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Abstract: Graphical methods are proposed for studying the contributions of selected

predictors to regression problems. By developing low dimensional distributional index

functions based on sliced inverse regression, problems with many predictors can be

addressed. It is shown that added variable plots can �ll this role under certain condi-

tions, but that they may generally overestimate predictor contributions. Scatterplot

brushing plays a basic role in the methodology.
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1. Prelude

Graphical displays of data have always played an important role in statis-

tical analyses. Recent innovations in computer graphics like rotation, linking

and brushing have greatly increased the potential to understand data graphi-

cally, particularly when combined with a modern computing environment like

Lisp-Stat (Tierney (1990)). Most of the recent innovations involve methods for

displaying data, with relatively little attention devoted to supporting statistical

theory. As a consequence, many people seem to regard graphics as a collection

of ad hoc techniques that lack the foundations associated with most statistical

methodology. The power, applicability and acceptance of statistical graphics

might be increased by establishing statistical foundations for existing techniques

and developing statistical theory to guide the construction and interpretation of

new displays.

In this article I discuss how linking and brushing might be used to study the

e�ects of regression predictors. Speci�cally, how might graphics be used to study

the e�ects of including a selected vector of p2 predictors x2 after fully accounting

for the contribution of the remaining vector x1 of p1 predictors? Plots that

facilitate such understanding can be collectively thought of as net e�ect plots

since it is the net e�ect of x2 on the response that is of primary interest. Net

e�ect plots can di�er depending on the e�ects of interest and on the structure of

the regression problem. Added variable plots (Cook and Weisberg (1982, p: 44)),
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for example, can be instances of net e�ect plots that do not require brushing or

linking.

An expository discussion on the use of brushing and linking to study net

e�ects is given in Section 2. For background on those techniques see, Becker and

Cleveland (1987) and Becker, Cleveland and Wilks (1987). One idea of Section 2

is that net e�ect plots can be obtained by brushing cells in a scatterplot matrix

when the number of predictors in the regression is su�ciently small. However,

dimension reduction becomes necessary when the number of predictors is larger

than 2 or 3.

In Section 3 I discuss possibilities for dimension reduction via distributional

index functions. This section makes use of recent dimension-reduction method-

ology developed by Li (1991, 1992). New results and ideas are presented to

establish links between dimension-reduction methodology and the construction

of net e�ect plots to guide model development or to study contributions of se-

lected predictors after an adequate model has been selected. These and other

instances of net e�ect plots are intended as constructions to allow predictor ef-

fects to be studied directly. They are not intended as diagnostics for detecting

failures in a target model.

The ideas of Sections 2 and 3 are used in Section 4 to indicate when added

variable plots can and cannot be used as net e�ect plots, thus establishing guide-

lines that may help avoid over-interpretation of added variable plots. In partic-

ular, net e�ect plots are not generally devices for providing visual information

about the estimation of regression coe�cients, although they may serve that role

in special cases. Section 5 contains two brief examples.

A (q + 1)-dimensional scatterplot will be denoted by fa; bg where the �rst

argument, which will always be a scalar, is allocated to the vertical axis and the

coordinates of the vector b are allocated to the \horizontal" axis or axes in any

convenient way. Following Dawid (1979), I use the notation u?v to indicate that

the random variables u and v are independent. Similarly, u?vjz means that u

and v are independent given any value for the random variable z.

2. Net E�ect Plots

Let yi denote the ith observation on the univariate response y, and let xi
denote the ith observation on the p � 1 vector of predictors x. Partition x

T =

(xT1 ; x
T
2 ) so that p = p1 + p2. The data (yi; x

T
i ), i = 1; : : : ; n, are assumed to be

iid observations on the random vector (y; xT ). The ultimate goal of a regression

analysis is to characterize the behavior of the conditional distribution of y given x,

with cdf denoted by F (yjx), as the value of x varies in the relevant sample space.

Here, however, I concentrate on graphical methods for studying the contribution
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of x2 after accounting for x1.

Perhaps the most elusive task in developing a general paradigm for construct-

ing a net e�ect plot is understanding how to deal with x1 prior to considering

x2. Historically, various phrases have been used in the literature to convey this

general idea, including \the regression on x2 after accounting or adjusting for

x1". In the construction of added variable plots, for example, x1 is �rst taken

into account by using the residuals eyj1 and e2j1 from the ordinary least square

(OLS) regression of y on x1 and the OLS regression x2 on x1, respectively. An

added variable plot is then the two-dimensional plot feyj1; e2j1g when p2 = 1.

