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ASYMPTOTICS OF SLICED INVERSE REGRESSION
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Abstract: Sliced Inverse Regression is a method for reducing the dimension of the

explanatory variables x in non-parametric regression problems. Li (1991) discussed a

version of this method which begins with a partition of the range of y into slices so

that the conditional covariance matrix of x given y can be estimated by the sample

covariance matrix within each slice. After that the mean of the conditional covariance

matrix is estimated by averaging the sample covariance matrices over all slices. Hsing

and Carroll (1992) have derived the asymptotic properties of this procedure for the

special case where each slice contains only two observations. In this paper we consider

the case that each slice contains an arbitrary but �xed number of yi and more generally

the case when the number of yi per slice goes to in�nity. The asymptotic properties

of the associated eigenvalues and eigenvectors are also obtained.

Key words and phrases: Asymptotics, sliced inverse regression, dimension reduction,

eigenvalues and eigenvectors.

1. Introduction

Sliced Inverse Regression (SIR) is a useful technique for dimension reduction

in non-parametric regression problems where the response variable y depends on

K unknown linear combinations of the explanatory variables (x1; : : : ; xp) = x
>,

but the exact form of dependence is unknown. These regression problems can be

represented by the model

y = f(�>1 x;�
>
2 x; : : : ;�

>
K
x; "); (1:1)

where f is an unknown function de�ned on R
K+1

; K < p; �1; : : : ;�K are un-

known p�1 vectors, and " and x are independent random variables. The essential

feature of the model is that instead of the p-dimensional x we need only the K-

dimensional variables (�>1 x; : : : ;�
>
K
x) for predicting y. As Li (1991) pointed out,

since the function f is unknown, the parameters �1; : : : ;�K are not identi�able;

however, the linear space, B, spanned by the �'s is identi�able. The space B

is called the e�ective dimension-reduction (e.d.r.) space and any basis of B is

called a set of e.d.r. directions. Naturally, the �rst step of solving the regression

problem (1.1) is to estimate the e.d.r. space B. Then the form of the function f
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can be explored based on the estimated e.d.r. space. Of course, since f and the

�'s are irretrievably confounded, the form of f usually depends on the particular

choice of the representation of the e.d.r. space.

Under model (1.1) and the condition that the conditional expectation of

any linear function of x1; : : : ; xp given �
>
1 x; : : : ;�

>
K
x is also a linear function

of �>1 x; : : : ;�
>
K
x, Li (1991, Theorem 3.1) shows that the centered \inverse re-

gression" curve E(xjy) � E(x) is con�ned to a K-dimensional linear subspace

spanned by �x�1;�x�2; : : : ;�x�K , where �x denotes the covariance matrix

of x. This relates the inverse regression E(xjy) to the e.d.r. space B. Let

z = �
�1=2
x

(x � E(x)) be the standardization of x; then the e.d.r. space B is

spanned by ��1=2
x

�1; : : : ;�
�1=2
x

�
K
, where �1; : : : ; �K are the column eigenvectors

associated with the K largest eigenvalues of the covariance matrix Cov(E(zjy)).
Alternatively, the �'s are obtained as the eigenvectors associated with the K

smallest eigenvalues of the average covariance matrix E(Cov(zjy)). Therefore,

there are two versions of sliced inverse regression corresponding to these two

eigen analyses. The asymptotic results for the �rst version can be found, for

example, in Li (1991) and Duan and Li (1991). In this paper we consider the

SIR corresponding to the second eigen analysis suggested in the Remark 5.3 of

Li (1991) but we deal directly with the original covariance matrix

� = E(Cov(xjy)) (1:2)

and its eigenvalues and eigenvectors. The corresponding SIR method �rst es-

timates the conditional covariance matrix Cov(xjy) by the sample covariance

matrix of the explanatory variables for di�erent ranges of y and then estimates

� by the average �n of these sample covariance matrices. Hsing and Carroll

(1992) have shown the root n consistency of this estimator of � for the special

case that each slice contains two of the ordered y(i); i = 1; 2; : : : ; n, under some

smoothness conditions for the inverse regression curve m(y) = E(xjy). In this

paper, we establish the root n consistency for the case where the number c of

y(i) in each of the H slices is an arbitrarily �xed number, and for the case in

which c = cn !1 as n!1. We also investigate the limiting behaviour of the

eigenvalues and eigenvectors of �n.

