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Abstract: In this paper, new aspects of treatment comparison are brought out via the

dimension reduction model of Li (1991) for general regression settings. Denoting the

treatment indicator by Z and the covariate by X, the model Y = g(v0X + �Z; �) is

discussed in detail. Estimates of v and � are obtained without assuming a functional

form for g. Our method is based on the use of SIR (sliced inverse regression) for reduc-

ing the dimensionality of the covariate, followed by a partial-inverse mean matching

method for estimating the treatment e�ect �. Asymptotic theory and a simulation

study are presented.
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1. Introduction

There is a growing interest in high dimensional data analysis. One approach

in this area, taken by Li (1991), is to consider a dimension reduction model of

the following form:

Y = g(�0

1
x; : : : ; �0

q
x; �); (1:1)

where � is independent of x. The function g and the distribution of the random

error � are both unknown. The vectors �i; i = 1; : : : ; q, span a q dimensional

subspace in Rp, called the e�ective dimension reduction (e.d.r.) space. An

e.d.r. direction refers to any vector in the e.d.r. space.

Sliced inverse regression (SIR) o�ers a promising methodology for estimating

the e.d.r. directions. This procedure reverses the more natural forward regression

methods which model Y as a function of x. Instead of such direct data �tting,

SIR exploits the conditional distribution of x given Y . The �rst moment method,

based on E(xjY ), has been studied extensively in various contexts; see Carroll

and Li (1992), Duan and Li (1991), Hsing and Carroll (1992), and Li (1991,

1992a). The second moment, cov(xjY ), is also useful; see Cook and Weisburg

(1991), and Li (1991, 1992b).

Although model (1.1) is primarily proposed for handling continuous regres-

sors, it is interesting to study how discrete variables can be incorporated in the
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model. In this paper, a single dichotomous variable Z will be considered. Denote

the rest of the p� 1 continuous regressors as X. While simple, this represents a

natural situation for treatment comparison, as well as a �rst step towards more

complex models. We call Z = 0 the control group and Z = 1 the treatment

group.

We may rewrite model (1.1) as

y = g(B0X + Z�; �); (1:2)

where B is a (p � 1) by q matrix and � is a q-vector; both are unknown. Our

model o�ers a variety of ways for comparing treatments, which have not been

considered in the literature. To simplify the discussion, only the case q = 1 will

be studied in detail in this paper.

In Section 2, we compare our model with several others when X is only

one-dimensional. This clari�es the connection of our approach to traditional

parametric modeling as well as the more recent semiparametric methods for

comparing nonparametric regression curves. Our model is exible enough to deal

with a variety of situations, ranging from clinical trials to industrial/engineering

quality improvement settings.

Section 3 points out the theoretical di�culties in justifying direct application

of the SIR technique. The discreteness of Z causes two related problems: (1) the

linear design condition, namely Condition 3.1 of Li (1991), is violated; (2) the

e.d.r space may not be identi�able without imposing proper constraints on the

parameter values.

Section 4 presents our method for estimating the treatment e�ect � for one

dimensional X. Since � is only a scalar now, it will be denoted by the lower case

�. Our estimate depends on a weight function. Of special interest is one which

is related to double-slicing, an idea mentioned in the rejoinder of Li (1991). We

refer to this method as partial inverse mean matching. It is based on the mean

of Z conditional on Y and X + �Z. The estimate is obtained by �nding a value

of � so that this conditional mean matches the mean of Z conditional on X + �Z

only. By contrast, other methods for comparing treatments are based on the

conditional mean of Y given Z and X. We establish root n consistency and �nd

the asymptotic distribution of our method. We also conduct a simulation study

for illustration.

The multivariate covariate case is considered in Section 5. The general strat-

egy is to reduce the dimension of X �rst. If the e.d.r. space has only one dimen-

sion, then we can apply the techniques in Section 4 to the reduced variable. We

discuss how to apply the SIR methodology to �nd the correct projection direction

for reduction. A simulation is conducted to illustrate our two-stage strategy. We

do not discuss the case q > 1, leaving this to future research.
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A concluding note is given in Section 6. Technical proofs are given in Ap-

pendices.

2. Models for Trearment Comparison: Single Covariate

In this section, assume that X is only one-dimensional. The parameter �

becomes a scalar now and for clarity, we denote it by the lower case �. Since we

have in total p = 2 regressors, one continuous X and one discrete Z, the e.d.r.

space can have q = 0; 1, or 2 dimensions. The case q = 0 is trivial as Y will be

independent of X and Z. The case q = 2 is also trivial because no dimension

reduction is incurred; arbitrary joint distributions between X and Y are allowed

for the treatment and the control groups and no relationship between them is

drawn.

The most interesting case q = 1 is now discussed. It is worthwhile to further

distinguish between the following two cases:

Y = g(Z; �); (2:1)

and

Y = g(X + �Z; �); (2:2)

where � is independent of (X;Z). The �rst case, simpli�ed from (1.2) with

B = 0, represents the situation that the covariate X has no e�ect on Y in either

the treatment or the control group.