Chambers, Cleveland, Kleiner and Tukey (1983, p: 268) refer to added variable

plots as adjusted variable plots. The virtues of these adjustments in terms of the

underlying distributions do not seem to be considered explicitly in the literature,

and this apparently has lead to some confusion about the role of added variable

plots (adjusted variable plots) in regression analysis, a topic that is explored in

Section 4. Nevertheless, one way to account for x1 is to condition on a speci�c

value for x1. In this article I will use conditioning as the operational version of

these ideas. Conditioning can be used with or without a model, as discussed in

Section 3. The coplots discussed in Chambers and Hastie (1992) are a very nice

implementation of conditioning to study regression predictors.

2.1. Conditional response plots

Ideally, a net e�ect plot for x2 at a particular value for x1 is a graphical

display of y versus x2 where the data are a sample from the joint conditional

distribution of (y; x2) given x1, with cdf denoted by F (y; x2jx1). There may

rarely be enough data to satisfy this requirement exactly, but useful results can

often be obtained by conditioning approximately on x1. Let J denote a subset of

the case indices (1; 2; : : : ; n) so that x1 is relatively constant for i 2 J . The plot

fyi; xi2ji 2 Jg shows the relationship between y and x2 near the selected value

of x1. Since x1 is relatively constant, only x2 is left to explain the remaining

variation in y. I refer to plots of the form fyi; xi2ji 2 Jg as conditional response

(CORE) plots since they display the regression relationship between y and x2

after approximately conditioning on x1. CORE plots are a basic form of net

e�ect plots because they show the e�ect of x2 after accounting for (conditioning

on) x1.

CORE plots are useful for studying the net e�ect of x2 on y at a particu-

lar value of x1. Brushing, interactively modifying J and updating the CORE

plot, can be used to visualize how F (y; x2jx1) changes with the value of x1. Di-

rect construction of CORE plots is limited to regression problems in which the

dimensions of x1 and x2 are small since practical limitations are encountered oth-
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erwise. When x2 is a single predictor, p2 = 1, a CORE plot is two dimensional

and can be constructed with graphics programs that allow linking and brush-

ing. Three-dimension CORE plots are possible, but interpretation may be more

di�cult.

The dimension of x1 is a second limitation because brushing is mostly con-

�ned to problems in which p1 = 1 or 2. This is a much more serious dimension

restriction than that associated with x2 since it limits application to regression

problems with at most 3 or 4 predictors.

2.2. Reducing brushing dimensions

Even if a plot of several predictors could be brushed, the sparseness usually

encountered in high dimensional plots may make it di�cult to capture a subset

of the data that reasonably approximates a sample from F (y; x2jx1). Interpre-

tation may be di�cult as well. Imagine that we do have a method of brushing

a scatterplot of arbitrary dimension and that sparseness is not an issue. Let

p2 = 1 and assume that F (y; x2jx1) depends on x1 only through the two linear

combinations �T
x1 and 

T
x1 so that (y; x2)?x1j(�

T
x1; 

T
x1). Consider brushing

a p1-dimensional plot of x1 that is linked to the plot fy; x2g without knowledge

of the problem structure. What we see in the CORE plots fy; x2jJg obtained

while brushing depends on the movement of the brush in R
p
1 relative to the

subspace S = spanf�; g. Imagine moving the brush to highlight the points that

are near a line L (a one-dimensional a�ne subspace) that is orthogonal to S.

The projection of any point in L onto S will yield the same value. Thus, while

moving the brush along L the distribution F (y; x2jx1) will not change since the

key linear combinations (�T
x1; 

T
x1) remain essentially constant. If we brush

along a line that is parallel to S it may appear that the net e�ect of x2 depends

strongly on x1 since the value of (�
T
x1; 

T
x1) will change with every brush move-

ment. Interpreting a series of CORE plots when S is unknown may be di�cult

since brushing will probably be neither parallel nor orthogonal to S. On the

other hand, if S were known then we could replace the p1-dimensional plot of

x1 with the two-dimensional plot f�T
x1; 

T
x1g without loss of information since

F (y; x2jx1) = F (y; x2j�
T
x1; 

T
x1) for all values of x1. These ideas along with

some that will be introduced subsequently are illustrated in the following exam-

ple.

Example 1. Let w1 and w2 be independent uniform random variables on (�1; 1),

and let w3j(w1; w2) be a normal random variable with mean (w1 + w2)
2 and

variance 0:2. These three variables are the predictors for the example, wT =

(w1; w2; w3). The distribution of yjw is described by the linear model,

yjw = 1:5(w1 + w2) + w3 + 0:5"; (2:1)
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where " is a standard normal random variable and "?w. In the previous notation,

set x
T
1 = (w1; w2) and x2 = w3 so it is the net e�ect of w3 that we wish to

understand.

