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Abstract: Methods for high dimensional regression are often discussed in studies

where regressors follow continuous distributions. How well do they perform when

applied to data collected by designed experiments where design points are rather iso-

lated from each other? We initiate such a study by focusing on the method of principal

Hessian direction (pHd) (Li (1992)). Quadratic regression surfaces are considered �rst

and then extended to general nonlinear surfaces. Special attention is given to factorial

designs and rotatable response surface designs. Both theoretic and empirical results

are presented.
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1. Introduction

Analysis of designed experiments is usually carried out via simple parametric

modeling. This practice is in part due to the mathematical tractability of design

theory (Fedorov (1972), Kiefer (1959, 1974), Steinburg and Hunter (1984)). In

realty, however, the collected data may not always follow the model speculated at

the design stage. The purpose of this paper is to enrich the analysis by bringing

in recent dimension reduction and data visualization techniques from general

regression problems.

To see how restrictive parametric modeling might be, consider a full two-level

factorial design with p factors x = (x1; : : : ; xp) and y the output variable. Using

traditional ANOVA analysis, a response function with the form

E(yjx) = h(x1 + x2 + x3 + x4) (1:1)

for example, will lead to four main e�ects, six two-term interactions, four three-

term interactions, and one four-term interaction, if h(�) is a general nonlinear

function. This is hardly useful because of the well-known poor behavior in inter-

polation for high order polynomials.
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Such situations are not uncommon in designed experiments. The well-known

Box and Cox transformation was applied �rst in a 33 full factorial design (Box

and Cox (1964)). But sometimes the shape of h could be far from the power

family to validate the transformation; for example, h(x) = jxj.

This important issue is seldom discussed in the literature of designed ex-

periments, although similar such questions have been the focus of several recent

studies on high dimensional data analysis. To approximate a general nonlin-

ear surface, computer intensive methods such as projection pursuit regression

(Friedman and Stuetzle (1981), Huber (1985), Hall (1989), Chen (1991)), ACE

(Breiman and Friedman (1985)), CART (Breiman, Friedman, Olshen and Stone

(1984)), MARS (Friedman (1991)), SUPPORT (Chaudhuri, Huang, Loh and Yao

(1994)), etc., generally take good advantage of the machine's great computing

power. They search through several classes of well-motivated functions iteratively

(and adaptively) for an optimal solution. Alternatively, instead of being driven

by functional �tting, SIR (Li (1991), Duan and Li (1991), Hsing and Carroll

(1992)) and pHd (Li (1992)) rely on a rather di�erent strategy which attempts

to make good use of graphical facilities in modern statistical software. They �nd

a small number of critical directions for projecting the high dimensional data

on computer screens. Such graphical information provides good insight about

the shape of the response function and other data structure. Model diagno-

sis/selection and low-dimensional nonparametric smoothing can then be more

fruitfully carried out.

These high dimensional regression techniques have been applied to a variety

of data sets. But the discussion often stems from situations where the regressor

variables follow continuous distributions. How well do they perform in designed

experiments where the design points are rather isolated from each other? In this

paper, we initiate such a study by focusing on the method of pHd, owing to its

nice connection to traditional analysis.

Equation (1.1) is a special case of the dimension reduction model in general

regression problems (Li (1991)): y = f(�01x; : : : ; �
0

k
x; �). Here f is completely

unspeci�ed and so is the distribution of � which is independent of x. A vector

b in the space spanned by the � vectors is called an e.d.r: (e�ective dimension

reduction) direction, and the linear combination b0x of x is called an e.d.r: variate.

Usually k is much smaller than p and the structure of f is easier to study after

�nding e.d.r: variates.

The method of pHd aims at �nding the directions along which the regression

surface shows the largest curvature in a suitable average sense. Let g(x) be the

response function:

g(x) = E(yjx) = h(�01x; : : : ; �
0

k
x); (1:2)
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where h is a function with k arguments. The Hessian matrix of the regression

function, H(x) = the p by p matrix of second partial derivatives @
2
g(x)

@xi@xj
, is used to

convey the curvature information. Li (1992) treats x as random with a covariance

matrix �x and de�nes the principal Hessian directions to be the eigenvectors vi
for the matrix (EH(x))�x:

(EH(x))�xvi = �ivi; j�1j � � � � � j�pj:

The right-multiplication of the covariance matrix �x to the average Hessian

EH(x) is needed to achieve a�ne invariance which is desirable for visualiza-

tion. We are interested in the �rst few pHd directions. As a matter of fact,

under (1.2), the Hessian matrix at each point x is of rank at most k, because

along the directions orthogonal to the e.d.r: space, the regression surface is at.

Exploiting this simple property, we can verify that all but the �rst k eigenvalues

�i are zero and that the nonzero eigenvectors are e.d.r: directions.

There are three implementation versions of pHd, the y-based, the r-based,

and the q-based methods, depending on di�erent ways of estimatingEH(x) under

the normal distribution assumption on x. However, the discussion in Li (1992)

extends to elliptic distributions for x, and even to a much weaker condition of

linearity (Condition 3.1 of Li (1991)) which is reasonable for many data sets (Hall

and Li (1993)).