We now focus on (2.2), which, because X is scalar, is equivalent to (1.2) with

B 6= 0 by absorbing B into the unknown function g. The parameter � in (2.2) can

be interpreted as the treatment e�ect. The response Y is related to X through

Y = g(X; �) for the control group, and Y = g(X + �; �) for the treatment group.

Thus, a case from the treatment group behaves as if an additional amount � had

been added into its covariate X. Since we do not make any assumptions about

(g; �), there is no restriction on the joint distribution of Y and X.

Model (2.2) covers several special models for treatment comparison:

(1) Linear regression:

Y = a+ bX + cZ + �: (2:3)

For this case, parallel lines are anticipated in the plot of Y on X. The parameter

c can be interpreted as the amount of vertical shift needed for the regression line

with Z = 0 to match that with Z = 1. The same matching can also be achieved

by shifting the treatment-group regression line horizontally by the amount of

� = c=b.
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(2) Nonlinear regression: There are two ways of generalizing (2.3) to nonlin-

ear regression, namely vertical shift

Y = g(X) + cZ + �; (2:4)

and horizontal shift

Y = g(X + �Z) + �: (2:5)

The former appears in the literature concerning partly linear models or partial

splines; see Chen (1988), Engle, Granger, Rice, and Weiss (1986), Heckman

(1986), Rice (1986), Speckman (1988). The latter can be found in H�ardle and

Marron (1990), and Kneip and Gasser (1992).

Note that the vertical shift model (2.4) is not covered under (2.2). To �t it

into our framework, we need to take q = 2 in (1.2).

(3) Multiplicative error: A simple multiplicative model is

Y = �+ g(X + �Z)�: (2:6)

Here the mean of Y is a constant independent of the covariate, but the standard

deviation depends on (X;Z). This model is useful in dealing with problems asso-

ciated with Taguchi's method for quality improvement. For example, increasing

the stability of certain quality aspects of a product, measured by Y , may be the

goal. Suppose the variance of Y depends on the level of an undesirable environ-

mental factor X, an identi�able key source of noise which cannot be adjusted.

Then model (2.6) can be used to assess how e�ective a treatment is in stabilizing

the quality of the product. If g is an increasing nonnegative function, then a

negative � value shows that the treatment under study has an e�ect amounting

to reducing the level of the uncontrollable environmental factor by the amount

j�j.
Model (2.6) is a case where all the methods referred to in the discussion

following (2.5) are not applicable, because in (2.6) treatment has no e�ect on the

mean function.

(4) Generalized linear models:

Y � P� ; � = a+ bX + cZ;

where the distribution P� belongs to an exponential family indexed by � . Such

models are often assumed when the response variable Y is discrete, e.g., the

binomial or Poisson distributions. In such cases, both the mean and the variance

of Y contain information about the treatment e�ect. Discrete output is quite

popular in many applications, including clinical trials and quality engineering

settings.
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Remark 2.1. The popular single index model from the econometric literature

is closely related to the dimension reduction framework (1.1) (with q = 1). Han

(1987) and Sherman (1993) describe one such approach using a rank correla-

tion procedure. However, the constructed index is required to have a monotone

functional relationship with the response variable. This precludes cases like the

multiplicative error in (2.6). In addition, the implementation of the procedure

may not be easy to carry out although one Referee has informed us of an un-

published preprint by Chris Cavanagh and Robert Sherman of BELLCORE that

discusses computation. Another related approach is projection pursuit regres-

sion, the theory of which as developed in Hall (1989), Chen (1991) and H�ardle,

Hall, and Ichimura (1993) does not directly apply to discrete regressors, nor does

it apply to (2.6). A third approach is derivative-based methods; see H�ardle and

Stoker (1989) and Samarov (1993). Whether these methods are appropriate for

treatment comparison or not is unclear. One di�culty is that we cannot take

a partial derivative with respect to a discrete regressor. Another dimension re-

duction method not discussed here is the method of principal Hessian directions

(Li (1992b)), which is related to the second derivative based method in Samarov

(1993).

3. Di�culties

Since our model is a special case of SIR, why can't we apply SIR directly?

There are two major reasons.

The �rst di�culty concerns the conditional linearity assumption, Condition

3.1 of Li (1991), needed for establishing the unbiasedness of SIR.

Linear Design Condition 3.1. For any b in Rp, the conditional expectation

E(b0xj�0
1
x; : : : ; �0

q
x) is linear in �0

1
x; : : : ; �0

q
x.

Let

T� = X + �Z: (3:1)

In the framework of (2.2), the Linear Design Condition 3.1 is reduced to the

following:

E(ZjT� = t) = a+ bt; for some a; b: (3:2)

Because of the binary nature of Z, this identity rarely holds. To see this, note

that
E(ZjT� = t) = PfZ = 1jX + �Z = tg

=
fXjZ=1(t� �)PfZ = 1g

fXjZ=0(t)PfZ = 0g+ fXjZ=1(t� �)PfZ = 1g ;

where all f with subscripts denote conditional densities. If (3.2) holds, then the

density ratio, fXjZ=1(t � �)=fXjZ=0(t), must take the form of a special rational
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function, more precisely, the ratio of two linear functions.

