. It is shown that studying the

properties of the class of indices alone, without taking the properties of its estimators

into account, might be misleading.
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1. Introduction

Process capability indices have received much interest in the statistical liter-

ature during recent years. For thorough discussions of di�erent capability indices

see, for instance, Kane (1986), Chan, Cheng, and Spiring (1988a), Boyles (1991),

Pearn, Kotz, and Johnson (1992), henceforth abbreviated as PKJ, Rodriguez

(1992), and Kotz and Johnson (1993).

Here we consider the case where there is a two-sided speci�cation interval,

[LSL;USL]. The four di�erent indices Cp, Cpk, Cpm, and Cpmk described in the

next section, have been suggested in the literature in that situation. Here we

de�ne a class of capability indices that generalizes the four basic indices men-

tioned. By varying the parameters of this class we can �nd indices with di�erent

desirable properties. We also consider di�erent estimators of the indices under

investigation and derive their expected values, variances, and mean square errors

assuming that the studied characteristic of the process is normally distributed

and that the target value T is equal to the mid-point M of the speci�cation in-

terval. Furthermore, numerical investigations are made to explore the behavior

of these estimators for di�erent values of the parameters.
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2. Today's Capability Indices

Among capability indices the earliest form is, Juran (1974),

Cp =
USL� LSL

6�
=

d

3�
; (1)

where USL and LSL are the upper and lower speci�cation limits, respectively, �

the process standard deviation, and d = (USL�LSL)=2, that is, half the length

of the speci�cation interval. Cp does not take into account that the process mean,

�, may di�er from the target value T . To avoid that drawback the so called second

generation of capability indices, Cpk (Kane (1986)) and Cpm (Hsiang and Taguchi

(1985) and, independently, Chan, Cheng, and Spiring (1988a)) were de�ned, with

Cpk =
min(USL� �; �� LSL)

3�
=

d� j��M j
3�

(2)

and

Cpm =
USL� LSL

6
p
E((X � T )2)

=
d

3
p
�2 + (�� T )2

; (3)

where M = (USL+ LSL)=2, that is, the mid-point of the speci�cation interval,

and T is the target value.

To obtain a capability index which is more sensitive than Cpk and Cpm with

regard to departures of the process mean, �, from the target value, T , PKJ

de�ned a so called third generation of capability index, Cpmk, as

Cpmk =
min(USL� �; �� LSL)

3
p
�2 + (�� T )2

=
d� j��M j

3
p
�2 + (�� T )2

: (4)

For a thorough overview of these four basic and several related indices and their

properties see the monograph by Kotz and Johnson (1993).

The four above mentioned capability indices are all equal when � = T =M ,

but di�er in behavior when � 6= T . By plotting the four indices as surfaces,

in analogy with Figure 1, we can get a feeling for the sensitivity with regard

to departures of the process mean, �, from the target value, T , assuming that

T =M . We then see that, for �xed �, when � moves away from T , then Cp does

not change, Cpk changes, but slowly, Cpm changes somewhat more rapidly than

Cpk, but Cpmk is the one that changes most rapidly. (See V�annman (1993).)

The capability indices (1)-(4) are designed to measure the process capabil-

ity when the studied characteristic of the process is normal. In such a case the

index Cp can be interpreted using the probability of non-conformance, that is,

the probability of obtaining a value outside the speci�cation limits. Elementary

probabilistic arguments show that the probability of non-conformance is equal to
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2�(�3Cp), where � denotes the standard normal cumulative distribution func-

tion.

As PKJ pointed out the value of Cpk does not determine the probability of

non-conformance, but limits it, and the probability of non-conformance is never

more than 2�(�3Cpk). The corresponding is true for both Cpm and Cpmk and the

probability of non-conformance is never more than 2�(�3Cpm) and 2�(�3Cpmk),

respectively.

Boyles (1991) showed that Cpk becomes arbitrarily large as � approaches 0

and this characteristic makes Cpk unsuitable as a measure of process centering.