3:41

w3

�0:362

0:991

w2

�0:986

0:985

w1

�0:98

6:33

y

�1:6

Figure 1. Scatterplot matrix of the data for Example 1.

A scatterplot matrix of 150 observations generated according to this model

is given as Figure 1. The highlighted points will be discussed shortly. Imag-

ine inspecting this scatterplot matrix without knowledge of the model. Several

characteristics are immediately apparent: w1 and w2 appear to be independent,

while the plots fw3; w2g and fw3; w1g exhibit curvature. The plots fy;w1g and

fy; w2g suggest heteroscedasticity in the corresponding marginal distributions.

The most curious behavior is in the plot of y versus w3 which looks rather like a

\C". Nothing in the scatterplot matrix suggests the simple form of model (2.1).



694 R. DENNIS COOK

The variable x1 is relatively constant for the highlighted points in the cell

fw1; w2g that are enclosed in a rectangular \brush", so the linked and highlighted

points in fy;w3g form a CORE plot and they correspond approximately to a

sample from F (y;w3jx1). The variation in this CORE plot is substantially smaller

than that in the marginal distribution F (y;w3). Because this happens regardless

of brushing position in the cell fw1; w2g, there is considerable covariation between

fy; w3g and fw1; w2g. Consequently, the bulk of the variation in fy; w3g can be

associated with variation in w1 and w2, implying that the net e�ect of w3 is

relatively small.

While brushing the cell fw1; w2g, the corresponding points in fy;w3g may

remain in roughly the same position or may move smoothly around the \C",

depending on the movement of the brush. A closer look at the structure of

the example can explain such movement in the context of the discussion at the

beginning of this section. The distribution of (y; w3)jx1 is bivariate normal with

mean

�(x1) = (E(yjx1); E(w3jx1))
T = (1:5(w1 +w2) + (w1 +w2)

2
; (w1 +w2)

2)T (2:2)

and constant covariance matrix. Because this distribution depends only on

(w1 + w2), appropriate CORE plots for studying the net e�ects of w3 could

be constructed by brushing the variable (w1 + w2) while observing fy;w3g. The

computer programs with which I am familiar allow only rectangular brushes with

sides parallel to the coordinate axes, so it does not seem practically possible to

use fw1; w2g as a control plot for simultaneously brushing all points with about

the same value of (w1 + w2). It is possible to use small square brushes to high-

light points falling near lines. When brushing along lines in fw1; w2g that are

orthogonal to S((1; 1)T ), the highlighted points in fy;w3g remain in roughly the

same position. On the other hand, when brushing along lines in fw1; w2g that

are parallel to S((1; 1)T ), the highlighted points in fy; w3g move smoothly along

sections of the \C" of points.

The essential structure of this example is reected by the statement

(y;w3)?(w1; w2)j(w1 + w2): (2:3)

Finding similar structure in practice may have two important bene�ts. First,

(2.3) means that (w1; w2) can be replaced with (w1+w2) in a study of F (y;w3jx1),

allowing the brushing dimension to be reduced by 1. This has the bene�cial ef-

fect of increasing the number of observations in each CORE plot and potentially

overcoming the sparseness encountered when brushing in high dimensions. Sec-

ond, (2.3) implies that y?wj(w1+w2; w3) and thus that (w1; w2) can be replaced

with (w1 + w2) in a study of F (yjw) without loss of information.
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Several ways of uncovering structure like that in (2.3) will be discussed in

the next section. I illustrate one method to conclude this example, relying on

the partial knowledge that F (y;w3jx1) is a function of x1 through only its un-

known conditional mean �(x1). Figure 2 gives a plot of the estimates �̂(xi1),

i = 1; : : : ; 150, obtained by using full second-order quadratic response models in

x
T
1 = (w1; w2) to construct OLS estimates of E(yjx1) and E(w3jx1). The pat-

tern of points closely matches the plane curve traced by �(x1) given in (2.2) as

x1 varies in the square (�1; 1)2. All of the distributions F (y;w3jx1) have their

centers on the plane curve �(x1) but are otherwise identical.
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Figure 2. Estimated values of the conditional expectation curve �̂(xi1) for

Example 1.

The scatterplot in Figure 2 can be used as a control plot for brushing just as

the cell fw1; w2g is used in the scatterplot matrix of Figure 1. Brushing along the

curve in Figure 2 is essentially equivalent to brushing (w1+w2). Brushing around

the plane curve while observing the corresponding linked points in fw1; w2g and

fy; w3g indicates that F (y;w3jx1) depends the values of w1 and w2 only through

their sum, and that the net e�ect of w3 is relatively small.