The numerical results for di�erent versions of pHd are often close to each

other. As shown in Section 2, for two-level factorial designs and rotatable designs,

they are indeed equivalent. This simpli�es our discussion somewhat and we shall

concentrate on the behavior of the q-based version in Section 3 and following

sections.

Whether the estimated pHd directions are close to the e.d.r: space or not

depends on three factors: the design, the true response function, and the dis-

tribution of random errors in y. The impact of the third factor on eigenvalue

decomposition can be studied via perturbation techniques following Li (1992).

Setting aside this factor, an immediate question is about the Fisher consistency

property: will pHd �nd e.d.r: directions in the population version? This is the

main focus of this paper.

It is natural to begin with a quadratic response function. We show that

q-based pHd is consistent in Section 3. Applications are then made to a re-

sponse surface example and to two-level factorial designs in Sections 3.1 and 3.2

respectively. Plots of y against pHd variates (i.e. projections of x along the pHd

directions) are studied.

Section 4 deals with general nonlinear surfaces. For general designs, a su�-

cient condition for consistency is derived in Section 4.1. A practical implication

is that if the non-quadratic part of the function h in (1.2), which is uncorrelated



620 CHING-SHUI CHENG AND KER-CHAU LI

with any quadratic functions of the e.d.r: variates, also has no (or low) correlation

with other quadratic polynomials of x, then we can expect pHd to perform well.

This is more likely to happen for designs with higher degrees of orthogonality.

The discussion is specialized to two-level factorial designs in Section 4.2.

Section 5 concludes this paper by summarizing the merits and the limitations

of pHd.

Here are some notations to be used later: xi = the ith design point; yi =

the response at xi; xi = the ith coordinate of regressor x; �y = n
�1
Pn

i=1 yi;

�x = n
�1
Pn

i=1 xi; �x = n
�1
Pn

i=1(xi��x)(xi��x)0. We also abbreviate the averages

over quantities associated with design points by \E"; for example, Ex = �x =

(�x1; : : : ; �xp)
0, E(xi � �xi)(xj � �xj)(xk � �xk) = a third design moment, etc.

2. Equivalence

The q-based pHd method begins with �tting y by quadratic polynomials

Qp(x):

min
nX
i=1

(yi �Qp(xi))
2
; (2:1)

Qp(x) = �+ �
0
x+ (1=2)x0Bx; (2:2)

where � is the intercept, � is a p-vector, and the p by p symmetric matrix B is

the Hessian matrix of Qp(x). Let B̂ be the least squares solution for B. Then the

q-based pHd directions v̂qi are the eigenvectors for the eigenvalue decomposition:

B̂�
x
v̂qi = �̂qiv̂qi: (2:3)

The y-based method relies on another eigenvalue decomposition:

�̂y�̂yi = �̂yi�x
�̂yi; i = 1; : : : ; p;

where

�̂y = n
�1

nX
i=1

(xi � �x)(xi � �x)0(yi � �y):

The r-based method explores the residuals from the linear regression of y on

x:

rli = yi � �y � b̂
0(xi � �x); i = 1; : : : ; n;

where b̂ is the least squares slope estimate. It proceeds in the same way as the

y-based method:

�̂r =n
�1

nX
i=1

(xi � �x)(xi � �x)0rli;

�̂r�̂ri =�̂ri�x
�̂ri; i = 1; : : : ; p:
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If the third design moments are zero, then �̂y = �̂r and the y-based and r-based

methods are identical.

For two-level full or fractional factorial designs, �
x
is an identity matrix I.

Moreover, if all two-factor interactions are estimable, then B̂ = �̂y = �̂r = the

matrix of two-factor interactions; the diagonal elements are identically zero and

the ijth element is the estimated interaction between factors i and j. All three

versions of pHd are seen to be identical.

Now consider the second-order rotatable designs (Box and Hunter (1957)).

The design moments of x satisfy

Ex
2
i
= a; Ex

4
i
= 3c; Ex

2
i
x
2
j
= c; for i 6= j = 1; : : : ; p (2:4)

and

all expectations of other powers and products, up to and including

the fourth order, are zero.

Theorem 2.1. For second-order rotatable designs, we have �̂y = �̂r and

B̂ = (2c)�1�̂r + dI;

where I stands for an identity matrix and the scalar d = a
2
�c

2c(2c+p(c�a2))
�trace(�̂r).

All three versions of pHd are equivalent in the sense that they �nd the same

eigenvectors (the eigenvalues may be di�erent, however).

The proof of this Theorem is given in Appendix A. For designs with high

rotatability indices (Draper and Pukelsheim (1990)), we can also expect all three

versions to be approximately the same. For other designs, their relative merits

still need to be explored further. Computationally, the r-based pHd is simpler

than the q-based pHd. Moreover, the q-based method needs at least 1 + 2p +
1

2
p(p�1) runs in order to estimate all quadratic coe�cients. When there are not

enough runs in the data set, the r-based pHd becomes the natural version to use.