2. Assumptions and Main Results

Let the data (yi;xi); i = 1; : : : ; n, be ordered according to the values of yi,

and denote the ordered data set by (y(i);x(i)); i = 1; : : : ; n, where y(1) � y(2) �
� � � � y(n). The x(i) are called the concomitants of order statistics by Yang (1977).

We introduce a double subscripts (h; j) where the �rst refers to the slice number

and the second refers to the order number of an observation in the given slice.
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That is,

y(h;j) = y(c(h�1)+j); x(h;j) = x(c(h�1)+j): (2:1)

Using this notation the estimator �n based on H slices of c data points can be

written as

�n =
1

H

HX
h=1

8<
: 1

c� 1

cX
j=1

�
x(h;j) �

1

c

cX
`=1

x(h;`)

��
x(h;j) �

1

c

cX
`=1

x(h;`)

�>9=
;

=
1

H

HX
h=1

(
1

c(c� 1)

XX
1�j<`�c

(x(h;`) � x(h;j))(x(h;`) � x(h;j))
>

)

=
1

n(c� 1)

HX
h=1

(XX
1�j<`�c

(x(h;`) � x(h;j))(x(h;`) � x(h;j))
>

)
: (2:2)

In practice, the number of observations in the last slice may be less than c. But

this does not change the results in this paper because the number of slices, H, is

very large.

Denote the inverse regression curve and its residual respectively by

m(y) = E(xjy) and " = x�m(y): (2:3)

Note that the concomitants "(i) = x(i) �m(y(i)) are conditionally independent

with mean zero given the order statistics y(i) (c.f. Yang (1977)).

Following Hsing and Carroll (1992) we need some smoothness conditions on

the inverse regression curve m(y). Let �n(B) be the collection of all the n-point

partitions �B � y
�
(1) � � � � � y

�
(n) � B of the closed interval [�B;B], where

B > 0 and n � 1. Any vector-valued or real-valued functionm(y) is said to have

a total variation of order r if for any �xed B > 0

lim
n!1

1

nr
sup
�n(B)

nX
i=1

km(y�(i+1))�m(y�(i))k = 0: (2:4)

Furthermore, if there exist a non-decreasing real-valued function M and a real

number B0 such that for any two points, say y1 and y2, both in (�1;�B0] or

both in [B0;1),

km(y1)�m(y2)k � jM(y1)�M(y2)j; (2:5)

then we say that the function m(y) is non-expansive in the metric of M on both

sides of B0.

The following theorem concerns the asymptotic distributions of �n as de�ned

in (2.1) when c, the number of observations per slice, is �xed. For convenience,

we denote by vech(S) the vectorization of a symmetric p � p matrix S; that is,
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vech(S) is a vector consisting of the p(p+1)=2 distinct elements of S, in the order

of row by row (or equivalently, column by column).

Theorem 1. Assume the following four conditions:

(i) E(kxk4) <1.

(ii) The inverse regression function m(y) has a total variation of order r = 1=4.

(iii) m(y) is non-expansive in the metric of M(y) on both sides of a positive

number B0 such that

M
4(t)P (y > t)! 0 as t!1 as n!1: (2:6)

(iv) The elements of V (y) = Cov("jy) = E("">jy), as functions of y, all have

total variation of order r = 1.

Then the vectorization of the matrix
p
n(�n��), namely

p
n vech (�n��), is

asymptotically multinormal as n!1 with zero means and covariance matrix

Cov(vech("">)) +
2

c� 1
E f(vech(V (y)))((vech(V (y)))>)g: (2:7)

This theorem shows that the asymptotic covariance matrix of the estimates

is smaller for larger number of observations per slice. In other words, too many

slices with too few observations is not very good for the variances of the estimates.