The second issue concerns the identi�ability of the e.d.r. space. For the

general model (1.1), there is always more than one way of setting up the function

g to represent a given joint distribution of (Y;x). A less ambiguous statement,

equivalent to (1.1), is that

conditional on �0

i
x (i = 1; : : : ; q); Y and x are independent. (3:3)

Similar to the de�nition of su�cient statistics, the notion of the e.d.r. space

is to remove as many redundant dimensions as possible. Thus, although we can

insist that any space containing an e.d.r. space could also be an e.d.r. space, the

most useful e.d.r. space is surely the one with the smallest dimension. But an

identi�ability question arises immediately: is such a space unique? Cook (1994)

shows that this is the case if the support of the distribution of x is equal to the

entire Rp. In fact, as long as the support is connected and is contained in the

closure of its interior, the minimum e.d.r space is unique. On the other hand,

discreteness in a regressor is most likely to create an identi�ability problem.

For example, if the support of x has only a �nite number of points, then any

one-dimensional space spanned by any direction � can be an e.d.r. space if the

projection �0x takes distinct values for distinct points in the support of x.

Once again returning to our case with one continuous and one binary regres-

sor, the support of the distribution of x = (X;Z)0 is contained in two horizontal

lines. Thus in the 2-D plane topology, the support of x has an empty interior.

To illustrate what may go wrong, consider the case that X is restricted to the

interval [0; 1]. Then for any � > 1, the support of X + �Z will consist of two

non-overlapping intervals, [0; 1] [ [�; � + 1]. We are free to de�ne the function

g(�) in (2.2) for each segment separately, and the model would not bring any

connection between the joint distribution of (Y;X) for the treatment group and

that for the control group. Therefore, although model (2.2) appears as if the

e.d.r. space has only one dimension, it already is the most general case and no

dimension reduction is incurred.

The key for resolving this issue is to observe that if g(�) in (2.2) is periodic

in the �rst argument with (smallest) period c, then we cannot distinguish � from

�+ c; �+ 2c, etc. To avoid any ambiguity, we may take � to be the one with the

smallest absolute value: � 2 [�c=2; c=2]. For the case that the support of X is

the interval [0; 1], � will then be restricted to the interval [�1; 1], because we can
always extend the g function periodically with period 2.

4. Estimation of the Treatment E�ect

As made clear in the previous section, the current literature for dealing with

model (2.5) cannot handle generalizations such as the multiplicative error model
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(2.6). A di�erent method, based on (3.3), will be presented here which applies

to both (2.5) and (2.6).

For any real number �, denote T� = X + �Z, see (3.1), and fY ZT (y; z; t; �) =

joint density of Y;Z; T�; fY T (y; t; �) = joint density of Y; T�; fZT (z; t; �) = joint

density of Z; T�; fT (t; �) = density of T�. Also denote by �o the true value of �:

In our context, (3.3) is equivalent to

fY ZT (y; z; t; �o)fT (t; �o) = fY T (y; t; �o)fZT (z; t; �o): (4:1)

Let w(y; z; t) be any positive function. A broad class of estimates can be obtained

based on implementing the following minimization problem:

min
�

X
z

Z Z
w(y; z; t)A2(y; z; t; �)dydt; where (4:2)

A(y; z; t; �) = fY ZT (y; z; t; �)fT (t; �)� fY T (y; t; �)fZT (z; t; �): (4:3)

The integration domain for (4.2) and elsewhere in this section is without

restriction. A solution for (4.2) is of course � = �o, and the minimum value is 0.

Subject to constraints, if necessary, for dealing with bounded support of X and

periodicity as discussed in Section 3, we now assume that the solution is unique.

Taking the derivative with respect to �, note that � = �o solves the equationX
z

Z Z
w(y; z; t)A(y; z; t; �)B(y; z; t; �)dydt = 0;

B(y; z; t; �) =
@

@�
A(y; z; t; �):

To implement (4.2), we need to estimate the density functions. For simplicity,

kernel density estimates will be used.

First we treat the case that Y is discrete. Then (4.2) becomes

min
�

X
y;z

Z
w(y; z; t)A(y; z; t; �)2dt: (4:4)

Suppose (yi; xi; zi); i = 1; : : : ; n, are the sample values. Denote ti(�) = xi + �zi:

Then consider the kernel estimates:

bfY ZT (y; z; t; �) = (nh)�1
nX
i=1

I(yi = y)I(zi = z)K

�
ti(�)� t

h

�
; (4:5)

bfY T (y; t; �) = (nh)�1
nX
i=1

I(yi = y)K

�
ti(�)� t

h

�
; (4:6)

bfZT (z; t; �) = (nh)�1
nX
i=1

I(zi = z)K

�
ti(�)� t

h

�
;

bfT (t; �) = (nh)�1
nX
i=1

K

�
ti(�)� t

h

�
;
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where I(�) is the indicator function, K(�) is a suitable kernel function withR
uK(u)du = 0,

R
K(u)du = 1; and h is the bandwidth.