From now on, we shall concentrate on the q-based method, owing to its close

relationship with classic parametric analysis. To study the Fisher consistency

property, we may replace B̂ by EB̂ in the eigenvalue decomposition of (2.3):

(EB̂)�
x
vqi = �qivqi: (2:5)

An eigenvector vqi is consistent if it falls into the e.d.r: space.

3. Quadratic Surfaces

Suppose the true response function (1.2) is a quadratic polynomial (2.2). By

the chain rule, the Hessian matrix B takes the form

B = (�1; : : : ; �k)M(�1; : : : ; �k)
0
;
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where M is the k by k Hessian matrix of h(�). Since the least squares estimate

is unbiased EB̂ = B, from (2.5) we see that

vqi = (�qi)
�1(�1; : : : ; �k)[M(�1; : : : ; �k)

0�
x
vqi]: (3:1)

When �qi 6= 0, the right side of (3.1) expresses vqi as a linear combination of �

vectors. This establishes the Fisher consistency.

Theorem 3.1 If the response function (1:2) is quadratic, then the q-based pHd

method is consistent in �nding e.d.r: directions.

We now turn to the discussion of a�ne invariance. This is a property of the

pHd procedure itself, independent of whatever the true regression surface is. The

reason we bring it up in this section is to draw an interesting connection with

the canonical quadratic surface analysis as explored in Box and Draper (1987).

First, if x is transformed to have identity covariance by ~x = ��1=2
x

x, then the

dimension reduction assumption (1.2) becomes h((�1=2
x

�1)
0~x; : : : ; (�1=2

x
�k)

0~x; �)

and the e.d.r: directions become those in the space spanned by �1=2
x
�i. Thus

if the q-based pHd is applied to the transformed ~x, it would be preferable to

have the invariance property that the new pHd directions ~vi are related to the

original pHd directions v̂i via the same transformation �1=2
x

. This is indeed the

case because the new pHd directions are just the eigenvectors for the matrix

�1=2
x
B̂�1=2

x
, the Hessian matrix of the new �tted quadratic function. Multiplying

�1=2
x

on both sides of (2.3) reveals that ~vi = �1=2
x
v̂i, as desired.

Consider the new coordinates given by u = U
0
x = (u1; : : : ; up)

0 where U is

the matrix of eigenvectors of B : BU = UD where D is the diagonal matrix of

eigenvalues �i. The quadratic model (2.2) now takes a canonical form: g(x) =

�+ (U 0
�)0u+ 1

2

P
k

i=1 �iu
2
i
. Thus, we see that projection of x along the �rst few

q-based pHd directions amounts to �nding the most important canonical variates

ui.

For locating the maximum, minimum, stationary ridge, etc. of quadratic

response surfaces, the eigenvalue decomposition of B̂ is suggested in Box and

Draper (1987). This is the same procedure as the q-based pHd if the covariance

�
x
of x is proportional to the identity matrix. In fact, the nonzero eigenvectors

of B span the same space as the one spanned by the nonzero eigenvectors of B�
x
.

But the adjustment by �
x
is necessary in order to achieve a�ne invariance, a

property desirable for the purpose of data visualization.

Another procedure for exploring quadratic surfaces based on maximum likeli-

hood is also mentioned in Box and Draper (1987). A discussion on its connection

with pHd is given in Appendix B.
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3.1. A response surface example

Consider the data set from page 370 in Box and Draper (1987). It has

�ve variables and 32 runs. The covariance matrix for the design points is not

proportional to the identity. We applied the q-based pHd; see Table 3.1. The

�rst two directions are used to construct a 3-D scatterplot for y against �̂0
q1x and

�̂
0

q2x; see Figures 3.1(a)-(d). Spinning the plot helps us to learn the 3D geometric

shape of the data points. We discover a cluster of points, as highlighted there,

taking the shape of a ring. The entire data cloud appears like a cone with the

ring at the bottom. We can also use the pHd directions to examine the residuals

obtained by �tting y with linear functions of x and with quadratic models. The

cone shape is again visible for the residuals of the linear �t, but no visible pattern

in the residuals is present for the quadratic �t.

These �gures suggest several directions for further study. For example, the

trajectory of the ring can be tracked more closely by focusing on the highlighted

points. We �nd that they come from the outer boundary of the design region

when projected along the �rst two pHd directions; Figure 3.1(e). It also appears

that the rest of the data points, particularly those near the top of the cone,

have a larger response variation than the points on the ring. For example, the

two points near the center in Figure 3.1(e), labeled as � (case number 30) and +

(case number 27), have a di�erence in y about �ve times as large as the estimated

standard deviation from the quadratic model. This indicates that more caution

should be taken when exploring the center region for a maximum response (the

goal of the experiment). The �tted quadratic model may not be adequate there

and the response may be unstable too.

3.2. Application in 2p factorial designs

Consider the data for e�ciency study of chemical reactor from Box, Hunter

and Hunter (1978, page 377). A 25 complete factorial design was conducted on

�ve factors, feed rate (liters/min), catalyst (%), agitation rate (rpm), tempera-

ture (C), concentration (%). Three main e�ects and two two-factor interactions

were found active from the normal probability plot (Figure 3.2). In addition

to their relative sizes as shown in the plot, what else can one learn from these

�ve numbers? We apply pHd to this data set; consult Table 3.2 for the output.

