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FOR REGRESSION
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Abstract: This article describes a new non-parametric regression method that extends

additive regression techniques to allow modeling of interactions among predictor vari-

ables. The proposed models consist of sums of smooth functions of one or more

predictor variables. Each term involving more than one predictor is assumed to be

a composition of bivariate functions of simpler terms in the model. The method is

demonstrated on simulated and real data sets and predictions are compared to those

from additive regression models and Friedman's (1991) multivariate adaptive regres-

sion spline (MARS) models.
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1. Introduction

Consider a regression problem where the response y and p predictor variables

(x1; : : : ; xp) are related by y = f(x1; : : : ; xp)+�, where � is a mean zero noise term.

Assume we have data consisting of n independent observations of the response

and the predictors (yi; xi1; : : : ; xip), i = 1; : : : ; n: There can be several possible

goals for a regression analysis of the data. Interest may focus on identifying which

predictors are associated with the response, studying estimates of the regression

function f or predicting the response for new observations.

Additive models (eg. Hastie and Tibshirani (1990)) are a useful and increas-

ingly popular class of models used to approximate f . While the class of additive

models is considerably more exible than traditional linear models, additive mod-

els may still not capture complicated response structure involving interactions

with two or more predictors. Several techniques have been proposed for more gen-

eral modeling and variable selection. Examples of regression procedures which

include variable selection and interaction modeling are the projection pursuit

regression technique (Friedman and Stuetzle (1981)), the classi�cation and re-

gression tree algorithm (CART) (Breiman, Friedman Olshen and Stone (1984))

and the multivariate adaptive regression splines technique (MARS) (Friedman

(1991)). Other methods that allow for estimation of more general response struc-

ture include connectionist networks; see for instance, Hinton (1989).



738 MICHAEL LEBLANC

The proposed prediction method extends additive modeling. The approxi-

mation for f is a sum of smooth function terms where a term involving a single

predictor variable is a smooth univariate function and a term involving more

than one predictor variable is a composition of bivariate functions of more sim-

ple terms in the model. Therefore, the new model includes the additive model

as a special case.

An important motivation for the method is that familiar univariate and bi-

variate smoothers can be used as building blocks along with the back�tting algo-

rithm for estimation, even for models with higher order interaction terms. The

method also includes forward model selection and backward model deletion steps

and a generalized cross-validation (GCV) score for selecting model complexity.

The method will likely be most useful for low to moderately high dimensional

problems (p � 25):

2. The Model

Consider an approximation to f

f
? =

mX
1

fj(x1; : : : ; xp):

If each term, fj; is a function of a single predictor the model is called addi-

tive. Other models can be expressed as expansions of low dimensional functions.

For instance, more general models can be constructed with bivariate functions,

fj(x1; x2); of the predictor variables. We allow a further generalization of the

form of fj; but still control the complexity of the allowable functions. Each of

the terms, fj; is de�ned as a composition of bivariate functions of simpler terms

in the model and other predictors. An example of a model in this class is

f
? = f1(x1)+f2(x2)+f3(f2(x2); x4)+f4(f1(x1); x3)+f5(f3(f2(x2); x4); x5): (2:1)

Note, in the �rst two variable function, f3(f2(x2); x4); the �rst argument, f2(x2);

is a univariate term in the model and in the higher order function, f5(f3(f2(x2),

x4); x5); the �rst argument, f3(f2(x2); x4); is also a more simple term in the

model.

The current implementation of the procedure restricts the arguments of bi-

variate functions to include one simpler term in the model and one predictor

variable not yet in the model. Note, that every complex term enters as a com-

position; for instance a bivariate interaction must be of the form g(h(x1); x2):

However, this doesn't make interpretation more di�cult, because the function

can also be represented as f(x1; x2) by using contour plots or pro�le plots with
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the original predictors as the axes. Alternatively, the algorithm could be modi�ed

to only use the recursive form for interactions involving three or more variables.

It is important that the model approximation involves component functions

of dimensions (d � 2); since this will allow the use of one and two dimensional

smoothers as simple \modules" to estimate the terms in the model. Development

of a exible prediction method was the primary motivation for the form of the

new model. However, the low dimensional expansion in terms of univariate and

bivariate functions also allows an interesting model interpretation. The interpre-

tation of a composition term is the \e�ect modi�cation" of a lower order term in

the model. For instance, fk(fj ; xl) represents an e�ect modi�cation of lower order

term fj in the model by variable xl: Graphically, a term in the model involving

k predictor variables can be explained by a sequence of k � 1 bivariate function

plots involving simpler terms in the model. Bivariate functions are usually the

highest dimensional functions that are still easy to think about, represent and

communicate. An example is given in Section 4.1.