The general conclusion of this example might be reached by brushing around

the \C" in fy;w3g without constructing the plot of Figure 2. But this will not be

possible when p1 > 2. Moreover, by allowing a little more variation the two arms

of the \C" in fy;w3g will merge making informative brushing di�cult, while the

plane curve of Figure 2 may still be apparent.
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3. Distributional Indices

The practical di�culties in brushing a scatterplot of x1 when p1 > 2 might

be overcome by replacing x1 with a low dimension distributional index function,

say �(x1). A distributional index function �(x1) serves to index the individual

conditional distributions F (y; x2jx1) just as x1 itself does. Indices used in Exam-

ple 1 are �(x1) = (w1 +w2) and �(x1) = �̂(x1). The basic idea is to brush a plot

of �(x1) while observing the corresponding CORE plots fy; x2jJg arising in the

linked plot fy; x2g. In what follows, the case indices of the points at a particular

brush location will be indicated by J� and the corresponding CORE plot will be

indicated by fy; x2jJ�g.

Distributional indices �(x1) should partition the values of x1 into equivalence

classes with the values in a class corresponding to identical or nearly identical

distributions F (y; x2jx1). Ideally, �(x1) will be at most three dimensional and

have the property that

(y; x2)?x1j�(x1); (3:1)

which is equivalent to F (y; x2jx1) = F (y; x2j�(x1)) for all values of x1. Requiring

that dim(�(x1)) � 3 is simply a matter of practical necessity. Condition (3.1)

insures that no information will be lost by using the distributional index �(x1) in

place of x1. Of course (3.1) is trivially true when �(x1) = x1. Although in practice

it may be di�cult to satisfy (3.1) exactly, an index plot should be a useful tool for

understanding the net e�ect of x2 as long as (3.1) is a reasonable approximation.

The following lemma may be helpful for constructing low dimensional indices.

The justi�cation can be established from Lemmas 4.1-4.3 in Dawid (1979).

Lemma 1. Let �
T (x1) = (�T1 (x1); �

T
2 (x1)). If (a) x?yj(�1(x1); x2) and (b)

x1?x2j�2(x1) then (3:1) holds.

According to Lemma 1, if we can substitute �1 for x1 in the regression of

y on x without loss of information (Condition (a)) and similarly substitute �2

for x1 in the regression of x2 on x1 (Condition (b)) then (3.1) holds and � is a

valid distributional index. In the following sections I discuss some possibilities

for determining an index �(x1).

Example 1.1. Lemma 1 allows for an easy characterization of Example 1. From

the distribution of w3j(w1; w2) it is easy to see that w3?x1j(w1 + w2) and from

(2.1) it follows that y?wj((w1 + w2); w3). Lemma 1 now applies with � = �1 =

�2 = (w1 + w2). Similarly, �(x1) = ((w1 + w2); (w1 + w2)
2) and �(x1) are also

valid distributional indices.

3.1. Location dependence

In some problems it may be reasonable to assume that F (y; x2jx1) depends



GRAPHICS FOR REGRESSION PREDICTORS 697

on x1 only through its conditional mean �
T (x1) = (E(yjx1); E

T (x2jx1)) so that

(y; x2)?x1j�(x1); (3:2)

which is a special case of (3.1) with �(x1) = �(x1). In practice it will be necessary

to estimate �(x1) and this requires estimating two regression functions E(yjx1)

and E(x2jx1). This is essentially the structure illustrated in Example 1.

Condition (3.2) requires that F (y; x2jx1) depend only on �(x1), but this is

less restrictive than requiring [y�E(yjx1); x2�E(x2jx1)]?x1, so F (y; x2jx1) need

not be a location distribution. The covariance Cov(y; x2jx1) or any higher order

moment may depend on �(x1) under (3.2) and this allows yjx to be a binomial

or Possion random variable, for example.

Suppose that analyses of the regressions of y on x1 and x2 on x1 support the

conclusions that y?x1jE(yjx1) and x2?x1jE(x2jx1). This information is not gen-

erally su�cient to conclude that (3.2) holds since marginal location dependence

need not imply joint location dependence. However, failing to �nd information in

the data to contradict Condition (a) of Lemma 1 with �1 = E(yjx1) may provide

support for (3.2).