The rotation plot for y against the �rst two pHd directions (Figures 3.3 (a), (b))

reveals two clusters of points, each with a linear pattern: the highlighted dots

are with x4 = 1, and the others are with x4 = �1.
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Table 3.1. First two q-based pHd directions and eigenvalues for the response

surface example of Section 3.1.

�̂1q �:32 �:15 .77 .59 .02

�̂2q �:61 �:47 �:01 �:47 �:17

j�̂iq j 8.31 5.99 3.28 1.32 .08

Figure 3.1 (a)-(e). 3-D plot of the response variable against the �rst two projec-

tions found by q-based pHd. The response surface example. By rotating about

the y-axis, (a)-(d), the highlighted points are seen to form a ring, which is the

basis of the cone-shaped data cloud. (e) is the scatterplot for the two projections.



PHD FOR DESIGNED EXPERIMENTS 625

Table 3.2. First two pHd directions for the Chemical Reactor example.

�̂1y .07 �:54 �:08 .67 .46

�̂2y .01 .53 .10 .71 �:41

j�̂iy j 9.22 8.21 1.49 .34 .15

Figure 3.2. Normal plot for the Chemical reactor example.

Figures 3.3 (a), (b). Two views of the 3-D plot of the response variable

against the �rst two projections of x found by pHd. Chemical reactor

example. Two clusters are revealed, each showing a linear trend, when we

rotate the plot about the y-axis.
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Geometrically, our pHd plot suggests that approximately, the �ve dimen-

sional response surface E(yjx) contains two hyper-planes, one at x4 = 1 and

another at x4 = �1. But the big gap between the two indicates that no further

information is available regarding how the response surface may behave at inter-

mediate temperature levels, say x4 = 0. This message highlights the place of the

weakness in the prediction equation obtained from the standard ANOVA. For

better interpolation, more levels have to be assigned to the temperature factor if

more data are to be collected in the future.

The pHd plot also suggests a split of the data into two groups according to

x4 (temperature) as a follow-up analysis. We �t each group linearly in x:

y =70:875 � 1:125x1 + 16:375x2 + :75x3 � 8:625x5; for x4 = 1;

y =60:125 � :25x1 + 3:125x2 � 1:375x3 + 2:375x5; for x4 = �1:

Respectively, the residual standard deviations are 2:9 and 3:5; the standard errors

for slope coe�cients are :73, and :87; the R-squared values are :98 and :67.

Scatterplots of y against the �tted values are given in Figures 3.4(a), (b). The

tighter linear pattern in Figure 3.4(a) reects the higher R-squared value for the

group with x4 = 1; but be aware of the di�erent scales. We also apply the Yates

algorithm to each group. The half-normal probability plots of estimated e�ects

are given by Figures 3.5(a), (b). The main e�ects due to factor x2 (catalyst), and

factor x5 (concentration) stand out clearly in Figure 3.5(a). This explains the

four clusters found in Figure 3.4(a); they correspond to the level combinations of

x2 and x5. The detection of signi�cant e�ects from Figure 3.5(b) is less clear-cut.

Putting Figure 3.2 side by side with Figures 3.5(a), (b), we may also appreciate

the net gain of our analysis in the reduction of pattern-complexity.

Box, Hunter and Hunter also analyzed the above reactor data using only a

half-fraction of the complete factorial, with the de�ning relation I = 12345. We

apply pHd to this subsample and �nd the results similar to the full sample case;

details are omitted.

4. General Nonlinear Surfaces

We study the performance of pHd when the function h in (1.2) deviates from

quadratics. A general discussion is given in Section 4.1 �rst. Then we shall derive

more results for two-level factorial designs in Section 4.2.

4.1. General designs

To proceed, let u = (�01x; : : : ; �
0

k
x) and consider the quadratic �t of (1.2):

min E(h(u)�Qp(x))
2
; (4:1)
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Figures 3.4 (a), (b). Plots of the response variable against the �tted val-

ues for the main e�ect model. (a) applies to the split sample with high

temperature level, x4 = 1; (b) applies to x4 = �1.

Figures 3.5 (a), (b). Half-normal plots for estimated e�ects when x4 = 1

(a) and x4 = �1 (b).
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where the minimum is taken over all quadratic functions Qp(�) with p arguments,

and the expectation notation denotes the average over all design points as before.

This �tting can be equivalently carried out in two steps. The �rst step is to �t

h(u) with quadratic polynomials of u:

min E(h(u)�Qk(u))
2
: (4:2)

Denote the solution by Q
0
k
(u) and let rq be the residual:

h(u) = Q
0
k
(u) + rq: (4:3)

The second step is to �t rq further with quadratic polynomials of x:

min E(rq �Qp(x))
2
; (4:4)

and denote the solution by Q�

p
(x). Since the �tting (4.2) is more restrictive than

(4.1), the sum �Qp(x) = Q
0(u) +Q

�

p
(x) must be the best �t for (4.1).

