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Abstract: This paper concerns the use of simulation procedures to construct second-

order accurate con�dence limits having coverage error of order O(n�1). An ex-

plicit formula for the analytical adjustment required in Efron's (1987) BCa percentile

method is derived, automatic percentile methods that do not require analytical adjust-

ments are proposed, and variance-stabilizing transformations designed to improve the

performance of the bootstrap-t method are given. The automatic percentile methods

and variance-stabilizing transformations involve a least favorable family construction

of Stein (1956), which is related to orthogonal parameters. Connections with approx-

imate limits obtained using pro�le likelihood methods are also discussed.
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1. Introduction

This paper concerns the use of simulation procedures to construct approxi-

mate con�dence limits for scalar parameters in parametric settings. The empha-

sis is on second-order accurate procedures, with second-order accuracy de�ned

primarily in the sense of Hall (1988). Two second-order accurate procedures,

discussed by Efron (1981, 1987), are the bootstrap-t (B{t) method and the ac-

celerated bias-corrected (BCa) percentile method.

TheB{tmethod is especially convenient to use in parametric situations, since

standard techniques are readily available to routinely estimate the variance of an

estimator. However, the B{tmethod lacks the property of exact invariance under

reparameterization. As Efron (1981) suggests, situations can arise, particularly

when dealing with small samples, where this method produces quite inaccurate

approximations, even if it is applied in a natural parameterization. One such

situation, considered for Table 1, is that of a sample of size n = 8 drawn from

a bivariate normal distribution, with the correlation coe�cient � the parameter
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of interest. Table 1 shows the approximate lower and upper 97.5% con�dence

limits for � obtained by applying the B{t method to the usual sample correlation

coe�cient r, with var(r; �) ' (1 � �2)2=n, in the case that r = 0:5 is observed.

The exact interval for this problem, also shown in Table 1, is described in Section

2.2.

To avoid di�culties that can arise in the B{t method, Efron (1981, 1985,

1987) has developed various percentile bootstrap methods; see DiCiccio and Ro-

mano (1988) for a review. These methods are parameterization invariant, and

in increasing order of re�nement they are the simple percentile (S) method, the

bias-corrected (BC) percentile method, and the BCa method mentioned previ-

ously. Among these methods, only the BCa is second-order accurate in general.

Approximations based on (8) below, using the percentile methods for the corre-

lation coe�cient example are shown in Table 1. Because of the special features

of this example, the BC and BCa methods coincide.

One drawback of the BCa method is that it involves a quantity A, known as

the acceleration constant, which must be determined by theoretical calculation.

Both the B{t and the BCa methods are discussed in detail in Section 2.1, and

an explicit formula is given there for A. This formula generalizes the one given

by Efron (1987) for the special case of maximum likelihood estimation, and it

can be used, for example, to show that A = 0 is appropriate in the correlation

coe�cient problem.

It is of interest to consider other percentile methods that are second-order

accurate, yet do not require any analytical adjustments. Such procedures, called

automatic percentile (AP) methods, are described in Section 2.2. Approxima-

tions based on (8) using an AP method for the correlation coe�cient problem

are shown in Table 1. The AP methods involve a least favorable family, similar

to the one used by Efron (1987) to develop his formula for A in maximum like-

lihood estimation. Least favorable families are closely related to the orthogonal

parameterizations described by Cox and Reid (1987).

In some cases, the accuracy of the B{t method can be improved substantially

by appropriately transforming the parameter of interest. Table 1 shows the

improvement achieved in the correlation coe�cient example by introducing the

reparameterization � = g(�) = tanh
�1
�, for which varfg(r); �g ' n�1. The use

of such variance-stabilizing transformations in connection with the B{t method

is discussed in Section 2.3. The least favorable family construction is again

involved in these transformations. Related transformations have been considered

by Tibshirani (1988) and are also discussed in Section 2.3.

Approximate con�dence limits having coverage error of order O(n�1) can

be obtained using the signed root of the usual or an adjusted likelihood ratio

statistic. Generally, these con�dence limits are not second-order accurate in the
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sense of Hall (1988), but instead, they lead naturally to a di�erent de�nition of

second-order accuracy. In Section 2.4, this alternative de�nition is described, and

simulation methods that produce second-order accurate limits in the likelihood

sense are discussed. In particular, it is shown that limits satisfying one de�nition

of second-order accuracy can be transformed easily into limits that are second-

order accurate according to the other de�nition.

Further examples are considered in Section 3. An appendix contains technical

arguments that justify some of the discussion given in Section 2.

2. Resampling Procedures

2.1. Bootstrap-t and BCa methods

Consider a family of densities indexed by the vector parameter � = (�1; : : :,

�p), and let �̂ = (�̂1; : : : ; �̂p) be an estimator of � based on a sample of size

n. Suppose that � = �(�) is the real-valued parameter of interest and that the

standard deviation of the estimator �̂ = �(�̂) is n�1=2�(�)+O(n�3=2). Hall (1988)

de�ned the exact studentized (ES) upper (1 � �) con�dence limit for � to be

�̂ES(1��) = �̂�n�1=2�̂K�1(�; �), where �̂ = �(�̂) and K(�; �) is the distribution

function of n1=2(�̂ � �)=�̂. It is assumed that K(�; �) is strictly increasing and

that K(�; �) and its inverse K�1(�; �) have valid Cornish-Fisher expansions with

error of order O(n�1). Since prfK�1(�; �) � n1=2(�̂ � �)=�̂; �g = 1 � � by

de�nition, it follows that prf� � �̂ES(1� �); �g = 1� �. An approximate upper

(1 � �) con�dence limit �̂(1 � �) is said to be second-order accurate if it di�ers

from �̂ES(1� �) by order Op(n
�3=2), in which case the error in coverage level for

�̂(1��) is typically of order O(n�1). Although the ES limit is usually unavailable

in practice, it does serve to provide a convenient unifying de�nition of second-

order accuracy.