3.2. Postanalysis

A net e�ect plot may be relatively easy to construct after analysis has pro-

duced a useful characterization of the regression of y on x. Having a full analysis

available need not necessarily mitigate our interest in studying the contribution

of x2 after x1. To construct an index function in this case, extract from the

results of the analysis the lowest dimensional function �1 so that Condition (a)

of Lemma 1 is satis�ed. The second component �2 can be obtained from an

analysis of the regression of x2 on x1. For example, suppose that p2 = 1 and that

F (yjx) has been characterized by a homoscedastic generalized additive model

(Hastie and Tibshirani (1990)): Ê(yjx) = a + �jg1j(x1j) + g2(x2), where g1j is

the estimated function for the jth coordinate x1j of x1 and g2 is the function

for x2. Then set �1(x1) = �jg1j(x1j). Assuming next that an estimated linear

model Ê(x2jx1) = b0 + b
T
1 x1 is found to characterize the regression of x2 on x1,

the distributional index is just �T = (�1; �2) = (�jg1j(x1j); b
T
1 x1). The net e�ect

of x2 could then be studied by brushing f�jg1j(x1j); b
T
1 x1g while observing the

CORE plots arising in the linked plot fy; x2g. Hopefully, � will generally have

dimension 2.

The �1 coordinate of � can be extracted from a full analysis of the regression

of y on x, but a second analysis of the regression of x2 on x1 may be needed to

obtain the second coordinate �2 of � . This could become tiresome when we wish

to study net e�ects for several di�erent predictors x2. A quick way of constructing
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useful �2's can be obtained by constraining �2(x1) to be a linear function of x1
and using dimension-reduction subspaces.

Let u and v denote generic response and predictor vectors. A subspace S

is called a dimension-reduction subspace for the regression of u on v if u?vjbT v

where b is any basis for S. A dimension-reduction subspace with the smallest

dimension is called a minimum dimension-reduction subspace for the regression

of u on v and is denoted by Sujv. Throughout this report I will assume that

Sujv is contained in all dimension-reduction subspaces, which implies that Sujv

is unique. For further discussion of dimension-reduction subspaces, see Cook

(1994) and Li (1991).

Let  denote a basis for Sx2jx1 . Then Condition (b) of Lemma 1 holds with

�2(x1) = 
T
x1. The essential problem is now to estimate the subspace Sx2jx1 .

Once this is done we can choose a basis ̂ for the estimate and set �2(x1) = ̂
T
x1

for use in practice. Any basis will do theoretically, but practically it may be

worthwhile to avoid colinearity in the index plot by insuring that the coordinates

of �2(x1) are uncorrelated or approximately so.

Recently regression methods have become available to estimate Sx2jx1 when

p2 = 1. Sliced inverse regression (aka SIR and slicing regression) as recently

suggested by Li (1991) and Duan and Li (1991) is perhaps the �rst choice. SIR

requires that E(x1j
T
x1) be linear in 

T
x1. Although SIR is not very sensitive to

modest violations of that condition, the re-weighting method described in Cook

and Nachtsheim (1994) may be used to extend applicability. Other methods

include SAVE (Cook and Weisberg (1991)) and pHd (Li (1992)).

3.3. Exploration: Univariate SIR

In some problems we may wish net e�ect plots in the exploratory stage of an

analysis where su�cient knowledge of the regression of y on x is not yet available

for �1 to be determined as described in Section 3.2. This is, perhaps, the most

di�cult situation because we must know how to construct a distributional index

that can replace x1 in the regression of y on x without a complete analysis in the

�rst place. Nevertheless, it is possible to use inverse regression methods in this

case.

One possibility is to apply SIR twice, once to the regression of y on x and

once to the regression of x2 on x1. The latter application will provide �2(x1) as

discussed in the previous section. The former application will provide an estimate

of Syjx from which �1(x1) can be extracted according to Condition (a) of Lemma

1: Let � = (�T
1 ; �

T
2 )

T be a partitioned basis for Syjx so that �
T
x = (�T

1 x1+�
T
2 x2).

Then set �1(x1) = �
T
1 x1 where �1 is any basis for S(�1). Determining a basis for
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S(�1) is a necessary step since �1 need not be of full rank. It is also possible

to use inverse regression methods to estimate S(�1) = S(�1) directly, where

�
T
1 x1 comprises the fewest linear combinations of x1 so that y?xj(�T1 x1; x2), as

discussed in Cook (1994). Let r1j2 = x1 �E(x1jx2). If

y?r1j2j�
T
1 r1j2 (3:3)

then S(�1) might be estimated by applying SIR to the regression of y on sample

residuals r̂1j2 = x1 � Ê(x1jx2). Condition (3.3) holds for normally distributed

predictors and is often a useful approximation in practice. For further discussion,

see Cook (1992, 1994) and Cook and Wetzel (1993).

These separate inverse regression procedures can result in distributional in-

dices with dimension larger than necessary when S(�1)\ Sx2jx1 6= S (origin). An

adaptation of inverse regression methods to the bivariate regression of (y; x2) on

x1 may help avoid this possibility.