The same is, of course, true for Cp. Boyles (1991) showed also that for �xed

� the index Cpm is bounded above when � tends to 0 and, furthermore, that

Cpm < d=(3j� � T j) and hence j� � T j < d=(3Cpm). This inequality can be

interpreted as a Cpm-value of 1 implies that the process mean � lies within the

middle third of the speci�cation range, and in general it lies within the middle

1=(3Cpm) of the speci�cation range.

When T =M a similar interpretation can be made for Cpmk. It is seen from

(4) that for �xed � the index Cpmk is bounded above when � tends to 0 and

that Cpmk < d=(3j� � T j) � 1=3 or, equivalently j� � T j < d=(1 + 3Cpmk). This

inequality can be interpreted as a Cpmk-value of 1 implies that the process mean

� lies within the middle fourth of the speci�cation range. In general the process

mean � lies within the middle 1=(1 + 3Cpmk) of the speci�cation range, when

T =M .

3. A New Class of Capability Indices

We now de�ne a new class of capability indices, depending on two non-

negative parameters, u and v, as

Cp(u; v) =
d� uj��M j

3
p
�2 + v(�� T )2

: (5)

All four indices (1)-(4) in the previous section can be considered as special

cases of the index in (5) by letting u = 0 or 1 and v = 0 or 1. We �nd that

Cp(0; 0) = Cp; Cp(1; 0) = Cpk; Cp(0; 1) = Cpm; Cp(1; 1) = Cpmk:

PKJ pointed out some undesirable properties of Cpm when the target value

T is between LSL and USL, but not equal to M . Furthermore, when we have

a two-sided speci�cation interval the case when T = M is quite common in

practical situations. For these reasons we restrict our attention in this paper to

the case when T =M , that is, study the case when Cp(u; v) in (5) is given by

Cp(u; v) =
d� uj�� T j

3
p
�2 + v(�� T )2

: (6)
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For �xed values of u > 0 and v > 0, the index Cp(u; v) can be interpreted

in a similar way as Cpm and Cpmk. The value of the Cp(u; v)-index does not

determine the probability of non-conformance, but limits it, and the probability

of non-conformance is never more than 2�(�3Cp(u; v)). Furthermore we see from

(6) that for �xed � the index Cp(u; v) is bounded above when � tends to 0 and

that

Cp(u; v) <
d

3
p
vj�� T j

�
u

3
p
v

or, equivalently j�� T j <
d

u+ 3
p
vCp(u; v)

:

One interpretation of this inequality is that the process mean � lies within the

middle 1=(u + 3v1=2Cp(u; v)) of the speci�cation range.

If it is of interest to have a capability index that is very sensitive with regard

to departures of the process mean, �, from the target value, T , then the values

of u and v in (6) should be large. In Figure 1 some plots of Cp(u; v) are given

for some combinations of u and v.

The indices have been expressed in the two variables �=d and j� � T j=d in

Figure 1, and the surface describing the index has been cut o� at the index value

1 to facilitate comparisons of the indices. From Figure 1 we can see how the

sensitivity, with regard to departures of the process mean, �, from the target

value, T , depends on u and v.

Since in most cases the values of the process mean � and the process standard

deviation � are unknown and have to be estimated, we cannot consider the

behavior of the theoretical capability indices in (6) alone. We also have to study

the estimators of the indices and their properties. This will be done in the

subsequent sections. There we will see that it is not of interest to increase u and

v too much since then the estimators will have undesirable properties.

4. Estimation of Cp(u; v)

We treat the case when the studied characteristic of the process is normally

distributed. Let X1, X2; : : :, Xn be a random sample from a normal distribution

with mean � and variance �2 measuring the studied characteristic.