We claim that if Q�

p
(x) is linear, then the q-based pHd is consistent. To see

this, let �B, B0 be the Hessian matrices of �Qp(x), Q
0(�01x; : : : ; �

0

k
x), respectively.

By the chain rule, B0 is seen to take the form of (�1; : : : ; �k)M(�1; : : : ; �k)
0 for

some k by k matrix M . Since EB̂ = �B = B0, (2.5) leads to an expression with

the same form as (3.1), which implies the consistency result.

Theorem 4.1. For a general regression function, if the residual rq as de�ned in

(4:3) is orthogonal to any quadratic function of x after eliminating its correlation

with linear functions of x, then the q-based pHd is consistent.

Another way of explaining this result is to examine (4.4) more closely. For

this purpose, let us introduce the variable v de�ned by

v = (01x; : : : ; 
0

p�k
x)0; (4:5)

where the direction j , j = 1; : : : ; (p� k), are orthogonal to the e.d.r: space with

respect to the design measure; i.e., 0
j
�
x
�i = 0. We refer to v as model-redundant

complement of u because it is redundant for modeling the relationship between

y and x once we �nd out the e.d.r: variates.

Now let us decompose any quadratic polynomial in x into four orthogonal

parts: (i) a quadratic function of u; (ii) a linear function of v; (iii) a pure quadratic

function of v after eliminating the linear part (ii); and (iv) the product of a linear

function of u and a linear function of v. The residual rq by de�nition is already

uncorrelated with part (i). The correlation between rq and part (ii) is allowed,

because it only leads to the linear term in Q
�

p
. But rq should be uncorrelated

with parts (iii) and (iv) in order to have the consistency result of Theorem 4.1.
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The source of possible bias for pHd is now clear. It is mainly due to the

correlation between the higher order non-quadratic terms from the e.d.r: variates

u and quadratic polynomials of its model-redundant complement v. To give a

more detailed account on the size of bias, further study on this confounding issue

is called for. On the other hand, this correlation is likely to be smaller for designs

with higher degrees of orthogonality.

Projection of data along the directions found by pHd can be very useful in

visualizing the nonlinearity of the function h(u). A simulation is reported here

for illustration.

Example 4.1. We consider a 25 complete factorial design. Generate the data

according to the model:

y = x1(x2 + :25x3 + x2x3) + :5e; e � N(0; 1):

This model involves a three-factor interaction, but can be viewed as a two-

component model with �1 = (1; 0; 0; 0; 0)0 , �2 = (0; 1; :25; 0; 0)0 , for example,

by putting h(u) = u1(u2 + 2u22 � 2:125). The normal probability plot is given in

Figure 4.1. The rotation plot found by pHd contains two clusters, each hanging

around a di�erent parabolic curve; one of them is highlighted in Figure 4.2(b).

The variable x1 is identi�ed from the projection direction in Figure 4.2(a). The

output of pHd is given in Table 4.1. Follow-up analysis can be done by further

conditioning on x1 and applying pHd again. Theorem 4.1 applies to this exam-

ple because the residual rq, equal to 2u1u
2
2, is uncorrelated with any two-factor

interactions.

It is interesting to observe that from the normal probability plot, the roles of

factor 1 and factor 2 appear to be exchangeable. This wrong conclusion is due to

the failure of detecting the small interaction between factors 1 and 3. However,

pHd analysis has bypassed this di�culty through the recognition of factor 1 as

an e.d.r: variate.

4.2. Two-level factorial designs

For two-level factorial designs, due to the orthogonality among main e�ects

and interactions, the result in Section 4.1 can be phrased in simpler terms. For

example, consider a resolution IV design, where any two-factor interaction is

unconfounded with any main e�ect. Theorem 4.1 implies that pHd is consistent

if no two-factor interactions are present in the ANOVA decomposition for the

reduced-quadratic-�t residual rq. In general, this condition depends on the un-

known function h. However, there are still important cases where pHd is always

consistent, regardless of the form of h. This is what we want to characterize next

for two-level factorial designs. We shall assume that the e.d.r: space has only one

dimension:

E(yjx) = g(x) = h(�0x): (4:6)
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Table 4.1 First two pHd directions for Example 4.1.

�̂1y �:69 .66 .22 �:02 .01

�̂2y �:70 �:67 �:17 .06 �:06

j�̂iy j 1.2 1.19 .22 .12 .08

Figure 4.1. Normal plot for estimated e�ects. The simulation example in

Section 4.1.

Figure 4.2 (a)-(b). Two views of the pHd plot for the simulation example

in Section 4.1. Two clusters are found by rotating the 3-D plot about the

y-axis.
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4.2.a. Complete factorial designs

To motivate the discussion, we begin with a simulation example.

Figures 4.3 (a)-(c). Plots of y against the �rst projection of x found by pHd.

The data are from the simulation study of Example 4.2. (a) the exponential

model, (b) the �rst absolute value model, (c) the second absolute value model.