In addition to generalizing additive models, the form of the model is also

related to the form of the functions �tted in the MARS procedure which uses

a sum of products of piecewise linear basis functions to model interactions. In

a MARS model, a term can be created by multiplying a current basis function

Bj(x) by a piecewise linear function (x� tkj)
+

(x� tkj)
+ =

�
x� tkj ; for x� tkj � 0,

0; for x� tkj < 0,

or (tkj � x)+, where the predictor variable to be included in the current basis

function is not already an argument of Bj(x). Therefore, the MARS model is a

special case of the new model where the bivariate interactions are restricted to

the form fk(fj ; x) = Bj(x)� (x� tkj)
+ and fk+1(fj ; x) = Bj(x)� (tkj � x)+.

While using a general bivariate interaction will cost more degrees of freedom

than a simple product interaction built up in MARS, the degrees of freedom for

the new method is controlled by adaptively selecting the spans for the smoothers.

In addition, the added generality can cost fewer degrees of freedom, if the inter-

action is quite complicated and would require several MARS basis functions (and

knot value optimizations) to be accurately approximated. While in most exam-

ples we have considered the procedure gives prediction errors close to that of the

MARS procedure, the new method yields smaller prediction errors than MARS

for an example with complicated interactions (given in Section 4.1) and a real

data set with complicated spatial and temporal patterns of disease (described in

Section 4.2). In addition, for those examples the new method gives substantially

smaller prediction errors than additive models.
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As with the additive model, the components of the new model are not unique.

In the population case, the following identi�ability constraints can be used to help

interpret of the model terms. The univariate functions can be restricted as in

additive models

Effk(xi)g = 0

if a constant term is included in the model.

The higher order terms fj can be restricted so that

Effk(fj ; xi)jxig = Effk(fj ; xi)jfjg = 0: (2:2)

To impose the constraint, one can �rst �t an additive model g(fj) + h(xi) to fk:

Then, f?
k
(fj ; xi) = f̂k(fj ; xi)� ĝ(fj)� ĥ(xi) satis�es Equation (2.2). The impor-

tant aspect of removing the additive components is that the residual function can

be described as \interaction". This method of removal was proposed by Hastie

and Tibshirani (1990, Section 9.5.3) for hierarchical models. For the data case,

an approximation to the above removal method uses smoothers to �t an additive

model to the estimated higher order term.

3. Estimation

The model is built using forward and backward stepwise techniques. For

a given model, we want to estimate all the univariate and bivariate component

functions fj ; for example, functions f1; : : : ; f5 in model (2.1). The back�tting

algorithm is used for estimation, which allows us to �t the expansion described

above by repeated use of univariate and bivariate smoothers.

3.1. Forward selection and backward deletion of model terms

Algorithm A { Forward model selection

1. Initialize the model basis set, H1 = f1g and k = 1. Let ŷ
(k)

i
; i = 1; : : : ; n, be

the �tted values based on H
k. For k=1, ŷ

(k)
i

is the average of the y0
i
s:

2. Add a term of the form fj(h1; h2) to the model where h1 2 H
k and h2 is

one of the predictor variables (x1; : : : ; xp) that is not an argument of h1: The

term fj(1; h2) denotes a univariate smooth function of h2.

For estimating fj(h1; h2), we apply the one/two dimensional loess smoother

(Cleveland and Devlin (1988) and Cleveland, Grosse and Shyu (1992); avail-

able in the statistical package S) to the residual yi � ŷ
(k)
i
. GCV is applied

to select the smoothing parameters and the best term (h1; h2), (see Section

3.3). The basis set is then augmented to H
k+1 = H

k
S
ffj(h1; h2)g: Note, if

h1 = 1 then a univariate smoother is used.
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3. After each term is added to the model, re-estimate all terms by the back�tting

algorithm (Algorithm C). (See Section 3.2.)

4. Repeat steps 2 and 3 until there are mo terms in the full model M0:

Algorithm B { Backwards deletion

1. Begin with full model M0.

2. De�ne a terminal term to be any term that does not appear as an argument

in a more complicated term. Remove the terminal term corresponding to

the smallest reduction in GCV. Then re�t the model using the back�tting

algorithm.

3. Repeat 2 until the null model is reached.

4. Choose the model that minimizes the GCV in the backward deletion model

sequence. The GCV score is discussed in Section 3.3.