We consider two di�erent estimators of Cp(u; v), di�ering in the way the

variance �2 is estimated. In analogy with the estimator of Cpmk studied by PKJ

and the estimator of Cpm studied by Boyles (1991) we will de�ne the estimator

C�

p;n
(u; v) of Cp(u; v) as

C�

p;n
(u; v) =

d� uj �X � T j

3
q
�2� + v( �X � T )2

; (7)
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Cp(0; 2) j�� T j=d Cp(2; 2)

�=d

Cp(0; 4) Cp(4; 4)

Figure 1. The capability indices Cp(0; 2), Cp(2; 2), Cp(0; 4), and Cp(4; 4)

as surface plots with x = �=d and y = j�� T j=d.

where the mean � is estimated by the sample mean, �X, and the variance �2 is

estimated by the maximum likelihood estimator

�2� =
1

n

nX
i=1

(Xi � �X)2:

From (7) we �nd that C�

p;n
(1; 1) is equal to Ĉpmk studied by PKJ and that

C�

p;n
(0; 1) is equal to Ĉpm studied by Boyles (1991) and by PKJ. We also �nd

that the estimator C�

p;n
(0; 1) is equal to (n=(n� 1))1=2Ĉpm, where Ĉpm is studied

by Chan, Cheng, and Spiring (1988a,b).

The second estimator, C�

p;n�1(u; v), studied is obtained by estimating the
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variance �2 by the sample variance, and hence we get

C�

p;n�1(u; v) =
d� uj �X � T j

3
q
s2 + v( �X � T )2

; (8)

where

s2 =
1

n� 1

nX
i=1

(Xi � �X)2:

From (8) we �nd that C�

p;n�1(0; 0) is equal to Ĉp and C�

p;n�1(1; 0) is equal

to Ĉpk, discussed by several authors, among others, Chan, Cheng, and Spiring

(1988a,b), Bissell (1990), PKJ, Kotz, Pearn, and Johnson (1993). Discussions of

the above mentioned estimators, corresponding to the cases when u = 0 or 1 and

v = 0 or 1, are also found in Kotz and Johnson (1993).

One reason for using �2� as an estimator of �2 is that for v = 1 the expression

under the radical sign in the denominator in (7) will be an unbiased estimator

of the expression under the radical sign in the denominator in (6). See Boyles

(1991) and PKJ.

By comparing the expressions in (7) and (8) we see that the two studied

estimators are related as

C�

p;n�1(u; v) =

r
n� 1

n
C�

p;n

�
u;
n� 1

n
v
�
: (9)

In the next section we derive the expected value, variance, and mean square

error of the estimator C�

p;n
(u; v). Using (9) the properties of the estimator

C�

p;n�1(u; v) can easily be derived once the properties of C�

p;n
(u; v) are derived.

5. Expected Value, Variance, and Mean Square Error

To derive the expected value, variance and mean square error of the estimator

in (7) we use a reasoning inspired by PKJ, when they derive the expected value

of Ĉpmk. The derivations are given in the appendix from which we have the

expected value of C�

p;n
(u; v)

E(C�

p;n
(u; v))

=
e��=2

3

2
4dpn
�
p
2

1X
j=0

�
�

2

�j
j!

�
�
n�1

2
+ j
�

�
�
n

2
+ j

� � 2F1

�
1

2
; j +

1

2
; j +

n

2
; 1� v

�

�u
1X
j=0

�
�

2

�j
�
�
1

2
+ j

� �
�
n

2
+ j

�
�
�
n+1

2
+ j

� � 2F1

�
1

2
; j + 1; j +

n+ 1

2
; 1� v

�35; (10)
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where 2F1 is the hypergeometric function (see, for instance, Abramowitz and

Stegun (1965)) and

� =
n(�� T )2

�2
: (11)

The formula for the expected value might act as a deterrent but with today's

computer software like Mathematica (Wolfram (1991)) the expression in (10) can

be calculated for given values of u, v, �, �, and n. Doing so we �nd that the

estimator C�

p;n
(u; v) is biased and that the bias is larger for certain choices of the

parameters. This will be discussed in more detail in Section 6.

From the appendix we have

E((C�

p;n
(u; v))2)

=
e��=2

9

2
4�d

�

�2 n

2

1X
j=0

�
�

2

�j
j!

�
2

n+ 2j � 2
� 2F1

�
1; j +

1

2
; j +

n

2
; 1� v

�

� 2u
d
p
n

�
p
2

1X
j=0

�
�

2

�j
�
�
1

2
+ j

� � 2

n+ 2j � 1
� 2F1

�
1; j + 1; j +

n+ 1

2
; 1� v

�

+u2
1X
j=0

�
�

2

�j
j!