Our estimate b� is given by the solution of

min
�

X
y;z

Z
w(y; z; t) bA2(y; z; t; �)dt; where (4:7)

bA(y; z; t; �) = bfY ZT (y; z; t; �) bfT (t; �)� bfY T (y; t; �) bfZT (z; t; �):
Consistency of b� is simple to establish, and we omit the details. We proceed

to discuss the rate of convergence and �nd the resulting asymptotic distribution.

Di�erentiating (4.7) with respect to �, note that b� solves the equation
X
y;z

Z
w(y; z; t) bA(y; z; t; �) bB(y; z; t; �)dt = 0; (4:8)

bB(y; z; t; �) = @

@�
bA(y; z; t; �):

With subscripts omitted, we shall need the standard rate of convergence

result from nonparametric density estimation for the four kernel density estimatesbf , namely that for each of these estimates, bf = f +Op

�
h2 + (nh)�1=2

	
:

The rest of the derivation can then be carried out by Taylor's expansion; see

Appendix A. There we show that

b� � �o = (nG)�1
X
i

� fyi; zi; ti(�o); �og+ op(n
�1=2); (4:9)

where

G =
X
y;z

Z
w(y; z; t)B2(y; z; t; �o)dt;

�(y; z; t; �o)

= fT (t; �o)

�
w(y; z; t)B(y; z; t; �o)�E[w(y; Z; t)B(y; Z; t; �o)jY =y; T�o= t]

�E[w(Y; z; t)B(Y; z; t; �o)jZ=z; T�o= t]+E[w(Y;Z; t)B(Y;Z; t; �o)jT�o= t]

�
:

The term B(y; z; t : �o) can be expressed more explicitly; see equations (B.1) and

(B.2) in Appendix B.

From (4.9), the rate of convergence for estimating �o is seen to be root-n. By

the central limit theorem, b� is asymptotically normal, with asymptotic variance

equal to G�2E�(Y;Z; T�o ; �o)
2. In order for (4.9) to hold, the bandwidth has to

satisfy the condition

n� 1

4 >> h >> n� 1

3 : (4:10)
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The lower bound h >> n� 1

3 is needed for the consistency of bB(y; z; t; �). The

upper bound of h arises from a bias calculation; see Appendix A.

The case that Y is continuous can be handled similarly. The simplest device

is to discretize Y by slicing the range of Y into a small number of groups. Models

such as (2.2) still hold in general for this sliced Y , so that we can apply the method

discussed above for the discrete case. Alternatively, and with more complications

numerically, we may apply bivariate kernel density estimates to replace (4.5) and

(4.6):

bfY ZT (y; z; t; �) = (nhh0)�1
nX
i=1

I(zi = z)K

�
ti(�)� t

h

�
K

�
yi � y

h0

�
;

bfY T (y; t; �) = (nhh0)�1
nX
i=1

K

�
ti(�)� t

h

�
K

�
yi � y

h0

�
:

We replace (4.7) with

min
�

X
z

Z Z
w(y; z; t) bA2(y; z; t; �)dydt:

The asymptotic expansion of b� takes the same form as (4.9) with G replaced

by

G =
X
z

Z Z
w(y; z; t)B2(y; z; t; �o)dydt:

There is some exibility in setting up the weight function w(y; z; t) in (4.2)

or in (4.4). We shall allow it to depend on � as well. Two interesting special

cases are discussed below.

4.1.1 Partial-inverse mean matching

Instead of using (4.1), we can use (3.3) to write E(ZjY; T�o) = E(ZjT�o):
From this we see that � = �o is a solution of the minimization problem:

min
�

E [Var fE(ZjY; T�)jT�g] : (4:11)

This becomes a special case of the doubly sliced inverse regression method men-

tioned in the Rejoinder of Li (1991). Denote

mZ(t; y; �) = E(ZjY = y; T� = t) = fY ZT (y; 1; t; �)=fY T (y; t; �);

mZ(t; �) = E(ZjT� = t) = fZT (1; t; �)=fT (t; �):
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Then we can rewrite (4.11) as

min
�

X
y

Z
fmZ(t; y; �)�mZ(t; �)g2 fY T (y; t; �)dt: (4:12)

The sample version of (4.12) is then to minimize the function

PIMM(�) =
X
y

Z
f bmZ(t; y; �)� bmZ(t; �)g2 f̂Y T (y; t; �)dt; (4:13)

where bmZ(t; y; �) = bfY ZT (y; 1; t; �)=f̂Y T (y; t; �);bmZ(t; �) = bfZT (1; t; �)=f̂T (t; �):
It is easy to see that (4.12) is the same as (4.4) with the weight function

w(y; z; t) =
1

2
fY T (y; t; �)

�1fT (t; �)
�2: (4:14)

The dependence of the weight on � does not change the main asymptotic

result. This is similar to the use of weighted least squares in generalized linear

models. However, as in the standard nonparametric smoothing context, we do

need some standard minor modi�cations and/or regularity conditions on the

denominator densities so as to bound them away from zero; details are routine

and therefore omitted here.

