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STEIN CONFIDENCE SETS AND THE BOOTSTRAP

Rudolf Beran

University of California, Berkeley

Abstract: The Stein estimator �̂S dominates the sample mean, under quadratic loss,

in the N(�; I) model of dimension q � 3. A Stein con�dence set is a sphere of radius d̂

centered at �̂S. The radius d̂ is constructed to make the coverage probability converge

to � as dimension q increases. This paper studies properties of Stein con�dence sets

for moderate to large values of q. Our main results are:

� Stein con�dence sets dominate the classical con�dence spheres for � under a

geometrical risk criterion as q !1.

� Correct bootstrap critical values for Stein con�dence sets require resampling from

a N(�̂; I) distribution, where j�̂j estimates j�j well.

� Simple asymptotic or bootstrap constructions of d̂ result in a coverage probability

error of O(q�1=2). A more sophisticated bootstrap approach reduces coverage proba-

bility error to O(q�1). The faster rate of convergence manifests itself numerically for

q � 5.

Key words and phrases: Signal, white noise, coverage probability, geometrical risk.

1. Introduction

A basic model in time-series analysis states that the observed data consists

of a signal plus white noise. The goal is to estimate the signal from the data as

well as possible. In Stein's (1956) formulation, we observe the random q-vector

X = (X1; : : : ;Xq), which is linked to the unknown signal vector � = (�1; : : : ; �q)

by the model

Xi = �i +Ei; 1 � i � q: (1:1)

The error vector (E1; : : : ; Eq) has a standard normal distribution in R
q. The

quality of an estimator �̂ = �̂(X) of the signal � is measured by the quadratic

risk

Rq(�̂; �) = q
�1
E�j�̂ � �j2; (1:2)

where j � j is Euclidean norm and E� denotes expectation with respect to the

distribution P� of X.

This risk is the discrete-time analogue of the mean integrated squared error

criterion commonly used in estimation of continuous-time signals (cf. Rice (1984),
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Li and Hwang (1984)). By the Cauchy-Schwarz inequality, we have

j�̂ � �j2 = supf(u0�̂ � u
0
�)2:u 2 R

q
; juj = 1g: (1:3)

Thus, an estimator �̂ is close to � in quadratic loss if and only if every normalized

linear combination of �̂ is close in squared error to the corresponding linear

combination of �. This property provides a motivation for the use of risk (1.2).

Model (1.1) is completely general as regards the signal �, which may be any

vector in Rq. More restrictive is the assumption that the scale of the white noise

is known. This assumption may be relaxed if we can replicate the experiment

or if we can impose conditions on the possible values of �. For simplicity in the

asymptotics, we will retain the known scale.

Stein (1956) proved that the best unbiased estimator X is inadmissible for

�, under quadratic risk, whenever q � 3. Methods for bettering X accept bias in

return for smaller variance. One improvement is the James-Stein estimator

�̂S = [1� (q � 2)=jXj2]X; (1:4)

whose risk for q � 3 is

Rq(�̂S; �) = 1� q
�1
E�[(q � 2)2=jXj2] < 1: (1:5)

The risk of �̂S is thus strictly less than the risk of X at every � and achieves

a minimum value of 2=q at � = 0 (James and Stein (1961)). A recent survey

of the extensive non-asymptotic literature on shrinkage estimators is given by

Brandwein and Strawderman (1990).

Stein estimation and signal extraction in time-series analysis are linked fun-

damentally. In a paper written from a time-series perspective, Pinsker (1980)

obtained asymptotic lower bounds for the minimax mean integrated squared er-

ror incurred when estimating the mean of a continuous-time Gaussian process.

Specialized to the discrete-time model (1.1), Pinsker's paper establishes two im-

portant points: First, for every �nite positive c,

lim inf
q!1

inf
�̂

sup
j�j2�qc

Rq(�̂; �) � c=(1 + c); (1:6)

the in�mum being taken over all estimators �. Secondly, given the value of c, the

linear estimator �̂L = cX=(1 +X) is asymptotically minimax in that

lim
q!1

sup
j�j2�qc

Rq(�̂L; �) = c=(1 + c): (1:7)

For further aspects of Pinsker's results, see Donoho and Johnstone (1994).
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The simple linear estimator �̂L is not very useful because its asymptotic

minimaxity requires specifying the constant c. By contrast, the Stein estimator

�̂S, which depends only on the data, is asymptotically minimax for every positive

�nite c. This follows because, if j�j2=q converges to �nite a as q increases, then

the risk of �̂S converges to a=(1 + a) (see Casella and Hwang (1982)). Thus,

though �̂S is not quite admissible itself, it is very nearly minimax, when q is

large, on large compact balls centered at � = 0. The unbiased estimator X lacks

this minimax property because its risk equals 1 at every �.