3.4. Exploration: Bivariate SIR

Following the ideas in Section 3.2 that lead to SIR, we restrict the full index

�(x1) to be a linear function of x1. Let � be a basis for S(y;x2)jx1 so that

(y; x2)?x1j�
T
x1: (3:4)

As before we need an estimated basis �̂ for S(y;x2)jx1 . Once found, we can set

�(x1) = �̂
T
x1 for use in practice. To avoid colinearity in the index plot, we could

again choose �̂ to insure that the correlation between the elements of � is small.

Although Li (1991) describes SIR in the context of regression problems with a

univariate response variable, the same theory applies when the response variable

is bivariate. The methodological change entails double slicing (Li (1991, p: 339))

the observations on (y; x2) in the plane rather than slicing a univariate response.

In e�ect, the bivariate response (y; x2) is replaced by a discretized bivariate re-

sponse (~y; ~x2) say, assuming that S(y;x2)jx1 = S(~y;~x2)jx1 . Once the bivariate slices

are constructed, the methodology follows the steps for SIR.

Example 1.2. SIR was applied to the bivariate regression in Example 1 by

�rst partitioning the 150 observations on y into 5 slices each containing 30 ob-

servations. The 30 values of w3 in each slice were then partitioned into 5 slices

of 6 observations each. In this way the data were partitioned into 25 slices of 6

observations each. The results from SIR strongly indicate that the dimension of

S(y;x2)jx1 is 1, with estimated basis �̂T = (0:707; 0:708) which is nearly identical

to the population basis �T = (1; 1).
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4. Combining CORE Plots

The action of brushing a plot of the distributional index �(x1) while observ-

ing the corresponding CORE plots fy; x2jJ�g provides two kinds of information.

First, each CORE plot corresponds approximately to a sample from F (y; x2jx1).

Studying a �xed CORE plot provides information about the conditional regres-

sion structure of y on x2 at the selected value for x1. It can be interpreted as

any regression scatterplot, understanding that x1 is essentially �xed. Second,

brushing while observing the corresponding changes in the CORE plots provides

information on how the conditional regression structure changes with the val-

ues of x1 in the sample. In some problems key characteristics of the conditional

regression structure may be constant, allowing individual CORE plots to be com-

bined into a single net e�ect plot that gives a better impression of the constant

aspects of the conditional regression structure.

The problem of combining CORE plots translates into the problem of com-

bining the conditional random variables (y; x2)jx1 over the values of x1. Infor-

mative combinations of these variables need not be easy to construct since there

is no reason that (y; x2)j(x1 = c1) should be at all similar to (y; x2)j(x1 = c2),

particularly if there are interactions. Nevertheless, a �rst method is to shift the

individual CORE plots so that they have the same mean. The plot fryj1; r2j1g =

fy �E(yjx1); x2 �E(x2jx1)g does just that since the expectation of (ryj1; r2j1) is

at the origin for all values of x1. The translation to fryj1; r2j1g shifts the individ-

ual conditional distributions to coincide at the origin and leaves the conditional

covariance structure unchanged. In Example 1 this corresponds to sliding the in-

dividual distributionsF (y; x2jx1) along the conditional mean curve corresponding

to Figure 2 until they coincide at the origin. If

(ryj1; r2j1)?x1 (4:1)

then the translation has the desired e�ect of combining the conditional distri-

butions over x1 while leaving the conditional regression structure intact, except

for the predictable shift in location. Otherwise, combining CORE plots in this

fashion may be undesirable.

If E(yjx1) and E(x2jx1) are estimated by using OLS linear regressions of

y on x1 and x2 on x1, respectively, then the resulting combined CORE plot is

just a standard added variable plot for x2 after x1. Thus an added variable plot

is an instance of a net e�ect plot when (4.1) holds, and E(yjx1) and E(x2jx1)

are both linear in x1. There is no restriction that E(yjx) be linear in x, which

is a bit of freedom that allows added variable plots to be used as diagnostics.

Using the notation described at the beginning of Section 2, feyj1; e2j1g is a generic

representation of an added variable plot for x2 after x1.
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Example 1.3. Condition (4.1) holds in Example 1 so it is possible to construct a

single net e�ect plot while preserving the conditional regression structure. Figure

3 gives the sample plot fyi � Ê(yjxi1); wi3 � Ê(w3jxi1)g, where the conditional

means were estimated by using the quadratic regressions described near the end

of Example 1. This �gure is interpreted as showing the overall net e�ect of

x2 = w3; that is, the regression of y on w3 with x1 �xed, the particular value of

x1 being important only for determining the location of the point cloud. Again

the net e�ect of w3 does not seem very strong relative to the variation in fy;w3g.
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Figure 3. Scatterplot of the OLS residuals ryjQ from the regression of y

on the full quadratic predictor Q in (w1; w2) versus the OLS the residuals
ryjQ from the regression of w3 on Q.
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Figure 4. Added variable plot for w3 in Example 1: Scatterplot of the OLS
residuals eyj1 from the regression of y on x1 = (w1; w2)

T versus the OLS

residuals e2j1 from the regression of x2 = w3 on x1.
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The regression functions E(yjx1) and E(w3jx1) in this example were esti-

mated by using quadratics in x1, although the full regression function E(yjx)

is linear in x. If �rst-order linear regression models had been used to estimate

E(yjx1) and E(w3jx1), resulting in an added variable plot, the plot would dis-

play more than the net e�ect of w3 since we would not have fully accounted for

(conditioned on) x1. The usual added variable plot for w3 is shown as Figure 4.