The criterion function (4.12) is based on the conditional mean of Z given

(Y;X + �Z). By comparison, methods for handling (2.4) or (2.5) are based on

the conditional mean of Y given (Z;X). Our method thus partially inverts the

roles of the involved variables in taking conditional expectations. To emphasize

the di�erence, our method can be referred to as the partial inverse mean matching

(PIMM) as opposed to the forward mean matching used by the other techniques.

4.1.2. Chi-squared statistics

Another interesting choice of the weight function is

w(y; z; t) =
1

fT (t; �)fY T (y; t; �)fZT (z; t; �)
: (4:15)

This is related to the chi-squared statistic for testing the conditional indepen-

dence (3.3). More explicitly, conditional on T� = t, suppose we want to test if

Y (assumed to be discrete for clarity) is independent of Z. Then the population

version of the Pearson chi-squared statistic amounts to

X
y;z

�
fY;ZjT=t(y; z) � fY jT=t(y)fZjT=t(t)

	2
fY jT=t(y)fZjT=t(t)

;
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where fY;ZjT=t; fY jT=t, and fZjT=t denote conditional densities. Combining chi-

squares from each t, we obtain

X
y;z

Z �
fY;ZjT=t(y; z) � fY jT=t(y)fZjT=t(t)

	2
fY jT=t(y)fZjT=t(t)

fT (t; �)dt: (4:16)

Using the relationships fY;ZjT=t(y; z) = fY ZT (y; z; t; �)=fT (t; �), fY jT=t(y) =

fY T (y; t; �)=fT (t; �), and fZjT=t(z) = fZT (z; t; �)=fT (t; �), we can express (4.16)

in the form (4.4) with the weight function given by (4.15).

4.2. Simulation

A small-scale simulation is reported here to illustrate the partial-inverse mean

matching method. To generate the data, we use the following model:

X; � � N(0; 1); Z � binomial(1; :5); X; �; Z; are independent

Y � = X + :5Z + ��;

Y = 0; 1; 2; forY � � 0; Y � � 0:5; 0 � Y � < 0:5; respectively:

The treatment e�ect � = :5 is equivalent to shiftingX up by a half of its standard

deviation. The variable Y � is not observable. We only observe Y which has three

classes.

We took n = 200 and used � = :1 to study the low noise level case �rst.

Figure 4.1 shows a typical set of data generated. The three classes of Y are

formed by the partition made with the two horizontal lines as shown there.

PIMM(�)

�

Figure 4.1. Data for low noise level. Figure 4.2. The PIMM curves for h =

:1; :2; :3; :4; :5.
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Figure 4.3(a)-(c). Histograms of the estimate b� in 100 runs.

We use the standard biweight kernel, available in XLISP.STAT (Tierney

(1990)), for smoothing. To simplify the computation, we minimize a discretized

version of (4.13),

PIMM(�) �
X
y

40X
i=1

f bmZ(ti; y; �)� bmZ(ti; �)g2 bfY T (ti; y; �); ti = �1:75 + :1i:

(4:17)

The integration domain [�1:75; 2:25] is chosen because it already covers about

95% of T� at the true value �o = :5. For the data displayed in Figure 4.1, �ve

curves of PIMM(�) (4.17),with h set at :1; :2; :3; :4; :5, respectively, are shown in

Figure 4.2. The minimum b� is obtained at :47; :46; :46; :47; :48 respectively. This

indicates that in a wide range of h, the estimate b� does not change much. To

con�rm this, we repeated the simulation 100 times. The means and the standard

deviations (in parentheses) for these 100 runs are

0:498 (0:053); 0:501 (0:046); 0:505 (0:046); 0:511 (0:046); 0:518 (0:047);

for h = :1; :2; :3; :4; :5 respectively. Three histograms, h = :1; :3; :5, are given in

Figures 4.3(a-c).

To simulate a high noise level case, we used � = :5. Figure 4.4 shows a

typical data set. Note that even with Y �, it is not easy to tell one group from the

other. The criterion curves for minimization are shown in Figure 4.5, with the

minimum being :41; :39; :42; :44; :46 respectively. Except for h = :1, the curves
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are fairly smooth. The means and standard deviations (in parentheses) of b� in

100 simulation runs (Figure 4.6) were

0:56 (0:17); 0:54 (0:17); 0:54 (0:14); 0:54 (0:13); 0:54 (0:13):

The bias is still small compared to the variance of the estimate. Since the variance

of the noise is now 25 times as big as the low noise level case, the mean squared

error in estimating � is also bigger than before, but only by about six or seven

times.

Another simple benchmark for comparison is to compute the standard devi-

ation of Y
�

1
� Y

�

2
, the di�erence in the average of Y � for the two groups, which

is about the same as the best linear estimate of � if Y is observable and the

linear model is assumed. This gives a value of :05
p
2, or about :071. Thus, the

standard error for our estimate b� is only about twice as large, despite of the loss
of information due to classi�cation of Y � and of course despite the fact that we

have made no model assumptions.