If we take the limit as c!1 (after n!1), the second term disappears and the

�rst term of (2.7) becomes the asymptotic covariance matrix. One may interpret

this as the covariance matrix of the estimates when the number of observations

per slice is large, but still small when compared with the total sample size. Note

that with the repeated limits, there is no restriction on c. If we restrict the

manner in which c and n go to in�nity simultaneously, as the next theorem

shows, we can relax the smoothness conditions on the inverse regression curve

at the cost of stronger conditions on the moments of the covariates x. Since the

conditions on the moments of x are easier to check than those on the inverse

regression curve, this trade-o� is often worthwhile.

Theorem 2. Assume the following four conditions:

(i) There exists a positive number b such that E(kxk4+b) <1.

(ii) m(y) has a total variation of order r > 0.

(iii) m(y) is non-expansive in the metric of M(y) on both sides of a positive

number B0 such that

M
4+b(t)P (y > t)! 0 as t!1: (2:8)

(iv) c = O(n�), where � = 1

2
�maxf2r; r + 1

4+b
;

2

4+b
g > 0.
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Then
p
nvech(�n��) is asymptotically multinormal as n!1 with zero means

and covariance matrix

Cov(vech("">)): (2:9)

With suitable choices of b and r, we can obtain a wide range of c so that the

asymptotic normality holds. If x is normally distributed and m(y) has bounded

variation on every �nite interval, the conclusion of Theorem 2 holds for c =

O(
p
n= log n). Furthermore, if x has a bounded support and m(y) has bounded

�rst derivatives on every �nite interval, the conclusion holds for c = o(
p
n).

Based on the above theorems we can obtain the root n consistency and

asymptotic normality of the eigenvalues and eigenvectors of �n. Let �1(�) �
� � � � �p(�) � 0 and b1(�); : : : ; bp(�) be respectively the eigenvalues and the

associated eigenvectors of �. The spectral decomposition of � is

� =

pX
i=1

�i(�)bi(�)bi(�)
>
: (2:10)

Similarly the spectral decomposition of �n is

�n =

pX
i=1

�i(�n)bi(�n)bi(�n)
>
: (2:11)

Theorem 3. Under the conditions either in Theorem 1 or in Theorem 2,

p
n(�i(�n)� �i(�)) = Op(1) (2:12)

as n!1.

Theorem 4. Under the conditions in Theorem 1 and the assumption that all

non-zero �i(�) are distinct, we have

p
nf�i(�n)� �i(�)g L�! bi(�)

>
Wbi(�) (2:13)

and p
nfbi(�n)� bi(�)g L�! AiWbi; (2:14)

as n!1, where

Ai =

pX
`=1;6=i

b`(�)b`(�)
>

�
f�i(�)� �`(�)g (2:15)

and W is a random p� p symmetric matrix such that vech(W) has a multivari-

ate normal distribution with zero means and covariance matrix given by (2:7).



732 LI-XING ZHU AND KAI W. NG

Furthermore, if the conditions of Theorem 1 are replaced by the conditions of

Theorem 2, the asymptotic distributions of (2:13) and (2:14) still hold except

that in this case the covariance matrix of vech(W) is given by (2:9).

3. Outline of Proofs

Since the proof of Theorem 1 and part of the proof of Theorem 2 follow the

line of thoughts along Hsing and Carroll (1992), we only present an outline of the

proofs. Readers may refer to Zhu and Ng (1993) for more details. First, make

use of the fact that x =m(y) + " by (2.3) and hence that

(x(h;`) � x(h;j))(x(h;`) � x(h;j))
>

=(m(y(h;`))�m(y(h;j)))(m(y(h;`))�m(y(h;j)))
>

+ ("(h;`) � "(h;j))(m(y(h;`))�m(y(h;j)))
>

+ (m(y(h;`))�m(y(h;j)))("(h;`)�"(h;j))>+("(h;`)�"(h;j))("(h;`)�"(h;j))>: (3:1)

Substituting (3.1) into (2.2) and expanding the triple summation we obtain a

4-term expression for �n. Therefore we can write
p
n(�n ��) = T1 + T2 + T3 + T4; (3:2)

where the �rst three terms are respectively the �rst 3 terms of (3.1) after being

operated on by the triple summation n
�1=2(c � 1)�1

PH

h=1

PP
1�j<`�c and the

last term is

T4 =
1p

n(c� 1)

HX
h=1

XX
1�j<`�c

�
("(h;`) � "(h;j))("(h;`) � "(h;j))

> � 2�
	
: (3:3)

We can prove that the �rst three terms of (3.2) all converge to zero in prob-

ability as n ! 1 and the asymptotic distribution of vech(T4) is multivariate

normal with zero mean vector and covariance matrix given by (2.7). The follow-

ing is a sketch.