Clearly the impressions left by Figures 3 and 4 are quite di�erent, with the plot

in Figure 4 suggesting the stronger net e�ect.

The plots of Figures 3 and 4 illustrate the general conclusion that added

variable plots tend to over-estimate net e�ects, unless E(yjx1) and E(x2jx1) are

both linear functions of x1.

Estimated versions of the plot fryj1; r2j1g will provide visual information on

the net e�ect of x2 after x1 when only the location of (y; x2)jx1 varies with

the value of x1 since then (ryj1; r2j1)?x1. The regression functions E(yjx1) and

E(x2jx1) could be estimated by using OLS as in Example 1, a robust estima-

tion method or generalized additive models, for example. When (ryj1; r2j1)?x1
fails the plot fryj1; r2j1g can be viewed as an average over plots of the form

fryj1; r2j1jJ�g where the averaging is with respect to the marginal distribution of

�(x1). Whether this average interpretation is useful depends on the nature of

the e�ects involved. It is certainly possible to have an extreme interaction where

the CORE plots fryj1; r2j1jJ�g show systematic trends in x2 and yet no clear re-

lations are evident in the combined plot fryj1; r2j1g so that x2 is unimportant on

the average.

5. Additional Examples

5.1. Functionally related predictors

The discussion of the previous section shows that there are important dif-

ferences between added variable plots and net e�ect plots, although an added

variable plot can serve as a net e�ect plot when E(yjx1) and E(x2jx1) are both

linear functions of x1. Condition (4.1) requires that sample versions of the net

e�ect plot fryj1; r2j1g be constructed by using estimates of the conditional ex-

pectations E(yjx1) and E(x2jx1). Conditional expectations are not the basis for

added variable plots, however, and this can have important implications when

considering functionally related predictors.

In their discussion of adjusted variable plots (added variable plots) Cham-

bers et al.(1983) use a data set relating the tar content (Tar) of a gas to the
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temperature (T ) of a chemical process and the speed (S) of a rotor. Because

speed was expected to have a nonlinear e�ect on tar content, S2 was used as an

additional predictor to form the initial model Tar = �0 + �1T + �2S+ �22S
2 + ".

To study the contribution of S2, Chambers et al. (1983, p: 273) use the adjusted

variable plot for S2, as shown in Figure 5.
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Figure 5. Adjusted (Added) variable plot for S2: Scatterplot of the OLS
residuals eyj1 from the regression of y = Tar on x1 = (S; T ) versus the OLS

residuals e2j1 from the regression of x2 = S
2 on x1.

Regardless of the adequacy of the initial model, the adjusted variable plot

of Figure 5 provides visual information on the numerical calculation of the co-

e�cient of S2 from an OLS �t (Draper and Smith (1966, Section 4.1)). But

the adjusted variable plot for S2 cannot be interpreted as a net e�ect plot as

de�ned here. Because S2�E(S2jS; T ) = 0, the horizontal coordinate of the plot

fryj1; r2j1g for S2 is identically zero, which is just a reection of the fact that

the second coordinate of the conditional variable (Tar; S2)j(S; T ) is degenerate.

Thus we again see that there are important di�erences between net e�ect plots

and adjusted variable plots.

The basic issue in this example is to understand the contribution of S to

the conditional distributions F (TarjS; T ), and this can be done by studying the

regression of Tar on S at �xed values of T . The CORE plots fTar; SjJg obtained

by brushing T are not very helpful because there are only 31 data points. How-

ever, the net e�ect plot frTarjT ; rSjT g may be useful. Inspection of the scatterplots

fTar; Tg and fS; Tg suggest that E(TarjT ) and E(SjT ) are both reasonably lin-
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ear in T , and the 3D scatterplot fT; (eTarjT ; eSjT )g supports the notion that T

and (eTarjT ; eSjT ) are independent. The net e�ect plot feTarjT ; eSjT g, which is also

an added variable plot in this case, is shown in Figure 6 along with a quadratic

�t.
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Figure 6. Net e�ect plot for S with a quadratic �t.

