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Abstract: Given a general statistic Tn(X; �) = Tn(X1; : : : ; Xn; �), a representation is

given for the di�erence between the bootstrapped statistic T �

n
and a replica of its

own image T
0

n
. Except for a high order error term, the di�erence, which explains the

validity of the bootstrap method, consists of 3 components. The �rst component is

the di�erence ~� � �, where ~� is used in F~
�
(�) as the bootstrap resampling base. The

other two components depend on the model F�(�) and the statistic Tn only, and they

appear in the form of an inner product and behave like a derivative of Tn with respect

to �. This representation is an application of the classical mean value theorem and

it supports the superiority of the maximum likelihood summary as explored by Efron

(1982b).
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1. Introduction

In a 1982 paper, Efron emphasizes, through persuasive argument, the concept

of maximum likelihood summary (MLS). Under the framework of traditional

parametric inference, if f(�; �) is the data generating mechanism, then f(�; �̂) can
be used to compute or simulate the sampling distribution of any statistic T (X; �),

where �̂ is the MLE of �. In fact, since � is unknown, f(�; �̂) is about the best

random mechanism one can hope for. This is the backbone of the bootstrap

resampling technique, and is perceived, as usual, by R. A. Fisher.

Efron's argument is geometric and the conclusion is based on sample sizes

ratio. Whereas this provides a strong basis for the claim that MLS is superior,

it is not a formal proof. In particular, it is far from clear why the sampling

distribution of any statistic T (X; �) can be optimally approximated via f(�; �̂).
In this paper, we develop a simple formula that supports the superiority

of MLS in one line. This formula, suitably explained, is only an application of

the classical mean value theorem. More precisely, this paper presents a class

of representations for general statistics when the observations are sampled from

a certain parametric family. We postulate a parametric family with density
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f(x; �) depending on a parameter �. The discussions and results presented here

are restricted to the case that both x and � are univariate. These restrictions

greatly simplify the presentation and derivations of the main results in this paper.

However, with additional e�ort, we anticipate that similar results can be obtained

along the same line in a more general set up.

Let ~�n be a reasonable estimator of the unknown parameter � based on

the random sample X = (X1; : : : ;Xn) of size n from f(x; �). If ~�n is used for

summarizing purpose, f(�; ~�n) is used as the sampling base. In doing so, we

perform a (parametric) bootstrap. A general ~� is deliberately used instead of

the traditional maximum likelihood estimator �̂; the purpose of this will be clear

later. For simplicity, we drop the subscript n from � and other quantities when

there is no confusion. The (parametric) bootstrap sample X� = (X�

1 ; : : : ;X
�

n
) is

generated from the sampling base F~�, where F� denotes the cumulative distri-

bution function (cdf) of f(x; �). We are interested in the behavior of statistic

Tn = Tn(X1; : : : ;Xn; �) = Tn(X; �) under f(x; �). Let T �

n
= Tn(X

�; ~�). The basic

idea of the bootstrap method, parametric or nonparametric, is to claim (Efron

(1979, 1982a)) or prove (Singh (1981), Bickel and Freedman (1981)) that Tn and

T �

n
have similar sampling distributions.

The fundamental goal of this work is to study the relationship between T
0

n
and

T �

n
, where T

0

n
is an iid copy of Tn and is de�ned as follows. Let X

0

= (X
0

1; : : : ;X
0

n
)

be an (unobservable) iid replica of (X1; : : : ; Xn), and let T
0

n
= Tn(X

0

; �). Fur-

thermore, X
0

i
and X�

i
are associated by the relation F�(X

0

i
) = F~�(X

�

i
). The

parametric bootstrap (PB) applied to this problem will lead to a representation

which can be expressed as

Tn(X
�; ~�) = Tn(X

0

; �) +4n(X;X
0

): (1)

It is clear that Tn(X
0

; �) has the same distribution as Tn(X; �) but is independent

of Tn(X; �). Under some smoothness conditions, it is found in this paper that

4n(X;X
0

) can be expressed as (~���)5T (X
0

; �) asymptotically, where5 denotes

the gradient operator and 5T (X
0

; �) plays the role of the derivative of Tn at �

and does not depend on X. It is this form which justi�es the title of this article.