Rearranging the inner double summation and then moving the summation

over h to the inside, we obtain

T1 =
1p

n(c� 1)

HX
h=1

c�1X
m=1

c�mX
j=1

�
m(y(h;j+m))�m(y(h;j))

	 �
m(y(h;j+m))�m(y(h;j))

	>

=
1p

n(c� 1)

c�1X
m=1

mX
`=1

C`m; (3:4)

where

C`m=
HX
h=1

X
�

�
m(y(h;`+jm))�m(y(h;`+(j�1)m))

	�
m(y(h;`+jm))�m(y(h;`+(j�1)m))

	>
(3:5)
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and � is a summation over j subject to the restriction ` + jm � c �m. For a

�xed p such that 0 < p < 1=2, let us divide the outer summation over h into

three summations: from 1 to Hp, then Hp+1 to H(1�p) and then H(1�p)+1

to H, so that we can write

C`m = C
(1)

`m
+C

(2)

`m
+C

(3)

`m
: (3:6)

Parallel to the proof of Lemma 1 of Hsing and Carroll we can show under the

conditions of Theorem 1 that for each element in the symmetric matrix C
(i)

`m
; i =

1; 2; 3, the maximum over all ` and m has order op(
p
n); then T1 converges to

zero in probability.

Next consider T2 and T3. Since they can be treated in a similar way, we only

show the case of T2. Again we only demonstrate the proof for the �rst diagonal

element of T2. Denote this element by T2 and use m(y) for the corresponding

element of m(y) which gives rise to T2. Let �"(n) and �"(1) be respectively the

largest and smallest of the corresponding "i's. It is clear that

T2 �
�"(n) � �"(1)p
n(c� 1)

HX
h=1

XX
1�j<`�c

jm(y(h;`))�m(y(h;j))j

� �"(n) � �"(1)p
n(c� 1)

c�1X
m=1

n�mX
j=1

jm(y(j+m))�m(y(j))j

� �"(n) � �"(1)p
n(c� 1)

c�1X
m=1

mX
i=1

n�1X
j=1

jm(y(j+1))�m(y(j))j

� 2cp
n
j�"(n) � �"(1)j

n�1X
j=1

jm(y(j+1))�m(y(j))j:

Applying Lemma A.1 of Hsing and Carroll (1992), we obtain

n
�1=4j�"(n) � �"(1)j

p�! 0:

Also, condition (ii) implies

lim
n!1

n
�1=4

n�1X
h=1

jm(y(h+1))�m(y(h))j = 0:

This completes the proof for T2.

For dealing with T4, we write T4 as the sum of the following two terms

T
(1)
4 =

1p
n

nX
j=1

("j"
>
j
��) (3:7)
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and

T
(2)
4 =

1p
n(c� 1)

HX
h=1

X
j 6=`

"(h;`)"
>
(h;j) =

1p
n(c� 1)

HX
h=1

Gh: (3:8)

Due to the conditional uncorrelation between T
(1)
4 and T

(2)
4 , we establish the fact

that the asymptotic distribution of T4 is a convolution of two normal distributions

with zero mean; hence, it is a normal distribution with zero mean and the variance

de�ned in (2.7).