The parametric bootstrap distribution of n1=2(�̂ � �)=�̂ is K(�; �̂), and the

B{t approximate upper (1 � �) con�dence limit for � is �̂B{t(1 � �) = �̂ �

n�1=2�̂K�1(�; �̂). The B{t method is easily seen to be second-order accurate

since K�1(�; �̂) = K�1(�; �) +Op(n
�1). However, cases can arise, as in Table 1,

where this method performs poorly.

To review Efron's (1981, 1985, 1987) percentile methods, let G(�; �) be the

distribution function of the estimator �̂, so that G(t; �) = pr(�̂ � t; �). The

parametric bootstrap distribution of �̂ is Ĝ(�) = G(�; �̂). The BCa upper (1� �)

con�dence limit for � is

�̂BCa(1� �) = Ĝ�1

�
�

�
z1�� + Z

1�A(z1�� + Z)
+ Z

��
; (1)

where � is the standard normal distribution function and z1�� = ��1(1 � �).

The quantities Z and A that appear in (1) are called the bias correction and the
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acceleration constant, respectively. The BC limit �̂BC(1 � �) = Ĝ�1
f�(z1�� +

2Z)g is obtained from (1) by setting A = 0, and the S limit �̂S(1��) = Ĝ�1(z1��)

is obtained by setting A = Z = 0. Efron (1981) utilized transformation theory

to derive the formula Z = ��1
fĜ(�̂)g. Although the bias correction Z can be

obtained directly from the bootstrap distribution Ĝ(�), the acceleration constant

A cannot be so easily derived, and a theoretical calculation is typically required

for its evaluation. Efron (1987) presented a formula for the computation of A for

the case that �̂ is the maximum likelihood estimator (MLE).

Some further notation is required to present explicit formulae for Z and A.

Let U i = n1=2(�̂i � �i), i = 1; : : : ; p, and suppose that

E(U i; �) = n�1=2�i +O(n�1); cov(U i; U j ; �) = �i;j +O(n�1);

cum(U i; U j ; Uk; �) = n�1=2�i;j;k +O(n�1); (2)

where the �'s are of order O(1). The fourth- and higher-order cumulants of

U 1; : : : ; Up are assumed to be O(n�1) or smaller. It is shown in Section A.1 that

the BCa method is second-order accurate if Z and A di�er from �Z and �A by

order Op(n
�1), where

�Z = n�1=2f(
1

6
�i;j;k��i�j;k)�i�j�k+(

1

2
�i;k�j;l�

1

2
�i;j�k;l)�i�j�klg=(�

i;j�i�j)
3=2;

�A = n�1=2f(
1

2
�
i;j

l
�l;k �

1

3
�i;j;k)�i�j�kg=(�

i;j�i�j)
3=2; (3)

�i = @�(�)=@�i, �ij = @2�(�)=@�i@�j and �
i;j

k
= @�i;j(�)=@�k , i; j; k = 1; : : : ; p.

These expressions employ the convention whereby summation is assumed over the

range 1; : : : ; p for every index appearing both as a subscript and as a superscript.

Note that �Z and �A are O(n�1=2), and the choices Z = �Z(�̂) and A = �A(�̂)

ensure second-order accuracy. It is shown in Section A.1 that Z di�ers from �Z

by Op(n
�1).

When �̂ is the MLE, expression (3) can be expressed in terms of moments

of the derivatives of the log-likelihood function L(�), based on the entire sample

of size n. Let Li = @L(�)=@�i, Lij = @2L(�)=@�i@�j , and let �i;j = E(LiLj),

�i;jk = E(LiLjk), �i;j;k = E(LiLjLk), etc. (i; j; k = 1; : : : ; p). Note that the

�'s are of order O(n). The expected information matrix is (�i;j); denote its

inverse by (�i;j). Second-order accuracy holds provided Z = �Z + Op(n
�1) and

A = �A+Op(n
�1), where

�Z = �A+
1

2

�
(�i;j;k + �i;jk)�

i
� �jk

	 �
�l;m�

l�m�j;k � �j�k
	
=(�i;j�

i�j)3=2;

�A =
1

6
(�i;j;k�

i�j�k)=(�i;j�
i�j)3=2; (4)
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and �i = �i;j�j. Efron (1987) gave essentially this formula for �A, but rather than

recommend the use of �A(�̂) for A, he suggested that A be obtained by replacing

�i;j in �A by its observed counterpart �Lij(�̂).

2.2. Automatic percentile methods

When the distribution of �̂ depends on � only through �, it is typically

possible to obtain an exact percentile (EP) upper (1��) con�dence limit �̂EP(1�

�) from the equation

G
n
�̂; �̂EP(1� �)

o
= �; (5)

where G(t; �) = pr(�̂ � t; �). This limit is exact in the sense that prf� � �̂EP(1�

�); �g = 1��. While the EP limit can be easily implemented in scalar parameter

models with no nuisance parameters, it is usually not available in multiparameter

settings. However, one situation involving nuisance parameters for which the

EP limit can be constructed is the correlation coe�cient example, since the

distribution of r depends only on �. As in David (1954), for example, the EP

limit is generally used for the exact one, and this practice is followed in Table 1.