�
2j + 1

n+ 2j
� 2F1

�
1; j +

3

2
; j +

n+ 2

2
; 1� v

�35 (12)

where, as above, 2F1 is the hypergeometric function and � is given in (11).

The variance of C�

p;n
(u; v) is now obtained as

V (C�

p;n
(u; v)) = E((C�

p;n
(u; v))2)� (E(C�

p;n
(u; v)))2;

where E(C�

p;n
(u; v)) is given in (10) and E((C�

p;n
(u; v))2) in (12). Since the es-

timator C�

p;n
(u; v) is biased the mean square error of the estimator might be

more relevant to study than the variance. The mean square error of C�

p;n
(u; v) is

obtained as

MSE(C�

p;n
(u; v)) = E((C�

p;n
(u; v))2) + (Cp(u; v))

2 � 2Cp(u; v)E(C
�

p;n
(u; v));

where Cp(u; v) is given in (6), E(C�

p;n
(u; v)) in (10), and E((C�

p;n
(u; v))2) in (12).

Numerical results of the mean square error are discussed in the next section.

In the special case when v = 0 the expressions in (10) and (12) reduce to

E(C�

p;n
(u; 0)) =

1

3

�
�
n�2

2

�
�
�
n�1

2

�
"
d
p
n

�
p
2
� u

 
e��=2
p
�

+

p
�

p
2

�
1� 2�(�

p
�)
�!#

; (13)
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E((C�

p;n
(u; 0))2)

=
1

9
�

n

n�3

"�
d

�

�2
+u2

�+1

n
� 2

u
p
n

d

�

 p
2

p
�
e��=2+

p
�
�
1�2�(�

p
�)
�!#

: (14)

When, furthermore, u = 0 the results in (13) and (14) are in accordance with

the results for Ĉp in formula (12) and (20), respectively, in PKJ. When u = 1

the result in (13) is in accordance with E(Ĉpk) in formula (14) in PKJ and

with E(Ĉpk) in formula (5a) in Kotz, Pearn and Johnson (1993), both of which,

however, contain misprints. When u = 1 the result in (14) is in accordance with

the result in formula (21) in PKJ. (See also Kotz and Johnson (1993).)

In the special case when v = 1 the expressions in (10) and (12) are simpli�ed

since then all the hypergeometric functions in (10) and (12) equal 1. Furthermore,

for u = 0, v = 1 the results in (10) and (12) are in accordance with the results

for Ĉpk in formulas (17) and (22), respectively, in PKJ. For u = 1, v = 1 the

results in (10) and (12) are the same as the results for Ĉpmk given in formulas

(25) and (27), respectively, in PKJ. (See also Kotz and Johnson (1993).)

When v > 1, we use formula 15.3.4 in Abramowitz and Stegun (1965) to

rewrite the formulas of the hypergeometric functions in (10) and (12) in order to

avoid problems with convergence. For v > 1 the hypergeometric functions were

calculated using a recursive formula derived from formula 15.2.27 in Abramowitz

and Stegun (1965) to avoid numerical problems in Mathematica.

When the process is on target, that is � = T , which is equivalent to � = 0,

the expressions in (10) and (12) reduce to

E(C�

p;n
(u; v))

=
1

3

"
d
p
n

�R(n)
p
2
� 2F1(

1

2
;
1

2
;
n

2
; 1� v)�

2uR(n)

(n� 1)
p
�
� 2F1(

1

2
; 1;

n+ 1

2
; 1�v)

#
; (15)

E((C�

p;n
(u; v))2)

=
1

9

"�
d

�

�2
n

n� 2
� 2F1(1;

1

2
;
n

2
; 1� v)�

4ud
p
n

�(n� 1)
p
2�

� 2F1(1; 1;
n+ 1

2
; 1� v)

+
u2

n
� 2F1(1;

3

2
;
n+ 2

2
; 1� v)

#
; (16)

where

R(n) =

�
�

�
n� 1

2

��
�1

�

�
n

2

�
:



A UNIFIED APPROACH TO CAPABILITY INDICES 813

When v = 1 the expressions in (15) and (16) are simpli�ed since then all the

hypergeometric functions in (15) and (16) equal 1. When u = 0, v = 1 the results

in (15) and (16) are in accordance with the results for Ĉpm by Chan, Cheng, and

Spiring (1988a) and by PKJ. When u = 1, v = 1 the results in (15) and (16) are

in accordance with the results for Ĉpmk in PKJ, apart from some misprints in

their formulas. (See also Kotz and Johnson (1993).)