By the Central Limit Theorem, the asymptotic distribution of a>vech(T
(1)
4 )

is normal with zero mean and variance a>E Cov(vech("">))a. On the other

hand, observe that conditionally each term Gh has mean zero and independent

of each other. Thus parallel to the argument used in Theorem 2.3 of Hsing and

Carroll (1992), T
(2)
4 is asymptotically normal with zero mean. To show that the

asymptotic variance of T
(2)
4 is equal to the second term de�ned in (2.7), consider

only the �rst diagonal element of T
(2)
4 for simplicity. The plain face " is used to

denote the �rst element of ". The variance of the �rst diagonal element of T
(2)
4

is equal to

E

8<
: 1p

n(c�1)

HX
h=1

X
j 6=`

"(h;`)"(h;j)

9=
;
2

=
1

n(c�1)2E

8<
:E
�� HX

h=1

X
j 6=`

"(h;`)"(h;j)

�2����Fn

�9=
;

=
1

n(c� 1)2

HX
h=1

X
j 6=`
k 6=i

E

�
E

��
"(h;i)"(h;j)"(h;k)"(h;`)

�����Fn

��

=
2

n(c� 1)2

HX
h=1

X
j 6=`

E

n
"
2
(h;`)"

2
(h;j)

o
=

2

n(c� 1)2

HX
h=1

X
j 6=`

E
�
V (y(h;`))V (y(h;j))

	

=
2

n(c� 1)

HX
h=1

X
j=1

EfV 2(y(h;j))g

+
2

n(c� 1)2

HX
h=1

X
j 6=`

E
�
V (y(h;`))[V (y(h;j))�V (y(h;`))]

	

= E

n 2

n(c� 1)

nX
j=1

V
2(yj)

o
+ o(1)! 2

(c� 1)
EfV 2(y)g; (3:9)

where V (y) = Cov("jy). The last equation is obtained using an argument which

needs condition (iv) and is analogous to the proof of Hsing and Carroll's Theorem

2.3. This completes the proof of Theorem 1.

The convergence in probability for T1;T2 and T3 of (3.2) under the conditions

of Theorem 2 can be shown similarly to Theorem 1. Indeed, under the conditions
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of Theorem 2, the �rst three terms of (3.2) can be expressed as follows:

T1 = op(c n
�1=2+maxf2r;2=(4+b)g); (3:10)

Ti = op(c n
�1=2+1=(4+b)+maxfr;1=(4+b)g); i = 2; 3: (3:11)

The last term of (3.2), T4, can be decomposed as the sum of (3.7) and (3.8).

Analogous to the proof of Theorem 1, it su�ces to show that T
(2)
4 converges to

zero in probability. We again demonstrate this for the �rst diagonal element of

T
(2)
4 . Expanding as in (3.9), up to the third equality, we have

E

8<
: 1p

n(c� 1)

HX
h=1

X
j 6=`

"(h;`)"(h;j)

9=
;
2

� 2

n(c� 1)2

HX
h=1

(
cX

i=1

(E("4(h;i)))
1=2

)2

� 2c

n(c� 1)2

HX
h=1

cX
i=1

E("4(h;i)) �
4

n(c� 1)

nX
i=1

E("4
i
)

=
4

c� 1
E("41)! 0 as c!1:

Thus T
(2)
4 converges to zero in probability and the proof of Theorem 2 is com-

pleted.

For the proof of Theorem 3, let �1(�n) � �2(�n) � � � � � �p(�n) � 0 and

Pj(�n) =

w(�j)X
i=w(�j�1)+1

bi(�n)bi(�n)
>
; (3:12)

where w(�j) is the multiplicity of �i;
qP
i=1

w(�i) = p. In view of Theorem 1 and

Theorem 2, Lemma 4.1 of Tyler (1981) implies that
p
n(Pj(�n)� Pj(�)) = Op(1); j = 1; : : : ; q: (3:13)

On the other hand, �n �� can be expressed as

�n �� =

pX
i=1

�i(�n)bi(�n)b
>
i
(�n)�

pX
i=1

�i(�)bi(�)b
>
i
(�)

=

pX
i=1

f�i(�n)��i(�)gb>i (�n)b
>
i
(�n)+

qX
i=1

�i(�)fPi(�n)�Pi(�)g (3:14)

Therefore we obtain the conclusion of Theorem 3:
p
n(�j(�n)� �j(�))

= b
>
j
(�n)

p
n(�n ��)bj(�n)�

pX
i=1

�i(�)b
>
j
(�n)fPi(�n)� Pi(�)gbj(�n)

= Op(1):
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Using the root n consistency in Theorem 3, we can prove Theorem 4 in the

same way as for Theorem 2.2 of Zhu and Fang (1993). We omit the proof here.
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