The AP methods extend the familiar equation (5) for constructing con�dence

limits to cases where the distribution of �̂ depends on nuisance parameters. They

involve the least favorable family construction introduced by Stein (1956) and

later used by Efron (1987). The least favorable direction � = (�1; : : : ; �p) at a

point � in the parameter space has components de�ned by �i = �i;j�j=(�
i;j�i�j),

i = 1; : : : ; p. For an arbitrary point �0 with associated parameter value �0 = �(�0)

and least favorable direction �0 = �(�0), a least favorable family in the parameter

space running through �0 is a curve ��(�; �0) indexed by � such that ��(�0; �0) = �0

and
@��i(�; �0)

@�

���
�=�0

= �i0 +O(n�1=2); i = 1; : : : ; p: (6)

Least favorable families ��(�; �̂) running through the estimator �̂ are of particular

importance for the AP methods. Of course, one such family is the line ��(�; �̂) =

�̂ + (� � �̂)�̂, where �̂ = �(�̂). When �̂ is the MLE, another such family is

��(�; �̂) = ~�(�), where ~�(�) is the constrained MLE of � for given �. Note ~�(�̂) = �̂

and a calculation shows

@��(�)

@�

���
�=�̂

=
I ij �̂j

I ij �̂i�̂j
= �̂i +Op(n

�1=2);

where (I ij) is the inverse of the observed Fisher information matrix (Iij). A key

feature of this family is that it transforms correctly under reparameterization.

Generally, condition (6) implies that

��i(�; �̂) = �̂ + (� � �̂)�̂ +Op(n
�1); i = 1; : : : ; p;
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for values of � that di�er from �̂ by order Op(n
�1=2).

For the purpose of generalizing (5), let �G(t; �) = prf�̂ � t; ��(�; �̂)g. Note

that �G(�; �̂) = Ĝ(�) is the bootstrap distribution of �̂. The automatic percentile

(AP) approximate upper (1 � �) con�dence limit �̂AP(1 � �) is de�ned by the

equation
�G
n
�̂; �̂AP(1� �)

o
= �: (7)

The second-order accuracy of the AP method is demonstrated in Section A.2.

If the least favorable family used in (7) is parameterization invariant, as is

the case for the constrained MLE ~�(�), then the limit derived from (7) will also

have the invariance property. However, the AP limit is not necessarily invariant.

It is of interest to consider the AP method in the orthogonal case. Suppose

that � = (�;  ), where  = (�2; : : : ; �p) is orthogonal to �, that is, �1;i = 0,

i = 2; : : : ; p. The least favorable direction at each point is the unit vector in

direction �, and a least favorable family through �0 = (�0;  0) is ��(�; �0) = (�;  0).

When this family is used, solving Equation (7) is identical to solving (5) with

the nuisance parameter  �xed at  ̂, its estimated value.

Since solving Equation (7) for �̂AP(1��) can be computationally demanding,

it is useful to have a straightforward method for approximating the solution.

One approach to obtaining an approximate solution, described by DiCiccio and

Romano (1988), proceeds as follows: let �̂0(1��) be an initial approximation to

�̂AP(1� �) that di�ers from �̂ by order Op(n
�1=2), let �̂00(1� �) satisfy �Gf�̂00(1�

�); �̂0(1 � �)g = �, so that �̂00(1 � �) is the � quantile of �̂ for the parameter

value ��f�̂0(1� �); �̂g, and �nally let

�̂1(1� �) = Ĝ�1
h
�G
n
�̂0(1� �); �̂00(1� �)

oi
: (8)

It is shown in Section A.2 that �̂1(1 � �) di�ers from �̂AP(1 � �) by Op(n
�3=2),

that is, �̂1(1 � �) is second-order accurate. This algorithm requires that the

distribution function of �̂ be determined at the three values ��f�̂0(1 � �); �̂g,

��f�̂00(1 � �); �̂g, and ��(�̂; �̂) = �̂ of the parameter �. If the choice �̂0(1 � �) = �̂

is made, then only two distribution functions are required. Experience with

numerical examples suggests, however, that the accuracy of �̂1(1��) is improved

by taking �̂0(1� �) to be a better approximate limit, and it is preferable to use

�̂S(1 � �) or �̂BC(1 � �) for �̂0(1 � �). Table 1 shows the limits produced by

method (8) in the correlation coe�cient example for various choices of �̂0(1��).

Method (8) can be iterated in an obvious way. For cases where the EP

limit given by (5) is available, DiCiccio and Romano (1989) showed that the

approximate limit �̂i(1��) obtained after the ith iteration typically di�ers from

�̂EP(1� �) by order Op(n
�(i+2)=2). Consequently, �̂i(1� �) has coverage error of

order O(n�(i+1)=2) in such cases, since the coverage level of �̂EP(1� �) is exactly
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1 � �. These results indicate that iterating method (8) in general brings the

resulting limit closer to the limit �̂AP(1� �) given by (7). Indeed, if �̂0(1��) =

�̂AP(1 � �), then �̂00(1 � �) = �̂ and �̂1(1 � �) = �̂AP(1 � �). However, since

�̂AP(1 � �) usually has coverage error of order O(n�1), iteration of (8) does not

generally reduce the order of coverage error. Automatic percentile methods for

nonparametric inference have been discussed by DiCiccio and Romano (1990).

2.3. Variance-stabilizing transformations

Consider an arbitrary point �0 in the parameter space, having least favorable

direction � = �(�0). Let �0 = �(�0), and let ��(�; �0) be a least favorable family

through �0. Recall that the variance of n
1=2(�̂ � �) at the point ��(�; �0) is

Var
n
n1=2(�̂ � �); ��(�; �0)

o
= [�f��(�; �0)g]

2 +O(n�1);

and consider the reparameterization � = �g(�; �0) given by

�g(�; �0) =

Z
�

[�f��(u; �0)g]
�1
du: (9)

Transformation (9) is variance-stabilizing along the least favorable family in the

sense

Var
n
n1=2(�̂� �); ��(�; �0)

o
= 1 +O(n�1)

for all �, where �̂ = �g(�̂; �0). In particular, Varfn1=2(�̂ � �0); �0g = 1 + O(n�1),

where �0 = �g(�0; �0). If the lower limit of integration in (9) is �0, then �0 = 0.