To obtain the expected value, variance and mean square error of the estima-

tor C�

p;n�1(u; v) in (8) the results in this section can be used together with the

relationship in (9).

6. Comparisons of Indices

To explore the behavior of the estimators for di�erent values of u and v

the expected values, variances, and mean square errors were calculated, using

Mathematica, for di�erent values of the parameters

u; v; n; a =
j�� T j

�
; and b =

d

�
: (17)

In accordance with PKJ we did the calculations using a = 0(0:5)2:0, b = 2(1)6,

n = 10(10)50. Furthermore, u = 0(1)5 and v = 0(1)5 were used. Only integer

values of u and v were utilized since it seems not to be of any interest to consider

more complicated indices. Only parts of the results from the calculations are

presented here.

In the class of indices studied we are looking for an index that is sensitive to

departures from the target value, T , especially in the case when � is small. In

such a case it is more di�cult to detect that the process is not capable in the

sense that it is not on target. From the study of Cp(u; v) in Section 3 we saw that

large values of u and v will make the index Cp(u; v) more sensitive to departures

from the target value.

When calculating the expected values of the estimators for the parameters

studied we �nd that all estimators are biased to a larger or smaller extent. The

larger the n-value the smaller the bias. When the process is not on target, that is,

when a > 0, the bias is positive when using both the estimator C�

p;n
(u; v) and the

estimator C�

p;n�1(u; v). When the process is on target, that is, when a = 0, then

the bias can be positive or negative. In Table 1 the relative bias of C�

p;n
(u; v),

when a = 0, is given for n = 30, b = 3; 5, u = 0(1)5, and v = 0(1)5.

We see from Table 1 that, when the process is on target, the relative bias

is negative and quite large in absolute value when u and v are large. The same

pattern as in Table 1 can be seen for the estimator C�

p;n�1(u; v) and for other
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values of b and n. When n = 10 the pattern is most distinct. (See V�annman

(1993).)

Table 1. The relative bias of C�

p;n
(u; v), when the process is on target and

n = 30.

b = 3 v

u 0 1 2 3 4 5

0 0:044 0:026 0:010 �0:004 �0:017 �0:029

1 �0:006 �0:023 �0:038 �0:051 �0:062 �0:073

2 �0:057 �0:072 �0:085 �0:097 �0:108 �0:117

3 �0:108 �0:121 �0:133 �0:143 �0:153 �0:162

4 �0:158 �0:170 �0:180 �0:189 �0:198 �0:206

5 �0:209 �0:219 �0:228 �0:236 �0:243 �0:250

b = 5 v

u 0 1 2 3 4 5

0 0:044 0:026 0:010 �0:004 �0:017 �0:029

1 0:014 �0:003 �0:019 �0:032 �0:044 �0:056

2 �0:016 �0:033 �0:047 �0:060 �0:071 �0:082

3 �0:047 �0:062 �0:076 �0:088 �0:099 �0:109

4 �0:077 �0:092 �0:104 �0:115 �0:126 �0:135

5 �0:108 �0:121 �0:133 �0:143 �0:153 �0:162

When the process is on target, and at the same time � is so small that the

process can be considered capable, it is an undesirable property to have an index

whose estimator largely underestimates the true index. One way of reasoning for

obtaining a suitable index is to look for an index whose estimator has a small

bias when a = 0 and at the same time has small variability. To combine these

two criteria we can search for values of u and v that will give small values of the

mean square error of the estimator when a = 0, where a is given in (17). One

suggestion for obtaining meaningful indices is using the following criteria.

1. Only indices with small bias and small mean square error, when the process

is on target, will be considered.