Example 4.2. Consider the 25 complete factorial design again. First, gen-

erate data from the model y = :5 exp(x1 + x2 + x3 + x4) + � with the stan-

dard normal error. Figure 4.3(a) shows the �rst direction of pHd, which reveals

the exponential shape of the function very well. Then change the model to

y = 2jx1 + x2 + x3 + x4j + � and generate a di�erent set of data. Again the

pHd is doing well in this case; see Figure 4.3(b). We will show later on that

for these two cases, pHd is consistent so that the pHd direction will be exactly

proportional to (1; 1; 1; 1; 0) if the data are generated without �. Finally, gen-

erate data from another model y = jx1 + x2 + x3 + :5x4j. Then we �nd that

pHd has produced a biased direction, (0:53; 0:53; 0:53; 0:34; 0)0 . But the shape of

the absolute value function is still visible from the pHd plot; see Figure 4.3(c).
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If desired, re-estimation of the regression coe�cients can be pursued using the

transformation suggested by the pHd plot. The random error in this last model

is omitted in order to illustrate the bias e�ect on the pHd plot.

The following theorem explains what happens in the above example.

Theorem 4.2. Consider the 2p complete factorial design. Regardless of the

form of h in (4:6), for � in the set B de�ned by

B = the set of p-dimensional vectors with coordinate values being either 0,

or 1, or �1 (4:7)

the �rst eigenvector for the q-based pHd method is consistent.

This theorem follows from Theorem 4.3 of the next subsection. Note that

since the diagonal elements of the matrix of two-term interactions B̂ are identi-

cally zero, it is impossible for EB̂ to have only one non-zero eigenvalue. However,

the other eigenvectors with nonzero eigenvalues are redundant for exploring the

shape of h.

Theorem 4.2 characterizes a special set of directions for which pHd works

without any knowledge on h. But for other � vectors whose coordinates are not

as simple as speci�ed in Theorem 4.2, some bias may be present. An impor-

tant reason why consistency cannot occur in more directions is due to a direc-

tion identi�ability problem caused by the �niteness of the design support: the

response function g(x) on the design points can be represented by two rather

di�erent � directions using di�erent h functions. For example, we can represent

y = exp(x1+ :5x2) as h(x1+ :8x2) (or many other � of the form (b1; b2; 0; : : : ; 0)
0,

b1 6= b2;�b2) for some function h. But for directions falling on the set B, such

direction identi�ability problems disappear and the pHd method is shown to be

consistent. As exhibited in Example 4.2, bias might not seriously a�ect the main

features in the pHd plots if the true e.d.r: direction is still close to B.

4.2.b. 2p�m fractional factorial designs

Aliasing is an important issue in fractional factorial designs. It has some

impact on consistency for pHd.

Theorem 4.3. Consider a 2p�m design with 2m � 1 de�ning contrasts: I =

� � � = � � � = � � �. Regardless of the form of h in (4:6), for � in the set B de�ned

by (4:7), the �rst eigenvector for the q-based pHd method is consistent, if each

of the de�ning contrasts contains at least three letters with the corresponding

coordinates of � being zero.

Factors appearing in �0x (namely those with the corresponding � coordinates

being 1 or �1) are called the active factors. Others are called the inactive factors.
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With this terminology, we can rephrase the condition on the de�ning contrast in

this theorem:

The two-term interactions between the active factors and the inactive fac-

tors, and the two-term interactions within the inactive factors, cannot be aliased

with any interactions of any order within the active factors.

As a simple example for applying this theorem, consider a 26�1 design with

de�ning relation I = ABCDEF . The consistency result holds if the number of

active factors is no more than three.

Remark 4.1. In Theorem 4.3, suppose that each of the de�ning contrasts

contains at least two letters with the corresponding coordinates of � being zero.

Then we can only show that one of the eigenvectors found by pHd is consistent,

but we cannot guarantee that it is the �rst one. For the aforementioned half

replicate of the two-level factorial design involving six variables, this means that

the number of active factors could be as many as four.

5. Conclusion

In spite of the growing interest in developing new methods for analyzing high

dimensional data, traditional parametric methods still dominate the analysis in

designed experiments. While we might apply these new tools mechanically to any

data sets for exploratory analysis, how much can be learned from such exercises

has never been carefully discussed. Consequently, the gap between the analysis

of designed experiments and the analysis of general regression data is widening.

How to close this gap is one of the motivations behind this article. We focus

on the performance of the pHd method under the regression dimension reduction

framework of Li (1991). The q-based pHd method is shown to be consistent when

the response surface is quadratic. For general surfaces, the Fisher consistency

property requires that the nonquadratic part of the response function, which

is orthogonal to any quadratic polynomials of the e.d.r: variates, has to be also

orthogonal to quadratic terms from its model-redundant complement. This result

suggests that smaller bias may be anticipated for designs with higher degrees of

orthogonality.

We discuss the two-level factorial designs in greater detail. We characterize

a special set of directions for which the pHd method is always consistent without

any assumption about the response function.

We have illustrated how the plots of y against the pHd variates may help

reveal the shape of the unknown regression function. This information can be

used in building up a better model for further study. The pHd directions can also

be used to examine residuals. This o�ers information di�erent from the standard
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residual plot of residuals against the �tted values.