Remark 4.1. It would be desirable to have an automatic bandwidth selection

rule for selecting h, but this requires further study. What we have demonstrated

here is the existence of a range of h for which the estimate b� is stable. In

practice, we suggest plotting the minimization curves for a reasonable range of h

as demonstrated in our simulation study. This allows us to assess the sensitivity

of the estimate to the bandwidth selection.

PIMM(�)

�

Figure 4.4. Data for high noise level. Figure 4.5. The PIMM curves for high noise

kevel data, h = :1; :2; :3; :4; :5.
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Figure 4.6(a){(c). Histograms of the estimate b� in 100 runs for high noise

level model.

5. Treatment Comparison with Multivariate Covariates

Treatment comparison in the presence of a high dimensional covariate X is

a much broader issue. In this section, we shall discuss an extension of (2.2) to

the multivariate case:

Y = g(v0X + �Z; �): (5:1)

Our strategy is �rst to estimate the direction v so that the dimensionality of

X is reduced to just one. After obtaining a good estimate bv, we may compute

the reduced variable bv0X, which we then treat as the univariate covariate in the

preceding section and apply the one-dimensional technique discussed there to

estimate �.

One must be careful in interpreting the value of �, which is only de�ned

relative to the size and the sign of v. Note that we can multiply v and � simul-

taneously by a constant and absorb the constant into g. This slight ambiguity,

which is unavoidable in this context, should not cause any practical di�culties.

The question is how to estimate the direction of v. We use the SIR technique

as discussed in the following two subsections.

5.1. Randomized treatment assignment

Randomization is frequently applied in assigning patients to treatment or
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control groups in medical trials. This practice leads to the condition:

Xand Z are independent: (5:2)

In order to apply the SIR technique, we assume the linear design condition

on the distribution of X:

Linear Design Condition 5:1: For any b in Rp�1, E(b0Xjv0X) is linear in v0X.

The following lemma shows that a direct application of SIR for Y on X

(without worrying about the presence of Z) gives a consistent estimate of v.

Lemma 5.1. Under (5:1), (5:2), and the Linear Design Condition 5:1, we have

E(XjY )�EX / �Xv; where �X denotes the covariance matrix of X.

Proof. First assume EX = 0 without loss of generality. By conditioning,

E(XjY ) = E fE(Xjv0X;Z; �)jY g = E fE(Xjv0X)jY g :

Now apply the Linear Design Condition to get E(Xjv0x) / �Xv. With this, we

may return to the preceding expression and complete the proof.

FromLemma 5.1; it follows that the eigenvalue decomposition ofCov[E(XjY )]
with respect to Cov(X) has at most one nonzero eigenvalue, and the nonzero

eigenvector has to be in the direction of v: Cov[E(XjY )]v = ��Xv: This shows

that we can estimate v by the �rst eigenvector of SIR.

Denote the SIR estimate by bvsir, from which we derive the reduced variablebv0sirX. With this, one can apply the technique from Section 4 to estimate the

treatment e�ect �.

We illustrate this two-stage procedure by a simulation.

Example 5.1. We used a �ve-dimensional regressor X = (X1; : : : ;X5)
0 from

the standard normal distribution. The model is

Y = (�+ v0X + �Z + ��)2;

Z � binomial (1; :5); Z;X independent;

where � is the standard normal random error. We took v = (1; 1;�1;�1; 0)0 ,
� = 1, � = 5; � = :5. After generating n = 200 observations, we �rst ap-

plied SIR for Y on X with 10 slices. The eigenvalues are :85; :092; :032; :::.

As expected, only the �rst one is signi�cant. The corresponding eigenvector

is bvsir = (:53; :50;�:52;�:56; :04)0 : We computed the reduced variable bv0X for

each of the 200 observations and then used this reduced variable to estimate the

treatment e�ect �. We discretized Y values into 5 consecutive classes, each with
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40 observations, and then applied the partial-inverse mean matching method.

The PIMM curves with h = :1; :2; :3; :4; :5, are shown in Figure 5.1. The min-

imum points are about the same: (.46, .50, .48, .48, .49). Since the curve for

h = :1 shows some instability, we decided to ignore it. Taking the average of the

remaining four points, our estimate is b� = :48. Figure 5.2 shows the plot of Y

against the variable T = b� + bv0sirX. This plot reveals a clear quadratic pattern.

PIMM(�)

�

Figure 5.1. Curves of PIMM(�) for Figure 5.2. Plot of Y against T for

Example 5.1. Example 5.1.

Note that bvsir is approximately equal to :5v. This is why b� is only about a half
of � = 1. As mentioned earlier, we can absorb the multiplicative constant :5 into

the g function in (5.1). On the other hand, the eigenvector which is the output of

SIR is usually standardized so that the reduced variable has unit variance. With

this convention, the corresponding treatment e�ect b� is no longer dependent on

the unit of X, thus relieving the ambiguity in the scale interpretation problem.

5.2 Combining SIR

If the treatment assignment is not independent of X, the result of Lemma

5.1 is not true, and direct application of SIR on X may incur some bias. A simple

strategy is to estimate v from each group. We need the Linear Design Condition

for each group :

for any b in Rp�1, E(b0Xjv0X;Z = z) is linear in v0X for each z = 0; 1.