2. Among the possible u- and v-values obtained, indices will be chosen with re-

spect to their sensitivity to departures from the target value in the sense that the

expected value of the estimator of the index ought to be sensitive to departures

from the target value, especially in the case of small �. Also the mean square

errors, when the process is not on target, will be taken into consideration.
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As an example consider the case when n = 30 and the estimator C�

p;n
(u; v).

In Table 2 the values, when a = 0, of MSE(C�

p;n
(u; v)), multiplied by 100, are

given for n = 30, b = 3; 5, u = 0(1)5, and v = 0(1)5. We see from Table 2 that

when n = 30 the smallest values of the mean square error are obained for u = 0

and v = 2 or 3 but the mean square error does not vary too much close to these

values. We also see from Table 2 that large values of u and v give rise to large

mean square errors and hence indices with large values of u and v are not suitable

to use. The same pattern is found for the other values of b and n not given in

Table 2. Choosing the indices with, for instance, the seven smallest mean square

errors for b = 3 from Table 2 will give us u = 0 together with v = 1; 2; 3; 4; 5

and u = 1 together with v = 0; 1. Correspondingly for b = 5 we �nd u = 0

together with v = 1; 2; 3; 4 and u = 1 together with v = 0; 1; 2. Selecting the

indices common to both groups, which seems to be a reasonable strategy, gives

us u = 0 together with v = 1; 2; 3; 4 and u = 1 together with v = 0; 1 to consider

further.

Table 2. 100�MSE(C�

p;n(u; v)), when the process is on target and n = 30.

b = 3 v

u 0 1 2 3 4 5

0 2.235 1.963 1.889 1.927 2.035 2.187

1 1.999 2.080 2.266 2.507 2.779 3.070

2 2.585 2.937 3.322 3.718 4.116 4.511

3 3.995 4.535 5.058 5.561 6.045 6.510

4 6.227 6.874 7.474 8.036 8.566 9.068

5 9.283 9.954 10.570 11.143 11.680 12.185

b = 5 v

u 0 1 2 3 4 5

0 6.209 5.453 5.248 5.353 5.652 6.077

1 5.540 5.400 5.649 6.109 6.696 7.361

2 5.695 6.089 6.730 7.496 8.332 9.204

3 6.672 7.518 8.490 9.515 10.560 11.606

4 8.473 9.688 10.931 12.166 13.380 14.566

5 11.096 12.598 14.051 15.448 16.792 18.084

Next we compare the indices, among those obtained above, with respect to

their sensitivity to departures from the target value. PKJ showed that Ĉpmk is

more sensitive to departures from the target value than are Ĉpm and Ĉpk. Hence

the cases u = 0, v = 1, corresponding to Cpm, and u = 1, v = 0, corresponding
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to Cpk, are not of interest to study further.

We then consider, for di�erent values of a and b, the expected values and the

values of the mean square error of C�

p;n
(u; v) when u = 0 and v = 2; 3; 4 as well

as u = 1 and v = 1. In Tables 3 and 4 these values are given for n = 30.

Table 3. The expected value of C�

p;n(u; v), when n = 30.

u = 0; v = 2 u = 1; v = 1

a a

b 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

2 0.673 0.557 0.393 0.288 0.224 0.635 0.462 0.244 0.097 0.002

3 1.010 0.835 0.589 0.432 0.336 0.977 0.768 0.485 0.284 0.152

4 1.346 1.113 0.785 0.576 0.448 1.319 1.074 0.725 0.471 0.303

5 1.683 1.391 0.982 0.720 0.560 1.661 1.379 0.965 0.659 0.453

6 2.020 1.670 1.178 0.864 0.672 2.003 1.685 1.206 0.846 0.604

u = 0; v = 3 u = 0; v = 4

a a

b 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

2 0.664 0.517 0.341 0.243 0.186 0.655 0.485 0.305 0.214 0.163

3 0.996 0.775 0.511 0.364 0.280 0.983 0.728 0.458 0.321 0.245

4 1.327 1.033 0.681 0.485 0.373 1.310 0.971 0.611 0.427 0.326

5 1.659 1.291 0.852 0.607 0.466 1.638 1.213 0.763 0.534 0.408

6 1.991 1.550 1.022 0.728 0.559 1.965 1.456 0.916 0.641 0.489

From Table 3 we see that u = 0, v = 2 will give us the index, among those

considered, that is least sensitive to departures from the target value. Hence we