The parametric bootstrap (PB) was mentioned and suggested by Efron in

his pioneer work (1979, 1982a). However, compared with the ordinary boot-

strap (nonparametric bootstrap), the PB has attracted much less attention in

the literature. Like the nonparametric bootstrap (NB), the behavior of the boot-

strapped statistics under the PB may be studied in terms of the central limit

theorem (CLT) and Edgeworth expansions. This approach is indirect and the

same di�culties arise, however, when the limiting distributions of T �

n
and Tn are

di�cult to derive or the distributions of T �

n
and Tn do not admit the CLT or
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Edgeworth expansions. As a result, only su�ciently regular estimators can be

justi�ed through this approach, which, from a practical point of view, seems to

be unnecessarily limited. Our approach is in the same spirit of Lo (1989), where

nonparametric bootstrap is considered.

There are three components in the formulation (1). The estimator ~� is used

as a general resampling base to generate X� = (X�

1 ; : : : ;X
�

n
). The model F�(�)

represents the frequentist's view of the original data. The statistic Tn represents

the inference introduced by the statistician.

As an important application, the representations obtained here are relevant

to Efron's discussion (Efron (1982b)) of the superiority of the maximum likeli-

hood summary (MLS) f̂ = f(�; �̂) as a distribution for bootstrapping, where �̂

denotes the MLE. Since the representations for the MLS f(�; �̂) have analogous

representations for an alternative summary f(�; ~�) if another estimator ~� is avail-

able, it is possible to compare the e�ectiveness of using f(�; �̂) and f(�; ~�) for

parametric bootstrap distribution to evaluate a third common statistic T . From

(1), we see that if we want to keep Tn(X; ~�n) and Tn(X
�; �) close, the only hope

is to use a ~� that is close to the true �. Hence (1) strongly suggests that the

MLS is about the optimal choice for bootstrapping whenever �̂ is asymptotically

e�cient.

In Section 2, we introduce the familiar probability integral transform that

is relevant to our representation. Let x be the datum from f(�; �). If � changes

to a nearby �
0

, a speci�c feature, or technical device, of our development is

that we do not hold x �xed, but to allow x changing to a nearby x0, related by

F�(x) = F
�
0 (x

0

), where F , with suitable subscript, denotes the cdf of f . In this

way x is also a function of �, and the basic relation (1) is only the �rst term of

a Taylor expansion.

In Section 3, we derive a simple mean value theorem for general root statistics

R(X; �) under the PB. By root we mean a real-valued random variable R(X; �)

which is a function of � and the data X = (X1; : : : ; Xn) such that E�R(X; �)

is a constant for all � 2 �. Without loss of generality, one may always assume

the constant mentioned above is zero. In this case a root is obtained from an

estimating equation, introduced by Godambe (1960) and discussed extensively

in a series of papers. With a speci�c, but natural, loss structure, Godambe

demonstrated that the estimating equation is a natural concept in statistical

inference. In contrast to his approach, however, our representation does not need

the concept of a loss function. Relation (10) provides a general representation

for bootstrapped root statistics. In this representation, the di�erence between

a copy of the theoretical root and the bootstrapped root is decomposed into a

product of three independent components plus a higher-order error term. The

�rst component is ~�� �, which indicates the necessity of a good initial estimator
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for � in order to obtain a better bootstrap approximation. Since the second and

the third components depend on the model and the nature of the underlying root

statistic only, no better approximation can be expected by adjusting these two

components.

Estimators are determined by certain roots, either directly or implicitly. If

an estimator is determined by a root directly, the results obtained in Section

3 can apply. If an estimator can only be found by solving a certain equation

Q(X; �) = 0, it is shown in Section 4 that such an estimator still admits an

appropriate mean value theorem. Furthermore, the speci�c structure of the error

term can also be found, which strongly suggests that the best approximation

can be obtained by choosing an e�cient estimator ~� for bootstrapping in the

�rst place. Since maximum likelihood estimators are asymptotically e�cient

under standard regularity conditions, this provides some direct evidence that the

MLS is the optimal choice for bootstrapping, and which is also a point argued

heuristically in Efron (1982b).

If Q can be expressed as an independent summand, in addition to giving

an appropriate mean value theorem for ~�Q, which is the solution of Q = 0, we

show in Section 4 that the limiting distribution of the \derivative" is normal with

mean zero and a speci�c variance. Despite the provision of an explicit expression

for variance, a geometric interpretation for the variance term is still lacking.

2. The Probability Integral Transform

If X has a continuous cdf F , then F (X) is R(0; 1), the uniform distribution

over the interval (0; 1). This is the well known probability integral transform.

Conversely, if U is R(0; 1), then F�1(U) has distribution F . This is frequently

used as a general purpose random number generator. One way of looking at our

approach is to pretend that Nature generates its random numbers the same way.