As in Figure 3, the net e�ect plot in Figure 6 provides visual information on

the conditional regression structure between Tar and S at a �xed value of T ,

the particular value of T serving only to determine the location of the point

cloud. The dominant conditional relationship between Tar and S is linear, but

the quadratic �t indicates that there may be curvature as well. The curvature is

largely a consequence of a few points at the extremes. Removing the linear trend

from the plot in Figure 6 provides additional visual support for this conclusion.

5.2. Exploration with SIR

For this example I use the mussel data as reported by Cook and Weisberg

(1994). The data consist of observations on the length L, width W , height H,

shell mass S and muscle mass M for a sample of 82 Horse Mussels collected in

the Marlborough Sounds located o� the Northeast coast of New Zealand's South

Island. The response variable is muscle massM , the edible portion of the mussel.

The purpose of this example, which focuses on the net e�ect of shell mass M , is

to illustrate a few ideas for constructing net e�ect plots in the model development

stage of an analysis. For notational convenience, let x1 = (L;W;H)T .

An inspection of a 3D scatterplot of x1 indicates that all conditional expecta-

tions of the form E(x1ja
T
x1) are strongly dominated by linear trends, supporting
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the application of bivariate SIR for reducing the dimension of x1. Bivariate SIR

was applied with 25 slices of 3-4 observations each, following the description in

Example 1. There was only one signi�cant linear combination of the predictors,

b
T
x1 = (:15L+ :85W + :50H), indicating that condition (3.4) � (M;S)?x1jb

T
x1

� may hold to a useful approximation. Thus the net e�ect of S might be studied

by brushing the single variable bTx1 while observing the corresponding CORE

plots arising in the linked plot fM;Sg.

A scatterplot matrix of M;S, and b
T
x1 is shown in Figure 7. The CORE

plot corresponding to the slice on b
T
x1 suggests that much of the variation in

the plot fM;Sg can be attributed to variation in b
T
x1, although an e�ect of S

is still evident within the CORE plot. While brushing the scatterplot matrix in

Figure 7 provides useful visual information, a single net e�ect plot constructed

using the ideas of Section 4 may still be worthwhile.

7:49

b
T
x1

2:81

52

M

1

359

S

10

Figure 7. Scatterplot matrix for the mussel data.

Condition (4.1) provides one possibility for construction a combined net e�ect

plot to gain visual information on F (M;SjbTx1). The scatterplot matrix of Figure

7 indicates that E(M jbTx1) and E(SjbTx1) are nonlinear functions of the value

of bTx1 so a standard added variable plot would likely over-estimate the net e�ect
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of S. The conditional expectations do seem to be well-approximated by �tting

quadratic polynomials in b
T
x1. Nevertheless, (4.1) might still not be su�ciently

approximated because of the nonconstant variance that is evident in the plots

fS; bTx1g and fM; b
T
x1g.

Alternatively, power transformations of S and M might be used to force

linear, homoscedastic relationships with b
T
x1. Because SIR is in invariant under

strictly monotonic transformations of the response, transforming S andM at this

stage will not change the previous results. Transforming both S andM to the 0.2

power seems to do a reasonable job, although two observations are highlighted as

potential outliers on the transformed scale. Because the conditional expectations

E(M 0:2jbTx1) and E(S0:2jbTx1) are essentially linear, the added variable plot for

S
0:2 shown in Figure 8 is reasonable for studying the net e�ect of S0:2. The

highlighted points correspond to the potential outliers noted earlier. The net

e�ect plot in Figure 8 provides a visualization of the regression of M 0:2 on S
0:2

at a �xed value of x1. The particular value of x1 serves to determine the location

of the point cloud through the linear combination b
T
x1 determined by using a

bivariate SIR procedure.
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Figure 8. Added variable plot showing the net e�ect of S0:2 in the regression

of M0:2 on S
0:2 and b

T
x1, along with the OLS �tted line for reference.

6. Postlude

Scatterplot brushing is a useful graphical tool for understanding the net

e�ects of predictors in regression problems. Direct application is limited to re-

gression problems with at most three or four predictors, however. When there
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are more predictors we can always display all the data in a scatterplot matrix

and then brush a single cell while observing the changing CORE plots in other

cells of the matrix. But this technique still only allows investigation of marginal

regression problems with at most three predictors since we cannot condition on

more than two predictors simultaneously.

The essential proposal in this paper is to reduce the number of brushing

dimensions by replacing the conditioning predictors x1 with a low dimension

distributional index function �(x1) that discards extraneous information from

x1 and this has the potential to allow net e�ects to be studied via brushing in

regression problems with many predictors. The basic ideas do not depend on

the nature of the response and they apply to generalized linear models as well as

models with additive errors.
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