exclude that case. We also exclude the case when u = 1, v = 1 for not being

sensitive enough to departures from the target value when � is small, that is, when

b, de�ned in (17), is large. Hence we end up with the two indices corresponding

to u = 0, v = 3 and u = 0, v = 4, which are fairly equivalent with respect to mean

square error and sensitivity to departures from the target value. The estimator

C�

p;n
(0; 4) is somewhat more sensitive to departures from the target value but

will give rise to a small but negative bias, while C�

p;n
(0; 3) is almost unbiased,

when the process is on target. Comparing the mean square errors of the two

estimators when the process is not on target, we see from Table 4 that they are

fairly equivalent. For n = 50, by calculating the expected values of C�

p;n
(0; 3) and

C�

p;n
(0; 4) we �nd that, for all values of a and b, the estimators have small bias.

For numerical details see V�annman (1993), where also an example for n = 10 is
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studied and the same conclusion regarding suitable indices is reached.

Table 4. 100�MSE(C�

p;n
(u; v)), when n = 30.

u = 0; v = 2 u = 1; v = 1

a a

b 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

2 0.840 0.736 0.285 0.094 0.036 1.074 1.089 0.492 0.189 0.078

3 1.889 1.655 0.641 0.211 0.081 2.080 2.028 0.942 0.370 0.156

4 3.359 2.942 1.139 0.376 0.144 3.522 3.302 1.552 0.618 0.262

5 5.248 4.560 1.780 0.587 0.225 5.400 4.910 2.322 0.931 0.398

6 7.558 6.662 2.563 0.844 0.324 7.715 6.853 3.252 1.310 0.561

u = 0; v = 3 u = 0; v = 4

a a

b 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

2 0.857 0.828 0.258 0.074 0.026 0.904 0.906 0.234 0.061 0.021

3 1.927 1.863 0.581 0.166 0.059 2.035 2.040 0.526 0.136 0.047

4 3.426 3.312 1.032 0.295 0.106 3.617 3.627 0.935 0.242 0.084

5 5.353 5.175 1.613 0.460 0.165 5.565 5.668 1.461 0.379 0.131

6 7.709 7.452 2.323 0.663 0.238 8.138 8.161 2.104 0.545 0.188

It is of importance to notice that when n is small the mean square error for

all estimators studied is quite large compared to the corresponding capability

index. This can be seen from Table 5, which gives the square root of the mean

square error for C�

p;n
(0; 4) for some parameter values. Hence we can conclude

that we need quite large sample sizes to reduce the variability due to estimation.

Table 5. The square root of the mean square error for C�

p;n(0; 4) and the

corresponding index, for a = 0; 1, b = 3; 5 and n = 10; 30; 50.

q
MSE(C�

p;n
(0; 4))

a b Cp(0; 4) n = 10 n = 30 n = 50

0 3 1.000 0.272 0.143 0.107

0 5 1.667 0.454 0.238 0.179

1 3 0.447 0.151 0.073 0.054

1 5 0.745 0.251 0.121 0.090
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7. Concluding Remarks

By considering the class of indices described by Cp(u; v) in (6) and the prop-

erties of estimators of the corresponding indices we can choose values of u and

v, that is, a suitable index, so that the index and its estimator satisfy criteria of

interest, not necessarily the same as those suggested here.

It is of interest to note that studying the properties of Cp(u; v) alone, and

not at the same time taking the properties of its estimator into account, might

mislead us when searching for a suitable index. Hence its is of importance always

to consider the properties of the estimator, such as the behavior of the expected

value and the mean square error, when deciding which of the capability indices

to use.

A more comprehensive and detailed version of this paper is given in V�annman

(1993), including the results for the estimator C�

p;n�1(u; v).