The SIR estimate from each group is the largest eigenvector of the decom-

position:
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b�
mzbvz = b�z b�Xz; z = 0; 1; (5:3)

where �Xz is the sample covariance of X given Z = z and b�
mz is the estimate

of Cov fE(XjY;Z = z)g, which is constructed by �rst partitioning the data with

Z = z into Hz slices as evenly as possible according to the order of the Y values,

computing cmhz, the mean of X for the hth slice, and then forming the covariance

of these slice means:

b�
mz =

X
h

bphz(cmhz �Xz)(cmhz �Xz)
0; (5:4)

where Xz is the sample mean of X for group Z = z, and bphz denotes the propor-
tion of cases in slice h.

Having computed (bv0; bv1), an immediate question is how to combine them.

There are several ways to proceed. The simplest is to take the average bvc =

(n0bv0 + n1bv1)=n; where n0 and n1 denote the sample size for each group. A

less simple alternative that incorporates the covariance matrix of each individual

estimate is discussed in Appendix C.

The combination can take place before (5.3). There are numerical methods

for performing \simultaneous" eigenvalue decomposition. For example, we may

take bvc to be the vector v that maximizes the following:

max
v

X
z

nz

n
� v

0 b�
mzv

v0 b�Xzv
:

When the covariance matrix of X for each group is assumed to be the same,

we can pool the two covariance matrices in (5.4) together and conduct a single

eigenvalue decomposition: b�
mpbvc = b�cb�Xpbvc;

where b�
mp = n�1

P
z
nz b�mz; b�Xp = n�1

P
z
nz b�Xz:

6. Conclusion

The purpose of this paper is two-fold: (1) to demonstrate how a discrete

regressor can be incorporated into the SIR methodology; and (2) to broaden

aspects of treatment comparison in the presence of covariates. The entire study

takes place in the context of the dimension reduction model (1.1).

We have illustrated the diversity of applications that can be incorporated

into our model. The treatment e�ect was de�ned and an inverse mean matching

estimation method was introduced. For a high dimensional covariate, we sug-

gested a two stage approach: �rst apply dimension reduction techniques like SIR
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to reduce the multivariate covariate into a single dimension, and then apply the

inverse mean matching estimation method.

In reducing the covariate, we have required the Linear Design Condition.

In general, SIR is not overly sensitive to a mild departure from this condition,

particularly when the covariate is continuous; see the rejoinder of Li (1991), as

well as Hall and Li (1993). On the other hand, we can apply subsampling or

reweighting techniques to force elliptic symmetry on X; see Brillinger (1991) and

Cook and Nachtsheim (1994).

Other dimension reduction methods such as those discussed in Remark 2.1

are feasible alternatives in reducing the covariate dimension. How they compare

with SIR is an issue raised and discussed before; see the discussion and rejoinder

of Li (1991). Due to the lack of extensive numerical studies in the literature

about how well they deal with various design distributions and dimensionality,

we cannot comment more about their relative merits at this point.

We have not discussed the case q > 1 in (1.2). The dimension reduction

technique can be applied separately in each group to reduce the dimensionality

of X. The details for estimating the parameter vector � will be explored in the

future.
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Appendices

Appendix A. Derivation of (4.9)

Consider the local Taylor expansionsbA(y; z; t; �) = bA(y; z; t; �o) + bB(y; z; t; �o)(� � �o) + op(� � �o);bB(y; z; t; �) = bB(y; z; t; �o) + op(1):

From (4.8), we obtain

b� � �o = �

(X
y;z

Z
w(y; z; t) bB2

(y; z; t; �o)dt

)
�1
(X

y;z

Z
w(y; z; t) bA(y; z; t; �o) bB(y; z; t; �o)dt)

+ op(b� � �)

= �

(X
y;z

Z
w(y; z; t)B

2
(y; z; t; �o)dt

)
�1
(X

y;z

Z
w(y; z; t) bA(y; z; t; �o) bB(y; z; t; �o)dt)

+ op(b� � �):
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To proceed, de�ne

~A(y; z; t; �) = bfY ZT (y; z; t; �)fT (t; �o) + fY ZT (y; z; t; �o) bfT (t; �)
� bfY T (y; t; �)fZT (z; t; �o)� fY T (y; t; �o) bfZT (z; t; �): (A.1)

Using (4.1), it follows that

bA(y; z; t; �)
= ~A(y; z; t; �) +

n bfY ZT (y; z; t; �)� fY ZT (y; z; t; �)
o n bfT (t; �)� fT (t; �)

o
+
n bfY T (y; t; �)� fY T (y; t; �)

on bfZT (z; t; �)� fZT (z; t; �)
o

= ~A(y; z; t; �) + op(n
� 1

2 );

where the last expression is obtained under the assumption that the rate of

convergence in density estimation is faster than n�1=4, which is very mild and is

satis�ed under (4.10).