In general, consistency of pHd in designed experiments does require more

stringent assumptions than in general regression settings where the regressors

tend to follow continuous distributions. Thus more caution needs to be taken in

con�rmatory analysis. On the other hand, our main interest is often to reveal

nonlinear data structure by projecting along the e.d.r: directions. The pHd plots

are still informative unless the bias is so large that the projection angle of pHd

deviates substantially from the e.d.r: space. Roughly speaking, for angles less

than 30 degrees, global features like trend or clustering can still be recogniz-

able. This greatly releases the seemingly stringent conditions in the theorems for

consistency.

Are there other dimension reduction methods that may work better than

pHd in designed experiments? The answer is certainly worth pursuing. But as a

reversal of our common perception, this study suggests that the more balanced

data collected by designed experiments may turn out much harder to analyze than

the unbalanced data from general regression studies. A fundamental obstacle is

the issue of direction identi�ability as raised in section 4.2.a, due to the lack of

space coverage by design points along the e.d.r: directions. For most commonly

used designs, the number of levels for each factor is usually small. This may

prohibit us from getting more accurate information about the true shape of the

response function, even if we are able to focus on the crucial factors that do a�ect

the response variable.

The best way to alleviate this di�culty is to increase the number of levels for

each factor in the design. This may be conducted in such a way that the total

number of runs can still be small. Latin-hyper-cube designs (McKay, Conover

and Beckman (1979)), or the space-�lling designs (Wang and Fang (1981), Con-

way and Sloane (1987), Johnson, Moore and Ylvisaker (1990)) are often used in

studying computer models (Sacks, Shiller and Welch (1989), and the references

given there). We would like to add that the property of spherical symmetry

is desirable, as shown in the general theory for pHd and SIR. Brillinger (1983)

has discussed an interesting procedure to �nd designs that have nearly Gaussian

distributions. Another easy-to-implement design is to apply a Latin-hyper-cube

design on the radius r and angels �i in the polar coordinate transformation,

x1 = r cos �1, x2 = r sin �1 cos �2; : : :.

For many experiments, however, level switching can be costly and the number

of levels for each factor must be kept small. As we have seen, for such data, pHd

can still squeeze out some useful information which might otherwise be hard

to extract out by traditional ANOVA. The concerted use pHd with ANOVA is

expected to lead to more fruitful analysis of designed experiments.
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Appendix A: Proof of Theorem 2.1

To prove this result, �rst observe that the variable xjxj0 is uncorrelated with

all other terms. This implies that b̂jj0 , the jj
0 element of B̂ can be obtained by

�tting y against this variable directly, yielding

b̂jj0 =
1

2c
n
�1

nX
i=1

yixijxij0 =
1

2c
� jj0th element of �̂y:

On the other hand, the diagonal elements of B̂ can be obtained directly by �tting

the regression of y against x21 � c; : : : ; x
2
p
� c without the intercept term. The

information matrix for this regression takes the form of 2cI + (c� a
2)J , where J

is the matrix of ones. Hence the vector Diag(B̂) of the diagonal elements in B̂

turns out to be

�
2cI + (c� a

2)J
��1

Diag(�̂y) =

�
1

2c
I +

a
2 � c

2c(2c + p(c� a2))
J

�
Diag(�̂y):

The rest of the proof is straightforward.

Appendix B: Maximum Likelihood Estimate

The maximum likelihood estimate B̂mle as suggested in Box and Draper

(1987) is to �t the quadratic model (2.2) subject to the constraint that the rank

of B is at most k. This becomes a nonlinear least squares problem and requires

an adequate iterative algorithm, details of which are yet to be developed. If this

is to be pursued further, the pHd directions can be used as the initial values to

start the iteration. The following theorem shows a close relationship between the

pHd and the m.l.e: method.

Theorem B.1. If the design is second-order rotatable, then the eigenvectors

(associated with nonzero eigenvalues) of the m.l.e: B̂mle are also eigenvectors of

pHd.

The proof of this theorem is to be given later. Note that the eigenvalue

sequences may not be in the same order. After a further elaboration (details

omitted here), the set of nonzero eigenvectors for the m.l.e: B̂mle can be chosen

from the set of the eigenvectors for the r-based pHd, using the following rule:

max
s

max

(P
i2s

(�̂ri � ��rs)
2

2c
;

k��2
rs

k(c� a2) + 2c

)
;
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where the maximum is over any subset s of k integers between 1 and p; ��rs =

k
�1
P

i2s
�̂ri; �̂ri are eigenvalues for r-based pHd; a, c are moment constants

de�ned in (2.4).

Another advantage for rotatable designs is the simplicity in �nding the dis-

tribution of eigenvalues. If y is normally distributed with a common variance �2,

then the distribution of B̂ is also normal. The distribution of the sum of the p�k

smallest squared eigenvalues for the q-based pHd is approximately equal to the

distribution of the random variable � = trace (P2

P1=2

x
B̂
P1=2

x
P2)

2, where P2 is

the projection matrix on the null space of
P1=2

x
B
P1=2

x
. Arrange the elements of

the upper triangle of B̂ in a vector form, and let the covariance matrix be denoted

by COV1. Then the distribution of � can be represented as the distribution of

the squared length of a normal random vector with mean zero and covariance

matrix determined by COV1 and P2. However, for general designs, no closed

form expression is available.