The distribution of C�

p;n
(u; v) has been derived in V�annman and Kotz (1994),

where, also, suitable criteria for choosing an index from the family are suggested,

based on a decision rule that can be used to determine whether the process is

capable or not.

Appendix

We derive the rth moment of C�

p;n
(u; v) and introduce the notation

� =
1

�2

nX
i=1

(Xi � �X)2; �0 =
n( �X � T )2

�2
; and D =

d
p
n

�
: (18)

In this notation the estimator C�

p;n
(u; v) in (7) becomes:

C�

p;n
(u; v) =

D � u
p
�0

3
p
� + v�0

: (19)

Under the assumption of normality we have that � and �0 in (18) are in-

dependent random variables, and that � is distributed according to a central

�2-distribution with n � 1 degrees of freedom. Furthermore we have that �0 is

distributed according to a non-central �2-distribution with 1 degree of freedom

and non-centrality parameter � given in (11).

Using the binomial theorem we can write the rth moment of C�

p;n
(u; v) in

(19) as

E((C�

p;n
(u; v))r) = 3�r

rX
i=0

(�u)i
 
r

i

!
Dr�iE(�0i=2(� + v�0)�r=2): (20)

In (20) the expression (�u)i should be interpreted as 1 when i = 0, also for the

case u = 0. Now we rewrite the expected value in the right hand side of (20),
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using the fact that a non-central �2-distribution with 1 degree of freedom and

non-centrality parameter � can be written as a mixture of central �2-distributions

with 1 + 2j degrees of freedom and Poisson weights

e��=2

j!

�
�

2

�j

:

See, for instance, Johnson and Kotz (1970b, p: 132). Let �j be distributed ac-

cording to a central �2-distribution with 1 + 2j degrees of freedom. Then we

get

E(�0i=2(� + v�0)�r=2) =
1X
j=0

e��=2

j!

�
�

2

�j

E(�
i=2
j
(� + v�j)

�r=2): (21)

Let �j = � + �j and �j = �j=�j . Under the assumption of normality we

have that �j and �j are independent random variables (see, for instance, Johnson

and Kotz (1970a)) and that �j is distributed according to a Beta((1 + 2j)=2,

(n� 1)=2)-distribution. Furthermore we have that �j is distributed according to

a central �2-distribution with n + 2j degrees of freedom. Using �j and �j and

their independence we can rewrite the expected value in the right hand side of

(21) to get

E(�
i=2

j
(� + v�j)

�r=2) = E(�
�(r�i)=2

j
)E(�

i=2

j
(1 + (v � 1)�j)

�r=2): (22)

Since �j is Beta-distributed we can write

E(�
i=2

j
(1 + (v � 1)�j)

�r=2)

=
�
�
n

2
+ j

�
�
�
1

2
+ j

�
�
�
n�1

2

� Z 1

0

xj+(i�1)=2(1� x)(n�3)=2(1 + (v � 1)x)�r=2dx

=
�
�
n

2
+ j

�
�
�
i+1

2
+ j

�
�
�
1

2
+ j

�
�
�
n+i

2
+ j

� � 2F1

�r
2
;
i+ 1

2
+ j;

n+ i

2
+ j; 1 � v

�
; (23)

where 2F1 is the hypergeometric function (see, for instance, Abramowitz and

Stegun (1965)).

Combining the results from (20)-(23) with the expected value of �j (see, for

instance, Johnson and Kotz (1970a)) we get

E((C�

p;n
(u; v))r) = 3�r

rX
i=0

(�u)i
 
r

i

!�
D
p
2

�r�i

e��=2

�
1X
j=0

�
�

2

�j
j!

�
�
n�r+i

2
+ j

�
�
�
i+1

2
+ j

�
�
�
1

2
+ j

�
�
�
n+i

2
+ j

� � 2F1

�r
2
;
i+ 1

2
+ j;

n+ i

2
+ j; 1 � v

�
; (24)

where D is given in (18) and � is given in (11). In (24) the expression (�u)i

should be interpreted as 1 when i = 0, also for the case u = 0. Letting r = 1 and

2 in (24) we obtain the expected values given in (10) and (12), respectively.
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