More speci�cally, we pretend that Nature �rst generates a U from R(0; 1)

and then waiting for speci�c orders. If the request is F�, it gives X = F�1
�

(U); if

the request is F
�
0 , it gives X 0 = F�1

�0 (U). Since U is common, we have

F�(X) = F
�
0 (X

0

): (2)

Note that, under this formulation, X is a function of �.

The traditional frequentist's view pretends that X is observed from F�. If

� changes to a nearby �
0

, do we expect to observe an X
0

slightly di�erent from

X? In standard treatment, this X
0

never comes into the picture. For example,

the score function is obtained by di�erentiating the log likelihood function with

respect to � while keeping the data X �xed. Since in practice only the data X is

given and no other data is available in statistical analysis, such a view seems to
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be natural and prevailing. All statistical theories, frequentist or Bayesian alike,

are derived under such a premise.

But under a bootstrap setup, we expect the resampling data X� to be gener-

ated according to f(�; ~�). Relation (2) may be unexpectedly useful. In particular,

let T (X; �) be a general statistic under investigation. Using (2) we may treat T

as a function of � only and write

T (�) = T (�0) + (� � �0) � T
0

(�0) + � � � (3)

for � near �0. Our basic relation (1) or (10), although expressed somewhat

di�erently, is nothing but Equation (3).

As a sideline remark to (2), let Y and Y 0 be any pair of random variables

with marginal distributions F� and F�0 respectively, then (B�artfai (1970))

E(X �X
0

)2 � E(Y � Y
0

)2:

Hence (X;X 0) is the closest pair in mean square error sense.

3. The Representation of a Root under the PB

Suppose that X1; : : : ;Xn are iid from f�(x). Let R(X; �) be a root such that

E�R(X; �) = 0 for all �, and let ~� = ~�n = ~�n(X) be a consistent estimator of

�. In this section we give a representation of R(X�; ~�n) in terms of R(X
0

; �),

where X� = (X�

1 ; : : : ;X
�

n
) is the bootstrap sample from f(�; ~�). The sample

X
0

= (X
0

1; : : : ;X
0

n
) is unobservable and associated with the bootstrap sample by

the relation F~�(X
�

i
) = F�(X

0

i
) for all i; 1 � i � n.

To simplify the presentation, we shall assume throughout this section that

both F�(x) and R(X; �) are smooth enough to allow di�erentiation in both �

and the components of X; also, all expansions in higher order terms are assumed

valid.

For the location parameter case that f(x; �) = f(x � �), let R(X; �) =

�̂�E�(�̂), where �̂ is a location invariant estimator of �. It is easy to check that

R(X�; �̂�) = R(X
0

; �);

where �̂� = �̂(X�). This shows that the location root R is pivotal in the sense

that the distribution of R(X; �) does not depend on �. The scale parameter case

f(x; �) = e��f(e��x) can be dealt similarly. In both cases, R(X; �) is pivotal and

(1) is exact with 4 � 0.

The following simple example, which is less trivial than the pivotal cases,

shows that our general approach for the bootstrap representation is di�erent

from, and perhaps better than, the traditional CLT or Edgeworth expansion

approaches.
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Let X1; : : : ;Xn be iid F�, the uniform distribution over (0; �). Let X
0

1; : : : ;X
0

n

be an iid replica. To �x ideas, let P denote the probability measure generated

by the X; P
0

denote the probability measure generated by the X
0

. We shall �rst

work with the P � P
0

measure. The MLE �̂n of � is X(n) = maxfX1; : : : ; Xng.
We will use R(X; �) = �̂n � � in (1).

Using the simple fact that F� is linear over (0; �), a direct calculation shows

that the error term 4 of (1) in this case is

4n(X;X
0

) = (�̂�
n
� �̂n)� (�̂

0

n
� �)

= F�1

�̂n

 
F�(X

0

(n))

!
�X

0

(n) �

 
X(n) � �

!

=

 
�̂n

�
X

0

(n) �X
0

(n)

!
� (X(n) � �)

=

�
X(n)

�
� 1

�
X

0

(n) � (X(n) � �)

=
1

�
(X(n) � �)(X

0

(n) � �):

Hence it is of order O(n�2) with respect to the probability P � P
0

. Note that

accuracy to this order cannot be obtained through the CLT or Edgeworth ex-

pansion approaches.