Let �K(�; �0) be the distribution function of n1=2(�̂ � �0), that is, K̂(t; �0) =

prfn1=2(�̂ � �0) � t; �0). Since prf �K�1(�; �0) � n1=2(�̂ � �0); �0g = 1 � �, it

follows that prf�0 � �̂� n�1=2 �K�1(�; �0); �0g = 1� �, and hence,

pr
h
�0 � �g�1f�̂� n�1=2 �K�1(�; �0); �0g; �0

i
= 1� �: (10)

Expression (10) shows that the limit

�g�1
n
�̂� n�1=2 �K�1(�; �0); �0

o
(11)

has coverage level exactly 1 � �. Limit (11) typically di�ers from the exact

studentized limit �̂ES(1��) = �̂�n�1=2�̂K�1(�; �0) by order Op(n
�3=2), and this

discrepancy highlights the lack of parameterization invariance in �̂ES(1� �).

A bootstrap version of (11) is the variance-stabilized bootstrap-t (VS) ap-

proximate upper (1� �) con�dence limit, de�ned by

�̂VS(1� �) = �g�1
n
�̂� n�1=2 �K�1(�; �̂); �̂

o
:
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It is shown in Section A.3 that �̂VS(1��) is second-order accurate. In the correla-

tion coe�cient example with �(�0) = 1��2 for all �0, (9) gives �g(�; �0) = tanh
�1
�.

Results obtained from using the B{t method for the parameter � = tanh
�1
� are

given in Table 1. In this example, the variance-stabilizing transformation signif-

icantly improves the B{t limits, so that �̂VS(1� �) is on the whole preferable to

�̂B{t(1� �).

Table 1. Approximate lower and upper 97.5% con�dence limits for � (n = 8; r = 0:5)

Method Lower limit Upper limit

Exact (EP) �0:2940 (2:50) 0:8663 (2:50)

B{t (�) �1:0610 1:1248

S �0:2716 (2:83) 0:8990 (1:12)

BC, BCa �0:3636 (1:65) 0:8781 (1:93)

(8) (�̂0 = �̂) �0:4157 (1:18) 0:8990 (1:12)

(8) (�̂0 = �̂S) �0:2986 (2:44) 0:8629 (2:68)

(8) (�̂0 = �̂BC) �0:2791 (2:72) 0:8651 (2:56)

B{t (� = tanh�1 �) �0:3528 (1:77) 0:8803 (1:83)

Each approximate lower limit �̂(0:025) is accompanied by prfr � 0:5; � = �̂(0:025)g as

a percentage in parentheses; each approximate upper limit �̂(0:975) is accompanied by

prfr � 0:5; � = �̂(0:975)g.

Tibshirani (1988) has considered using the transformation

g(�; �0) =

Z
� n
E(�̂2 j �̂ = �; �0)

o
�1=2

du (12)

in place of (9) to construct �̂VS(1��). This transformation has the advantage of

not requiring direct use of a least favorable family; however, estimating the inte-

grand by simulation, as Tibshirani suggests, can be computationally demanding.

It is shown in Section A.3 that the bootstrap-t method based on transformation

(12) is second-order accurate. In the case of the correlation coe�cient, (12) also

gives the tanh�1� transformation.

2.4. Likelihood-based methods

The foregoing discussion has focused on methods that use n�1=2� to stan-

dardize �̂ � �. Another possibility, which is motivated primarily by considera-

tions of conditional inference, but also has the advantage of avoiding calculation

of �, is to standardize �̂ � � by (I ij �̂i�̂j)
1=2, where �̂i = �i(�̂). It is natural

then to de�ne an exact likelihood (EL) upper (1 � �) con�dence limit for � as
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�̂EL(1� �) = �̂� (I ij �̂i�̂j)
1=2J�1(�; �), where J(w; �) = prf(�̂� �)=(I ij �̂i�̂j)

1=2
�

w; �g. In general, �̂EL(1 � �) di�ers from �̂ES(1 � �) by order Op(n
�1), since

(I ij �̂i�̂j)
1=2 = n�1=2�̂+Op(n

�1). Thus, an approximate limit �̂(1��) that di�ers

from �̂EL(1 � �) by order Op(n
�3=2) is not usually second-order accurate in the

sense previously de�ned, although it does have coverage error O(n�1). However,

in cases where (I ij �̂i�̂j)
1=2 = n�1=2�̂+Op(n

�3=2), the exact limits �̂EL(1��) and

�̂ES(1 � �) agree to error of order Op(n
�3=2), and hence, they lead to equivalent

de�nitions of second-order accuracy. This situation arises in exponential families,

for example.

A bootstrap version of �̂EL(1 � �) is �̂BL(1 � �) = �̂ � (I ij �̂i�̂j)
1=2J�1(�; �̂).

Since J�1(�; �̂) = J�1(�; �) + Op(n
�1), it follows that �̂BL(1 � �) di�ers from

�̂EL(1� �) by order Op(n
�3=2) and has coverage error of order O(n�1).

There has been considerable interest, recently, in the use of pro�le and ad-

justed pro�le likelihoods to construct approximate con�dence limits. The log pro-

�le likelihood function is Lf~�(�)g and attains its maximum value at �̂. To account

for the presence of nuisance parameters when making inferences about �, various

authors, including Barndor�-Nielsen (1983, 1994), Cox and Reid (1987), Kass,

Tierney and Kadane (1989), McCullagh and Tibshirani (1990), and Barndor�-

Nielsen and Chamberlin (1992), have recommended that the log pro�le likelihood

function be replaced by an objective function of the formM(�) = Lf~�(�)g+B(�),

where the adjustment function B(�) is of order Op(1) for each �. The proposed

adjustment functions typically have the e�ect of reducing the bias in the equation

for estimating �; usually, E[@Lf~�(�)g=@�] is of order O(1), while Ef@M(�)=@�g

is of order O(n�1). The point �� that maximizes M(�) satis�es �� = �̂ +Op(n
�1).