3.2. Back�tting

The form of the back�tting algorithm is similar to that used for �tting the

additive model. Denote a tentative model from Step 2 of Algorithm A or B by

y =
mX
j=1

fj(x1; : : : ; xp) + �:

Recall that by our construction, each fj is either univariate or bivariate, taking

the form of fj(h1; h2):

Algorithm C { Back�tting

1. Set f
(0)

j
= fj and q = 1:

2. For each j, j = 1; : : : ;m where m is the number of terms in the model, let

r
(q)
j

= y�
P

p

k<j
f
(q)

k
�
P

p

k>j
f
(q�1)

k
, the residual of the �t which includes all the

simpler terms updated in the current iteration and the other terms updated

in the previous iteration. Fit r
(q)
j

with a function ~f
(q)
j

of the form fj(h1; h2)

where h1 is one of the simpler updated terms in the model (f
(q)

l
; l < j)

and h2 is one of the predictors (x1; : : : ; xp): Loess smoothing and GCV as

described in Section 3.3 are applied here to �nd the best �t. Set f
(q)
j

=

w ~f
(q)
j

+ (1 � w)f
(q�1)
j

where w is a number between 0 and 1: Replace q by

q + 1:

3. Repeat Step 2 until convergence.

Allowing the estimated smooth function arguments depending on simpler

terms in the model adds considerable complexity to the problem of studying
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properties of the algorithm. We do not, as yet, have general results regarding the

convergence of the estimated component functions or regarding possible multiple

local minima. However, it appears that �nding the \best" function in the large

class of functions described by such a model, is not critical for getting good

predictions. For instance, the �rst two or three steps in the back�tting algorithm

gave good predictions for the examples considered and the results were relatively

close to those obtained by using a larger number of steps in the back�tting

algorithm.

Applications have shown that an update factor or under-relaxation factor

(e.g. see Buja, Hastie and Tibshirani (1989)) w < 1 is sometimes needed to

achieve continued reduction in residual error with further iterations. For instance,

a relatively small w is often needed for data with a low signal to noise ratio.

Initially, we set w = 1 and monitor the residual sums of squares during back�tting

to see if a smaller w is required.

During back�tting, constraints such as (2.2), on the higher order terms are

ignored. The removal of additive components to facilitate interpretation of \in-

teractions", can be done by �tting an additive model to each higher order �tted

term after back�tting.

3.3. GCV score

The selection of terms to enter the model, span of the smoother, and overall

model selection uses a GCV score. The GCV score corresponding to a model M

is de�ned as

GCV(M) =
nX
i=1

(yi � f̂(xi))
2
=(n(1 � c(M)=n)2);

where c(M) is an approximation to the degrees of freedom of the model. The

GCV score should account for the increased variability due to the model complex-

ity and variable selection process. The procedure uses an approximate degrees

of freedom function c(M) of the following form

c(M) =
mX
j=1

(c0 + cj(dj ; p));

where c0 is a penalty associated with span selection for a given smoother (we

typically let c0 = 1). The approximation to the degrees of freedom used up by

the smoothing and variable selection is denoted by cj(dj ; p) and depends on dj ;

the approximate number of degrees of freedom corresponding to the outer-most

smoother used in constructing term j (based on the trace of the smoother matrix)
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and the number of predictors, p: A simple choice is cj(dj ; p) = dj+1, the degrees

of freedom for the smoother plus one for the variable selection. We have also

tried another approximation to adjust for the adaptiveness of selecting the best

predictor among p predictor variables. Details of the calculations are given in

LeBlanc (1993).

The default spans of the smoothers used in the algorithms are (1; :5; :2) for the

univariate smoother and (:9; :7; :3) for the bivariate smoother. These spans were

chosen so that a relatively wide range of functions from \wiggly" to very smooth

could be approximated. The spans are di�erent for the bivariate and univariate

smoothers for two reasons. First, the middle and small spans are larger for the

bivariate smoother to control the e�ective degrees of freedom since a relatively

small span on a bivariate smoother uses up many more degrees of freedom relative

to a univariate smoother. Second, the largest span for the bivariate smoother is

smaller than the univariate smoother because an approximately linear bivariate

smooth function is not of interest since the same function can be obtained by a

sum of two univariate functions.

4. Examples

In this section we report on the application of the proposed procedure to

simulated and real data. We report the relative residual error,

nX
i=1

(yi � f̂(xi))
2
=

nX
i=1

(yi � y)2;

and estimated relative prediction error (based on a test sample)

nTX
i=1

(yTi � f̂(xTi))
2
=

nTX
i=1

(yTi � y
T
)2;

where yTi and xTi are the test sample observations, nT is the number of test

observations and y
T
is the mean of the test sample responses.

4.1. Complex e�ect modi�cation

Sometimes response variables need to be described by a complicated non-

linear model of more than two dimensions. We consider the low dimensional

expansion approximation of the following function with noise:

f = sin(5�x1)(5 + 8 exp(�3x3)(2x2 � 1)2); (4:1)

where the predictors x1; x2; x3 were drawn independently from the standard uni-

form distribution and where response errors were generated from a Gaussian
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distribution with standard deviation .25 so that the signal to noise ratio was

approximately 4 to 1. The sample had 200 observations. The approximation

obtained by the new method was of the form

f̂ = s1(x1) + s2(s1(x1); x2) + s3(s2(s1(x1); x2); x3) (4:2)

with 37:5 e�ective degrees of freedom.