It remains to deriveX
y;z

Z
w(y; z; t) ~A(y; z; t; �o)B(y; z; t; �o)dt

= n�1
X
i

�(yi; zi; ti(�o); �o) + op(n
� 1

2 ): (A:2)

This can be done by change of variables. More precisely, the left side of (A.2)

can be expanded into four terms, each involving one of the four terms in (A.1).

The right side of (A.2) can also be expanded into four terms, each associated

with one of the four terms in the de�nition of �(y; z; t; �o). For the �rst term on

the left side, we have

X
y;z

Z
w(y; z; t) bfY ZT (y; z; t; �o)fT (t; �o)B(y; z; t; �o)dt

=(nh)�1
X
y;z

nX
i=1

I(yi=y)I(zi=z)

Z
K(

ti(�o)�t
h

)w(y; z; t)fT (t; �o)B(y; z; t; �o)dt

=n�1

nX
i=1

Z
w(yi; zi; ti(�o) + ht0)B(yi; zi; ti(�o) + ht0)fT (ti(�o) + ht0; �o)K(t0)dt0

=n�1

nX
i=1

Z
w(yi; zi; ti(�o))fT (ti(�o); �o)B(yi; zi; ti(�o))dt+Op(h

2):

This gives the �rst term on the right hand side. The bandwidth interval given by

(4.10) implies Op(h
2) = op(n

� 1

2 ). All other three terms can be obtained similarly.
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Appendix B. Derivation of B(y; z; t; �o)

The term B(y; z; t; �o) can be expressed more explicitly. This is based on the

relationship fY ZT (y; z; t; �) = fY ZT (y; z; t + (�o � �)z; �o): Taking partial deriva-

tives with respect to �, it follows that

@

@�
fY ZT (y; z; t; �)j�o = �z @

@t
fY ZT (y; z; t; �o):

We also have

@

@�
fY T (y; t; �)j�o =

X
z

@

@�
fY ZT (y; z; t; �)j�o = � @

@t
fY ZT (y; 1; t; �o):

Similarly,
@

@�
fZT (z; t; �)j�o = �z @

@t
fZT (z; t; �o);

@

@t
fT (z; t; �)j�o = � @

@t
fZT (1; t; �o):

The case that z = 0 is now obvious:

B(y; 0; t; �o) = fZT (0; t; �o)
@

@t
fY ZT (y; 1; t; �o)

� fY ZT (y; 0; t; �o)
@

@t
fZT (1; t; �o): (B.1)

For the case z = 1, we need to use the identity obtained from taking the

partial derivative with respective to t on both sides of (4.1). This leads to

B(y; 1; t; �o) = fY ZT (y; 1; t; �o)
@

@t
fZT (0; t; �o)

� fZT (1; t; �o)
@

@t
fY ZT (y; 0; t; �o): (B.2)

Appendix C. Combination via covariance weighting

This method is motivated from the estimation of a normal mean vector �,

given two independent observations u0;u1 with the common mean � but di�erent

covariance matrices, �0;�1. The maximum likelihood estimate is equal to (��1
0 +

��1
1 )�1(��1

0 u0+��1
1 u1); which can be interpreted as a matrix-weighted average

of u0 and u1 with the covariance matrices as the weights. This combination

method can be applied to bv0; bv1 which have been shown to be asymptotically

normal (Duan and Li 1991). However, some modi�cation is needed because the

covariance matrix for bvz; z = 0; 1, denoted by �z, is always degenerate due to
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the normalization constraint on the length of each eigenvector kbvzk = 1, forcing

�zv = 0.

Let b�z be an estimate of �z with b�zbvz = 0. The maximum likelihood esti-

mate is obtained by minv
P

z
(bvz � v)0 b��1

z
(bvz � v): There are di�culties in invert-

ing the matrix. To circumvent this problem, we may minimize
P

z
(bv0

z
v)�2(bvz �

v)0(b�z)
�(bvz � v); or equivalently, minimizeX

z

(bv0
z
v)�2v0(b�z)

�v: (C.1)

The insertion of the term bv0
z
v = kvkcos(bvz; v) acts like a regularization procedure

in ill-posed problems. It assures that the solution v may not be too far away from

each bvz. Another advantage is that (C.1) is invariant under the scale change of
v, a desirable property for us because our interest is mainly in the direction (but

not the length) of the combined estimate.

First decompose v into two orthogonal parts, v = u + ~u = Pv + Qv, where

u is in the space spanned by (bv0; bv1); ~u is in the orthogonal complement; and P ,

Q are the projection matrices. Then one can write (C.1) as

~u0A(u)u+ 2~u0B(u)u+ u0C(u)u; (C.2)

where A(u) =
P

z
(u0bvz)�2Qb��

z
Q; B(u) =

P
z
(u0bvz)�2Qb��

z
P ; C(u) =

P
z
(u0bvz)�2

P b��
z
P . One need only take ~u = A(u)�B(u)u as the solution. This reduces to the

minimization of u0[C(u) � B(u)0A(u)�B(u)]u: This minimization involves only

one parameter, but there is no closed form solution. An initial value of u can be

found by minimizing u0C(u)u.
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