An adjusted likelihood ratio statistic can be de�ned in terms of the objec-

tive function M(�). Let Q(�) = 2fM(��) � M(�)g; in wide generality, Q(�)

is distributed asymptotically as �2(1). The signed root of Q(�) is de�ned by

R(�) = sgn(��� �)fQ(�)g1=2. Now, let m(�) satisfy EfR(�)g = m(�) +O(n�3=2).

Then m(�) is of order O(n�1=2), and the quantity �̂SR(1 � �) that satis�es the

equation

R
n
�̂SR(1� �)

o
+m[~�f�̂SR(1� �)g] = z� (13)

is an approximate upper (1 � �) con�dence limit for � having coverage error of

order O(n�1) and di�ers from �̂EL(1 � �) by order Op(n
�3=2). The particular

choice of adjustment function B(�) a�ects the limit �̂SR(1 � �) at the order

Op(n
�3=2) level.

Barndor�-Nielsen (1986) showed that the limit �̂SR(1 � �) obtained when

B(�) = 0 has conditional coverage level 1��+O(n�1) given exactly or approx-
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imately ancillary statistics (see also McCullagh (1984)). Thus, the exact limit

�̂EL(1��) also has conditional coverage error O(n
�1), as do the limits �̂SR(1��)

obtained from Equation (13) for general adjustment functions B(�). Because of

this conditional validity, it can be argued that using �̂EL(1��) to de�ne second-

order accuracy is preferable to using �̂ES(1� �). However, an approximate limit

that is second-order accurate with respect to �̂ES(1� �) can easily be converted

to a limit that is second-order accurate with respect tp �̂EL(1 � �), and vice

versa. It is shown in Section A.4 that if �̂(1��) is an approximate upper (1��)

con�dence limit that di�ers from �̂ES(1� �) by order Op(n
�3=2), then

�̂ +
n
�̂(1� �)� �̂

o (I ij �̂i�̂j)
1=2

n�1=2�̂
(14)

di�ers from �̂EL(1� �) by order Op(n
�3=2). Similarly, if �̂(1� �) is second-order

accurate with respect to �̂EL(1� �), then

�̂ +
n
�̂(1� �)� �̂

o n�1=2�̂

(I ij �̂i�̂j)1=2

is second-order accurate with respect to �̂ES(1� �).

Results of DiCiccio and Martin (1993) show that the approximate con�-

dence limits obtained from Bayesian calculations, as described by Welch and

Peers (1963), Peers (1965), and Stein (1985), are also second-order accurate with

respect to �̂EL(1� �).

3. Further Examples

Example 1. Location-scale family. Consider a location-scale family indexed by

� = (�; �), where � and � are the location and scale parameters, respectively. Let

�̂ and �̂ be equivariant estimators. Since (�̂ � �)=�̂ is pivotal in this example,

�̂B{t(1��) coincides with �̂ES(1��). It is of interest for comparison to consider

the other procedures in this situation. Expression (3) pertaining to the bias

correction and the acceleration constant of the BCa method reduces to simple

formulae. There exist constants �1, �11, �12, �22, and �111 such that, in the

notation of (2), �1 = �1� , �
1;1 = �11�

2, �1;2 = �12�
2, �2;2 = �22�

2, and �1;1;1 =

�111�
3. It is natural to take � = �

1=2
11 � , and (3) gives

�Z = n�1=2(
1

6
�111 � �1�11)=�

3=2
11 ;

�A = n�1=2(�11�12 �
1

3
�111)=�

3=2
11 : (15)

For any point �0 = (�0; �0), the least favorable direction is (1; �12�
�1
11 ), and

hence a least favorable family through �0 is ��(�; �0) = f�; �0 + (� � �0)�12=�11g.

In terms of this family, the solution to Equation (7) is

�̂AP(1� �) = �̂ � �̂

�
D�1(�)

1 +D�1(�)�12=�11

�
; (16)
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where D(�) is the distribution function of the pivotal quantity (�̂ � �)=� . Fur-

thermore, the limit �̂1(1 � �) obtained from (8) coincides with (16), regardless

of the value chosen for �̂0(1 � �). Moreover, if the parameter  is de�ned by

� = (� +  )�12=�11, then � = (�;  ) is an orthogonal parameterization, and with

least favorable family ��(�; �0) = (�;  0), the limits produced by methods (7) and

(8) are the same as (16).

The variance-stabilizing transformation (9) along the least favorable family

��(�; �0) = f�; �0 + (� � �0)�12=�11g is

�g(�; �0) =
�
1=2
11

�12
log

�
1 +

(� � �0)

�0

�12

�11

�
;

and the limit �̂VS(1� �) based on this transformation also equals (16).

Table 2. Central 90% con�dence intervals for � in Efron's (1987) example

Exact (B{t) (�0:336; 0:670)

S (�0:371; 0:444)

BC (�0:339; 0:499)

BCa (�0:304; 0:601)

(16) (�0:304; 0:601)

Efron (1987) and Tibshirani (1988) considered the special case where

(�̂ � �)

�
�
�2(2n)

2n
� 1;

�̂

�

���(�̂ � �)

�
�

(
1 +

(�̂ � �)

�

) 
�2(n�1)

n

!1=2
; (17)

for n = 15. In this case, �1 = 0, �11 = �12 = 1, �22 = 1=2, and �111 = 2, and

it follows from (15) that �A = �Z = 1

3
n�1=2. Table 2 shows the 90% con�dence

intervals for � obtained by various bootstrap procedures having observed �̂ = 0,

and �̂ = (14=15)1=2. The BCa method and (16) produce very similar results in

this example. It follows from (17) that

E(�̂2j�̂ = u; �0) =

�
n� 1

n

�
f�0 + (u� �0)g

2; (18)

and hence (12) yields the transformation

g(�; �0) =

�
n

n� 1

�1=2
log

�
1 +

� � �0

�0

�
:

Tibshirani's (1988) version of the variance-stabilized bootstrap-t procedure;based

on this transformation, produces the same limits as (16). Tibshirani approx-

imated the function (17) by simulation, and he reported the approximate 90%
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interval as (�0:334; 0:610). The di�erence between this interval and the one from

(16) presented in Table 2 is presumably attributable to simulation error.