Based on one thousand test observations, the relative prediction error was

estimated to be :086 for model (4.2) and it increased to :470 for an additive

model. The estimated relative prediction error for the MARS methods was :171.

A paired t-test statistic between MARS and the new method on the squared

prediction errors for the test data observations indicates a signi�cant di�erence

(t = 22:2; p < :0001): The new procedure gave smaller prediction errors than

the MARS procedure on some similar simulated problems where a complex main

e�ect is modi�ed by other variables. The reason for the improvement is due to

the special form of the interaction for which MARS would require a large number

of basis functions to obtain an accurate approximation.

4 4

2 2

0 0

�2 �2

�4 �4

0:0 0:4 0:8 0:0 0:4 0:8

x1 x2

3

2

1

0

�1

�2

0:0 0:4 0:8

x3

Figure 1. Complex e�ect modi�cation
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Figure 1 shows the approximation of the 3-dimensional surface by pro�le

plots. For instance, the main e�ect term captures much of the complicated e�ect

in x1; the second term describes a modi�cation of the main e�ect x1 by x2 to

better approximate the function. For large values of x2 and large negative or

positive values values of s1(x1) the sinusoid e�ect is increased in magnitude.

A similar e�ect was missed by the estimation procedure for small x2 due to the

noise. The third panel of Figure 1 shows that for large values of x3 the prediction

rule is decreased in magnitude.

While examples of complicated e�ect modi�cation are not common in some

�elds, they can occur in the modeling of complicated spatial or temporal rela-

tionships such as those present in the example given in Section 4.2.

4.2. Mumps data

This example considers a data set based on the monthly reported cases of

mumps by state for 1953-1989 and is from the National Noti�able Disease Surveil-

lance System directed by the Centers for Disease Control. The new method is

used to model mumps incidence as a function of time (month and year) and loca-

tion (the latitude and longitude of the approximate center of each state.) Several

other authors have used the mumps data to investigate graphical and computa-

tional methods, for instance Chaudhuri, Huang, Loh and Yao (1994) and Burr

and Gomatam (1991).

While there are many complexities in the data, we present a simple analysis

with a goal of assessing the predictive performance of the new technique in a real

data regression problem with complicated non-linearity. A 10% random sample

(n = 648 observations) from the data for the years 1965-1981 and in the 48

contiguous states are used to develop a model.

The logarithm of the rate (number of cases divided by estimates of the pop-

ulation of the states in 1975) is used as the response. Chaudhuri, Huang, Loh

and Yao (1994) also model the logarithm of rates. The latitude and longitude of

the approximate center of states is from the state.x77 data set in the S statistical

language.

The model selected by the procedure is

f̂ = s1(year) + s2(mon) + s3(lon) + s4(s3(lon); lat)

+ s5(s1(year); lat) + s6(s5(s1(year); lat); lon): (4:3)

The method identi�es a striking seasonal e�ect in the mumps rates s2(mon)

which is shown in Figure 2. The rates were lowest in the late summer and early

fall and peaked in early spring.
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Figure 2. The seasonal component of the mumps incidence model
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Figure 3. Spatial and temporal components in the �tted mumps model for

years 1966, 1971, 1976 and 1981, for panels from the upper left to the lower

right.
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The main e�ect and interaction terms involving year, latitude and longitude

are added together and presented as a series of contour plots in Figure 3. There

was a strong decreasing trend over time which was due to the increasing use of

mumps vaccine after 1967. The rates were also generally larger for more northern

states. There were several states which tended to have relatively high rates in

the Great Lakes region of the United States; this was not entirely identi�ed by

the procedure using the relatively small sample of approximately 10% of data in

the time period.

A test sample of approximately 20% of the remaining observations (n = 1218)

was used to estimate the prediction error. The relative estimated prediction error

for the method was .436. An additive model was �tted to the data with span= :3

for the smoothers and yielded a substantially larger prediction error, .556, on

the test sample. The MARS method was also applied to the same data set and

gave relative prediction error on the test sample equal to .484. A paired t-test

statistic on the squared prediction errors between MARS and the new method is

3:2 (p < :001); indicating a small but signi�cant improvement compared to the

MARS predictions for this example.

5. Discussion

The regression method developed in this paper can be a useful adaptive

extension to additive modeling. For the examples, the new procedure gives pre-

diction errors that are better than additive regression models and MARS models.

In addition, the new method also leads to a general e�ect modi�cation interpre-

tation of higher order terms. The procedure could be modi�ed to further improve

predictions; for instance: GCV optimization could be done over a larger number

of spans.
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