When the design is second-order rotatable, the distribution of � takes a sim-

pler form. The o�-diagonal elements are uncorrelated, with a common variance

(2cn)�1�2. They are also uncorrelated with the diagonal elements. The diagonal

elements are correlated, however, with the covariance matrix

n
�1
�
2

�
1

2c
I +

a
2 � c

2c(2c + p(c� a2))
J

�
;

where J denotes the matrix of ones. From these, the distribution of � can be

expressed as the sum of two independent rescaled chi-squares:

a
2
�
2

2cn
�
2
(p�k+2)(p�k�1)=2 +

a
2
�
2

n

2c+ (c� a
2)k

2c(2c + p(c� a2))
�
2
1;

where the subscripts give the degrees of freedom of the chi-squared distribu-

tions. Instead of considering the sum of the smallest p� k squared eigenvalues,P
p

i=k+1 �̂
2
iq
, we may break it into two parts: (p � k)(��(k+1)q)

2 and
P

p

i=k+1(�̂iq �
��(k+1)q)

2, where ��(k+1)q = (p� k)�1
P

p

i=k+1 �̂iq. Then each part accounts for one

rescaled chi-squared distribution in the above expression. We can easily readjust

the weights between the two parts in order to get a single chi-squared distribution

with (p� k + 1)(p� k)=2 degrees of freedom.

Proof of Theorem B.1

Consider the linear residual rli. The m.l.e: method can be reformulated as

the maximization:

max
Mk

(corr (rl;x
0
Mkx))

2
; (B.1)

where corr denotes the sample correlation coe�cient, and the maximum is taken

over any p by p matrix Mk that has rank at most k. Now (B.1) is equivalent to
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the maximization of
(Erlx

0
Mkx)

2

Var(x0Mkx)
: (B.2)

Here we have used E and Var to denote the sample mean and sample vari-

ance. The numerator of (B.2) can be rewritten as (trace �̂rMk)
2 and with the

rotatability condition (2.4), the denominator is reduced to 2c traceM 2
k
+ (c �

a
2)(trace Mk)

2. Now using Lagrange's multiplier, the maximization of (B.1) can

be solved by

max
Mk

trace[�̂rMk � d1M
2
k
� d2Mk]

for some constants d1, d2. By completing the square, this is equivalent to

max
Mk

trace(Mk �
1

2d1
(�̂r � d2I))

2

whose solution is simply the matrix formed by the largest k components in the

eigenvalue decomposition of the matrix (2d1)
�1(�̂r � d2I). The eigenvectors for

the latter matrix are the same as the eigenvectors of �̂r, although the eigenvalues

may be di�erent. The proof of Theorem B.1 is complete.

Appendix C: Proof of Theorem 4.3

By permutation and sign change, without loss of generality, we can take � =

(1; : : : ; 1; 0; : : : ; 0)0, where there are k ones. We also assume that the mean e�ect

is zero, E�y = 0. By conditioning, we have E�̂y = E(h(t)E(xx0jx1+� � �+xk = t)).

Consider the partition

E(xx0jx1 + � � � + xk = t) =

�
A11 A12

A
0

12 A22

�
;

where A11 has the dimension k by k and A22 is p� k by p� k. We can evaluate

each matrix as follows.

Franklin and Bailey (1977, page 324) described an algorithm for using the

de�ning relationship to choose a set of basic factors, those factors which form

a complete factorial and whose interactions (called basic e�ects) can be used to

de�ne the other factors. It is clear from their algorithm that if each de�ning

contrast contains at least one factor other than x1; : : : ; xk, then x1; : : : ; xk can

be chosen as part of a set of p � m basic factors. The permutation invariance

within x1; : : : ; xk implies that A11 is permutation invariant. Thus the o�-diagonal

elements of A11 are identical. From this observation, we see that the �rst k by k

submatrix of E�̂y (corresponding to the A11 part) takes a very simple form: the

diagonal elements are zero (because of the de�nition of the matrix �̂y) and the

o�-diagonal elements take the same value. This submatrix has (1; : : : ; 1) as the
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�rst eigenvector. To complete the proof, we need only to show that A12 and A22

are identically zero.

Consider an element in A12,

E(xixj jx1 + � � �+ xk = t); (C.1)

i � k, j > k. By Franklin and Bailey's algorithm, if each de�ning contrast

contains at least two factors other than x1; : : : ; xk, then xj can also be chosen

as one of the basic factors, and therefore is independent of x1; : : : ; xk. It follows

that (C.1) is zero. Finally, by a similar argument and the assumption that each

de�ning contrast contains at least three factors other than x1; : : : ; xk, we can see

that all elements of A22 are zero and Theorem 4.3 is proved.

If each de�ning contrast contains at least two factors other than x1; : : : ; xk,

then A22 may not be zero. In this case, we can only conclude that (1; : : : ; 1; 0; : : :,

0)0 is one of the eigenvectors of E�̂y.
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