Although (1) is a relation over P � P
0

, there is no di�culty to arrange it in

terms of the traditional conditional version. Using the uniform example again,

the di�erence between the bootstrap and the true distribution can be expressed

as, for any real t,

P �

 
n(�̂�

n
� �̂n) � tjx

!
� P

 
n(�̂n � �) � t

!

= P
0

 
n(�̂n � �) + n

�x(n)
�
� 1

�
(�̂

0

n
� �) � t

!
� P

0

 
n(�̂

0

n
� �) � t

!

= P
0

 
n(�̂

0

n
� �)

x(n)

�
� t

!
� P

0

 
n(�̂

0

n
� �) � t

!

= P
0

 
n(�̂

0

n
� �) �

t�

x(n)

!
� P

0

 
n(�̂

0

n
� �) � t

!

= O

 
�

x(n)
� 1

!

uniformly on t 2 R which is OP (1=n), according to the usual conditional ap-

proach.
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Hereafter in this article, we shall focus on the discussion of unconditional

approach only (on P � P
0

measure).

With this convention in mind, we now return to the discussion of F~�(X
�)

and the root statistic R(X�; ~�). Applying a bivariate Taylor expansion to F~�(X
�

i
)

yields

F~�(X
�

i
) = F�(X

0

i
) + (X�

i
�X

0

i
; ~� � �)

�
@F�(X)

@X
;
@F�(X)

@�

�T

+
1

2
(X�

i
�X

0

i
; ~� � �)

"
@
2
F
�
(X)

@X2

@
2
F
�
(X)

@X@�

@
2
F�(X)

@�@X

@
2
F�(X)

@�2

#

� (X�

i
�X

0

i
; ~� � �)T + higher order terms; (4)

where and hereafter, the derivatives are all evaluated at (X
0

i
; �) or (X

0

; �). Using

the identity F~�(X
�

i
) = F�(X

0

i
), X�

i
� X

0

i
can be expressed in terms of a power

series in ~� � �:

X�

i
�X

0

i
= �i(~� � �) + �i(~� � �)2 + (~� � �)3; (5)

where

�i = �
�
@F�(X)

@�

�.�@F�(X)

@X

�
;

�i = �
1

2
(�i; 1)

"
@
2
F�(X)

@X2

@
2
F�(X)

@X@�

@
2
F
�
(X)

@�@X

@
2
F
�
(X)

@�2

#�
�i
1

�.@F�(X)

@X
:

Relation (5), which provides a local linear rate between the di�erences X�

i
�

X
0

i
and ~�� �, is deterministic in nature and is crucial in establishing our results.

If R(X; �) is smooth enough to allow di�erentiations, we may express R(X�; ~�) in

terms of R(X
0

; �) plus a small remainder term. A multivariate Taylor expansion

yields

R(X�; ~�) = R(X
0

; �) + U � 5R+
1

2
U � 52R � UT + high order terms; (6)

where
U = (X�

1 �X
0

1; : : : ;X
�

n
�X

0

n
; ~� � �);

5R =

�
@R

@X1

; : : : ;
@R

@Xn

;
@R

@�

�T
;

and 52R denotes the matrix of second order derivatives of R evaluated at X
0

and �.

From (5), we may express U � 5R in (6) as

U � 5R = (�1; : : : ; �n; 1)5R � (~� � �)

+ (�1; : : : ; �n)

�
@R

@X1

; : : : ;
@R

@Xn

�T
(~� � �)2 +O

P�P
0 ((~� � �)3):
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Likewise, one can express (1=2)U � 52R � UT in (6) as

1

2
U � 52R � UT =

1

2
(�1; : : : ; �n; 1) � 52R � (�1; : : : ; �n; 1)

T � (~� � �)2

+OP�P
0 ((~� � �)3):

Finally, we can rewrite R(X�; ~�) in (6) as

R(X�; ~�)

= R(X
0

; �) + (~� � �)

 
@R

@�
+

nX
i=1

�i
@R

@Xi

!