Table 3. Central 95% con�dence intervals for � = �
1
=�

2 (n = 1;x = 4; y = 8)

Exact (Fieller) (0:2476; 0:8162)

AP (�1 = �
1
; �

2 = �
2) (0:2531; 0:8076)

AP (�1 = �
1
�
2
; �

2 = �
2) (0:2413; 0:8261)

AP (��(�; �̂) = ~�(�)) (0:2509; 0:8131)

Example 2. Ratio of normal means. Consider a sample (xi; yi) (i = 1; : : : ; n)

from a bivariate normal distribution having mean � = (�1; �2) and identity

covariance matrix, and suppose that � = �1=�2 is the parameter of interest.

Efron (1985, 1987) discussed bootstrap con�dence limits for � based on the MLE

�̂ = �x=�y, and he speci�cally considered the case where n = 1 and (4; 8) is ob-

served. This situation is assumed for Table 3, which reports a variety of approx-

imate 95% con�dence intervals for �. The exact limits given in Table 3 are the

Fieller ones, which arise from the standard normal distribution of the pivotal

quantity n1=2(�x � ��y)=(1 + �2)1=2. Formulae (4) gives �Z = �A = 0, so that the

S, BC and BCa methods all coincide, and they are all second-order accurate.

For the observation (4; 8), these methods give the Fieller limits. An orthogonal

parameterization is � = (�;  ), where �1 = � =(1 + �2)1=2, �2 =  =(1 + �2)1=2,

and by using the least favorable family ��(�; �0) = (�;  0), the AP limit from (7)

also agrees with Fieller limit.

To illustrate the results of the AP method for other parameterizations, Ta-

ble 3 also shows AP intervals obtained using the parameterizations � = (�1; �2)

de�ned by �1 = �1, �2 = �2 and �1 = �1�2, �2 = �2. For both parameter-

izations, the least favorable family ��(�; �0) = �0 + (� � �0)�0 is used, where

�i = �i;j�j=(�
i;j�i�j). In addition, Table 3 reports AP intervals derived using

the parameterization invariant least favorable family ��(�; �̂) = ~�(�). All three of

these intervals are quite close for this example.

The convergence of �̂i(1� �) to �̂AP(1� �) is illustrated for this example in

Table 4. For Table 4, the parameterization � = (�1; �2) = (�1; �2) with least

favorable family ��(�; �0) = �0+ (�� �0)�0 is used, and �̂0(1��) is taken to be �̂.

The convergence is quite rapid, and �̂3(1� �) is nearly identical to �̂AP(1� �).

Table 4. Iterations of method (8) for � = �
1
=�

2 (�1 = �
1
; �

2 = �
2)

1� � �̂0(1� �) �̂1(1� �) �̂2(1� �) �̂3(1� �) �̂AP(1� �)

0:025 0:5 0:2417 0:2537 0:2531 0:2531

0:975 0:5 0:8256 0:8068 0:8077 0:8076
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Appendix: Technical Justi�cations

A.1. Bootstrap-t and BCa methods

It follows from (2) that the variance of �̂ is n�1�i;j�i�j + O(n�2), so that

� = (�i;j�i�j)
1=2 +O(n�1). Moreover, with error of order O(n�1), the �rst three

cumulants of U = n1=2(�̂ � �)=� are

E(U ; �) = n�1=2a; Var(U ; �) = 1; skew(U ; �) = n�1=2c;

where

a = (�i�i +
1

2
�i;j�ij)b

�1; b = (�i;j�i�j)
1=2;

c = (�i;j;k�i�j�k + 3�i;k�j;l�i�j�kl)b
�3: (19)

It is assumed that the distribution function H(�; �) of U satis�es

H(u; �) = prfn1=2(�̂ � �)=� � u; �g = �[u� n�1=2f(a�
1

6
c) +

1

6
cu2g] +O(n�1):

Similarly, with error of order O(n�1), the �rst three cumulants of V = n1=2(�̂ �

�)=�̂ are

E(V ; �) = n�1=2(a� d); Var(V ; �) = 1; skew(V ; �) = n�1=2(c� 6d);

where d = (�i;jbi�j)b
�2 and bi = @b(�)=@�i. Straightforward calculation shows

that

d = (
1

2
�
i;j

l
�l;k�i�j�k + �i;k�j;l�i�j�kl)b

�3; (20)

where �
i;j

k
= @�i;j(�)=@�k . It is assumed the distribution function K(�; �) of V

satis�es

K(v; �) = prfn1=2(�̂ � �)=�̂ � v; �g

= �[v � n�1=2f(a�
1

6
c) + (

1

6
c� d)v2g] +O(n�1):

The inverse functions H�1(�; �) and K�1(�; �) have the Cornish-Fisher ex-

pansions

H�1(�; �) = z� + n�1=2f(a�
1

6
c) +

1

6
cz2

�
g+O(n�1);

K�1(�; �) = z� + n�1=2f(a�
1

6
c) + (

1

6
c� d)z2

�
g+O(n�1);

(21)

so that, in particular, K�1(�; �) = H�1(�; �)�n�1=2dz2
�
+O(n�1). The ES upper

(1� �) con�dence limit for � is
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�̂ES(1� �) = �̂ � n�1=2�̂K�1(�; �)

= �̂ � n�1=2�̂fH�1(�; �) � n�1=2dz2
�
g+Op(n

�3=2): (22)

Since a; b; c and d are all of order O(1), the estimates â = a(�̂); : : : ; d̂ = d(�̂) di�er

by terms of order Op(n
�1=2) from a; : : : ; d, respectively. It then follows from (21)

that H�1(�; �̂) = H�1(�; �) + Op(n
�1) and K�1(�; �̂) = K�1(�; �) + Op(n

�1).