+ (~� � �)2
h nX
i=1

�i
@R

@Xi

+
1

2
(�1; : : : ; �n; 1) � 52R � (�1; : : : ; �n; 1)

T

i

+OP�P
0 ((~� � �)3): (7)

Furthermore, it can be shown that

E�(� � 5R) = E�

�@R
@�

+
nX
i=1

�i
@R

@X
0

i

�
= 0 (8)

and

E�

 
nX
i=1

�i
@R

@Xi

+
1

2
� � 52R � �T

!
= 0; (9)

where � = (�1; : : : ; �n; 1). In addition, if R(X; �) =
P

n

i=1 g(Xi; �) for some

smooth function g, then

R(X�; ~�) = R(X
0

; �) + (~� � �)(� � 5R)

+O
P�P

0 ((~� � �)2n�
1

2 ) +O
P�P

0 ((~� � �)3): (10)

The proofs of (8) and (9) are elementary but tedious. They are based on

repeated use of integration by parts and the Fubini Theorem. We shall omit

them. The expression (10) follows from (9) and the fact that the coe�cient of

(~� � �)2 in (7) is of order O
P

0 (n�1=2). If ~� � � = OP (n
�1=2), it is easy to see the

remainder on the right hand side of (10) is of order O
P�P

0 (n�3=2).

Relation (10) is our basic result for the structure of a \regular" root R under

PB. It shows that the di�erence (the error) between a copy of the true root R and

the bootstrapped root R� can be expressed as a product of three components.

The �rst component is ~� � �, indicating the necessity of a good estimator ~�

for bootstrapping. The second component is the vector � = (�1; : : : ; �n; 1),

which depends on the model F� alone. The third component is the gradient
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5R = ( @R

@X1

; : : : ; @R

@Xn

; @R
@�
) which expresses the role played by the root R. Note

that these three components act independently in the sense that a change in any

component does not a�ect the others. Thus, for a given model F�(�), we are

in a position to quantitatively judge the e�ectiveness of di�erent versions of the

bootstrap (i.e. choices of ~�) against all possible inferences (choices of the statistic

Tn).

It is worth noting that once the model and the root are chosen, the only factor

which can improve the accuracy of the approximations is selection of the best

initial estimator ~� for bootstrapping. It is not surprising that, under standard

regularity conditions, the maximum likelihood estimator provides an optimal

choice, although it is also clear that the optimality will still be achieved by

choosing any other e�cient estimator for bootstrapping.

4. The Representation of an Estimator Derived via a Root

Estimators sometimes are determined by roots, either directly or implicitly.

If an estimator has a speci�c form, like sample mean Xn or sample correlation

coe�cient, it is easy to form a root by subtracting its mean from the estimator.

In this case, the estimator is determined by the relevant root directly. The

representations of the bootstrap counterpart (R� = �̂� � E~�(�̂
�)) can thus be

derived using the results obtained in the previous section.

When the estimator does not have a speci�c form or the estimator can only

be obtained by solving certain equations numerically, then the estimator is de-

termined by a root implicitly. Typical examples are the maximum likelihood

estimators or the minimum distance estimators. In these cases, the estimator �̂Q
is the solution of an equation

Q(X; �) = 0; (11)

and Q(X; �) is a root statistic. A usual situation is that the formula Q is in

closed form but �̂Q has to be solved by numerical methods. Our objective in this

section is to derive a representation of �̂Q(X
�)� ~�(X) in terms of �̂Q(X

0)� � and

Q.

First we assume that Q has a speci�c form. More precisely, we assume

Q(X; �) =
P

n

i=1 g(Xi; �) for some smooth function g. For example, with g(x; �) =

[
@f(x;�)

@�
]f(x; �)�1, one immediately obtains Q(X; �) = @`(X;�)

@�
=
P

n

i=1
@`(Xi;�)

@�
, the

usual derivative of the log likelihood function. Here `(X; �) and `(Xi; �) stand

for log
Qn

i=1 f(Xi; �) and log f(Xi; �), respectively. This leads to the usual MLE.

The assumption (about Q) can be removed and more general results expected but

with additional e�ort. However, we have chosen a less general case for clarity

and simplicity. In fact, many important cases (including the MLE) do satisfy
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this assumption. The proof is lengthy and is omitted; we merely summarize our

�ndings:

Assuming that ~� is a consistent estimator of �, one can write

�̂�
Q
� ~� = (�̂

0

Q
� �)� (~� � �)

1
p
n
[Z

0

n1 + Z
0

n2] + o
P�P

0 ((~� � �)2); (12)

where Z
0

n1; Z
0

n2 are functions of X
0

; and as n!1,

Z
0

n1

L�! N(0; �2
1);

Z
0

n2

L�! N(0; �2
2);

with

�2
1 =

2
4@E�

�
@g(X1;�)

@�

�
@�

3
5
2 �
�E�

�@g(X1; �)

@�

���3

�2
2 = E�

�
@g(X1; �)

@�
+ �1

@g(X1; �)
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