This observation for K�1(�; �̂) demonstrates the second-order accuracy of the

B{t method.

To demonstrate the second-order accuracy of the BCa method for the values

of the bias correction and the acceleration constant given by (3), note �rst that

G(t; �) = pr(�̂ � t; �) = Hfn1=2(t� �)=�; �g; G�1(�; �) = �+n�1=2�H�1(�; �):

Then, de�nition (1) gives

�̂BCa(1� �) = �̂ + n�1=2�̂H�1

�
�
n z1�� + Z

1�A(z1�� + Z)
+ Z

o
; �̂

�

= �̂�n�1=2�̂[H�1(�; �)�2fZ+n�1=2(a�
1

6
c)g�(A+

1

3
n�1=2c)z2

�
]+Op(n

�3=2):

Comparison with (22) shows that �̂BCa(1 � �) di�ers from �̂ES(1 � �) by order

Op(n
�3=2) when Z = �Z +Op(n

�1) and A = �A+Op(n
�1), where

�Z = �n�1=2(a�
1

6
c); �A = �n�1=2(

1

3
c� d): (23)

Substituting expressions (20) and (19) for a; c and d into (23) yields (3).

The second-order accuracy of the BCa and B{t methods has been discussed

in the context of exponential families by DiCiccio and Efron (1992). The accuracy

of BCa limits has also been considered by Bickel (1987).

Efron's (1981) version of Z is easily seen to su�ce for second-order accuracy,

since
��1

fĜ(�̂)g = ��1
fH(0; �̂)g = ��1

fH(0; �)g +Op(n
�1)

=� n�1=2(a�
1

6
c) +Op(n

�1):

In the case of MLEs, the cumulant formulae of McCullagh (1987) p.209 show

that

�i;j = n�i;j ; �i;j�i�j = n�i;j�
i�j ; �i�i = �n(

1

2
�i;j;k +

1

2
�i;jk)�

i�j;k;

�i;j;k�i�j�k = �n2(2�i;j;k + 3�i;jk)�
i�j�k; �i;j�j;l�i�j�kl = n2�ij�

i�j ;

�
i;j

l
�l;k�i�j�k = �n2(�i;j;k + 2�i;jk)�

i�j�k: (24)
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Substitution of formulae (24) into (3) yields (4).

A.2. Automatic percentile methods

To verify that the AP method is second-order accurate, recall that � =

b+O(n�1) and d = bi�
i. Hence, for an arbitrary point �0,

@�f��(�; �0)g

@�

���
�=�0

= bi(�0)�
i(�0) +O(n�1=2) = d(�0) +O(n�=2); (25)

and for values of � such that �̂ � � is of order Op(n
�1=2), we have

�f��(�; �̂)g = �̂ + (� � �̂)d+Op(n
�1): (26)

The limit �̂AP(1� �) de�ned by Equation (8) satis�es

�̂ = �G�1
f�; �̂AP(1� �)g = �̂AP(1� �) + n�1=2�f��AP(1��)gH�1

f�; ��AP(1� �)g;

where ��AP(1� �) = ��f��AP(1� �); �̂g, that is,

�̂AP(1� �) = �̂ � n�1=2�f��AP(1� �)gH�1
f�; ��AP(1� �)g: (27)

Since (26) implies �̂AP(1��) = �̂�n�1=2�̂z�+Op(n
�1), it follows from (21) that

H�1
f�; ��AP(1� �)g = H�1(�; �) +Op(n

�1) and from (26) that

�f��AP(1� �)g = �̂ � n�1=2�̂z�d+Op(n
�1):

Therefore, (27) gives

�̂AP(1� �) = �̂ � n�1=2�̂(1� n�1=2z�d)H
�1(�; �) +Op(n

�3=2)

= �̂ � n�1=2�̂fH�1(�; �) � n�1=2dz2
�
g+Op(n

�3=2); (28)

and comparison of (28) with (21) shows that �̂AP(1��) is second-order accurate.

Now consider the limit �̂1(1 � �) de�ned by Equation (8). Suppose that

�̂0(1��) di�ers from �̂ by Op(n
�1=2), and let ��0(1��) = ��f�̂0(1��); �̂g. Then,

�̂00(1��) =
�G�1

f�; �̂0(1��)g = �̂0(1��)+n
�1=2�f��0(1��)gH

�1
f�; ��0(1��)g;

and using (26) gives

�̂00(1� �) � �̂0(1� �) = n�1=2[�̂ + f�̂0(1� �)� �̂gd]H�1(�; �) +Op(n
�3=2)

= n�1=2�̂z� +Op(n
�1): (29)
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Now let ��00(1� �) = ��f�̂00(1� �); �̂g, and note from (29) that

�Gf�̂0(1� �); �̂00(1� �)g =H

"
n1=2f�̂0(1� �)� �̂00(1� �)g

�f��00(1� �)g
; ��00(1� �)

#

=Hf�(1� n�1=2dz�)H
�1(�; �); �g +Op(n

�1): (30)

Since

Ĝ�1(�) = �̂ + n�1=2�̂H�1(�; �̂) = �̂ + n�1=2�̂H�1(�; �) +Op(n
�3=2);

it follows from (30) that

�̂1(1� �) = Ĝ�1[ �Gf�̂0(1� �); �̂00(1� �)g]

= �̂ � n�1=2fH�1(�; �) � n�1=2dz2
�
g+Op(n

�3=2): (31)

Comparison of (31) with (21) establishes the second-order accuracy of �̂1(1��).

A.3. Variance-stabilizing transformations

By (25), the transformation �g(�; �0) de�ned at (9) has derivatives

@�g(�; �0)

@�

���
�=�0

=
1

�0
;

@2�g(�; �0)

@�2

���
�=�0

= �
d0

�20
+O(n�1=2); (32)

where �0 = �(�0) and d0 = d(�0). Then n
1=2(�̂��0) = U� 1

2
n�1=2U 2d0+Op(n

�1),

where U = n1=2(�̂ � �0)=�0. It follows that

�K(t; �0) = prfn1=2(�̂� �0) � t; �0g = Hft+
1

2
n�1=2d0t

2; �0g+O(n�1);

and hence, �K�1(�; �0) = H�1(�; �0)�
1

2
n�1=2d0z

2
�
+O(n�1). Thus,

�K�1(�; �̂) = H�1(�; �) �
1

2
n�1=2dz2

�
+Op(n

�1): (33)

The derivatives (32) yield

@�g�1(�; �0)

@�

���
�=�0

= �0;
@2�g�1(�; �0)

@�2

���
�=�0

= �0d0 +O(n�1=2);

so that

g�1
�0
(�) = �0 + (�� �0)�0 +

1

2
(�� �0)

2�0d0 +O(n�3=2) (34)
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for values of � that di�er from �0 by order O(n�1=2). By (33) and (34), the

variance-stabilized bootstrap-t limit satis�es

�̂VS(1� �) = �g�1f�̂� n�1=2 �K�1(�; �̂); �̂g

= �̂ � n�1=2�̂fH�1(�; �) � n�1=2dz2
�
g+Op(n

�3=2): (35)

Comparison of (35) with (21) shows that �̂VS(1� �) is second-order accurate.

To investigate the transformation g(�; �0) de�ned at (12), note that

E(�̂; �0) = �0 +O(n�1); E(�̂2; �0) = �20 +O(n�1);

Cov(�̂; �̂2; �0) = n�12�30d0 +O(n�1);

and the standard formula for conditional expectation (McCullagh (1987), p.164)

gives

E�0
(�̂2j�̂ = �) = �20 + 2(� � �0)�0d0 +O(n�2)

for values of � that are O(n�1=2) distant from �0. Thus,

@g(�; �0)

@�

���
�=�0

=
1

�0
+O(n�1);

@2g(�; �0)

@�2

���
�=�0

= �
d0

�20
+O(n�1=2): (36)

By comparison of (36) with (32), it is evident that the second-order accuracy

of the variance-stabilized bootstrap-t procedure based on transformation (12)

can be demonstrated by an argument identical to the preceding one given for

transformation (9).

A.4. Likelihood-based methods

To error of order O(n�1), the �rst three cumulants ofW = (�̂��)=(I ij �̂i�̂j)
1=2

are

E(W ; �) = n�1=2(a� d); Var(W ; �) = 1; skew(W ; �) = n�1=2(c� 6d); (37)

where a; c and d are obtained by substituting formulae (24) into (19) and (20).

Since the cumulants of W and V = n1=2(�̂� �)=�̂ agree to the order of error con-

sidered, it follows that J(w; �) and J�1(�; �) di�er from K(w; �) and K�1(�; �)

by terms of order O(n�1). In particular, (21) implies that J�1(�; �) has the

Cornish-Fisher expansion

J�1(�; �) = z� + n�1=2f(a�
1

6
c) + (

1

6
c� d)z2

�
g+O(n�1);

and J�1(�; �̂) = J�1(�; �) + Op(n
�1). Thus, the limit �̂BL(1 � �) di�ers from

�̂EL(1� �) by order Op(n
�3=2) and has coverage error of order O(n�1).
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To investigate the limit �̂SR(1 � �) de�ned by Equation (13), let �1 =

Ef@B(�)=@�g. Typically, �1 is of order O(1) and @B(�)=@� di�ers from �1 by

order Op(n
�1=2). Standard expansions show that the signed root R = R(�) sat-

is�es

R =W � n�1=2(
1

6
c� d)W 2 + n�1=2��1 +Op(n

�1);

so (37) gives

E(R; �) = n�1=2(a�
1

6
c+ ��1); Var(R; �) = 1; skew(R; �) = 0;

to error of order O(n�1). Thus, m(�) = � �Z + n�1=2��1 + O(n�1) and R(�) �

mf~�(�)g is an approximate pivotal quantity having the standard normal distri-

bution to error of order O(n�1). It follows that the limit �̂SR(1��) has coverage

error of order O(n�1).

Now, as a function of �;R(�)�mf~�(�)g has the expansion

R(�)�mf~�(�)g = (�̂ � �)=(I ij �̂i�̂j)
1=2

� n�1=2(
1

6
c� d)(�̂ � �)2=(I ij �̂i�̂j)

� n�1=2(a�
1

6
c) +Op(n

�1);

for values of � such that �̂ � � is Op(n
�1=2). Consequently, �̂SR(1� �) satis�es

�̂SR(1� �) = �̂ � (I ij �̂i�̂j)
1=2[z� + n�1=2f(a�

1

6
c) + (

1

6
c� d)z2

�
g] +Op(n

�3=2)

= �̂E(1� �) +Op(n
�3=2):

Related expansions have been derived by DiCiccio and Stern (1992).

Finally, to show that the limit de�ned by (14) di�ers from �̂EL(1��) by order

Op(n
�3=2), suppose �̂(1��) is an approximate limit that is second-order accurate

with respect to �̂ES(1� �). Since �̂(1� �) = �̂ � n�1=2�̂K�1(�; �) +Op(n
�3=2),

�̂ + f�̂(1� �)� �̂g
(I ij �̂i�̂j)

1=2

n�1=2�̂
= �̂ � (I ij �̂i�̂j)

1=2K�1(�; �) +Op(n
�3=2)

= �̂EL(1� �) +Op(n
�3=2):
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