Constructing good con�dence sets for the signal � is the theme of this paper.

The goal is to devise a con�dence set, centered at �̂S, that has accurate coverage

probability and is geometrically smaller, on average, than the classical con�dence

sphere centered at X. Section 2 formulates the problem technically and studies

Stein con�dence sets of the form

C(�̂S; d̂) = ft : j�̂S � tj � d̂g: (1:8)

The critical values d̂ here may be obtained from asymptotic theory, as in

Section 2, or from bootstrap distributions, as in Section 3. Direct asymptotic

or bootstrap constructions of d̂ result in a coverage probability error of order

O(q�1=2). A more sophisticated bootstrap construction reduces coverage prob-

ability error to O(q�1). In the bootstrap approaches, it proves essential to re-

sample from a N(�̂; I) distribution, where j�̂j estimates j�j well. Resampling

from N(X; I) or N(�̂S; I) does not work. For both bootstrap or asymptotic crit-

ical values, the expected maximum error of con�dence sphere (1.8), viewed as

a set-valued estimator of �, is shown to be smaller than that of the competing

con�dence sphere centered at X.

2. Asymptotic Stein Con�dence Sets

We now seek to construct a con�dence sphere for �,

C(�̂; d̂) = ft : j�̂ � tj � d̂g; (2:1)

whose coverage probability P�(C 3 �) is exactly or very nearly �, whatever the

true value of �. Here P� denotes the distribution ofX under model (1.1), �̂= �̂(X)

is the center of the con�dence sphere and d̂ = d̂(X) is its radius. The expected

geometrical error in C(�̂; d̂), as a set-valued estimator of �, will be measured by

the geometrical risk

Gq(C; �) = q
�1=2

E� sup
t2C

jt� �j = q
�1=2

E�j�̂ � �j+ q
�1=2

E�d̂: (2:2)
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This geometrical risk has a projection-pursuit interpretation. Let U = fu 2

R
q: juj = 1g denote the unit sphere. By the Cauchy-Schwarz inequality, con�-

dence set (2.1) is equivalent to the following simultaneous one-sided con�dence

intervals for linear combinations of �:

C(�̂; d̂) = ft 2 R
q: sup

u2U

(u0t� u
0
�̂) � d̂g

= ft 2 R
q:u0t � u

0
�̂ + d̂ 8u 2 Ug: (2:3)

This is essentially Sche��e's argument for simultaneous con�dence intervals.

Each one-sided con�dence interval (�1; u
0
�̂+d̂ ] overshoots the correct value

u
0
� by the amount maxfu0�̂ + d̂ � u

0
�; 0g. The maximum overshoot as u ranges

over the unit sphere is

sup
u2U

maxfu0�̂ + d̂� u
0
�; 0g = sup

u2U

ju0(�̂ � �)j+ d̂

= sup
t2C

jt� �j: (2:4)

Thus, minimizing the geometrical risk Gq(C; �) is the same as minimizing the

expected maximum overshoot of the equivalent simultaneous one-sided con�dence

intervals for linear combinations of �.

Using expected length or expected volume to measure the geometrical size of

a con�dence set is a longstanding idea. Cohen and Strawderman (1973) explored

decision theoretic implications of the expected length criterion. Beran and Millar

(1985) analyzed geometrical risks like (2.2) for in�nite dimensional parameters

taking values in a normed space. By contrast, Neyman (1937) proposed mini-

mizing P�(C 3 �
0) for all �0 6= �, subject to the coverage probability condition.

Casella, Hwang and Robert (1993) treated several other criteria for set-valued

estimators and gave further references.

From a technical viewpoint, the geometrical risk (2.2) extends to set-valued

estimators the quadratic risk criterion that underlies Stein point estimators. In

de�ning geometrical risk, we can replace q�1=2jt � �j by its square or any other

continuous, strictly monotone function. Then, by inspection of the proof for

Theorem 2.2 below, we see that the limiting risk (2.18) has immediate analogs

for this entire family of geometrical risks. Thus, it is not surprising that the

geometrical risk (2.2) turns out to measure a basic advantage of con�dence sets

based on Stein estimators.

2.1. Con�dence set CS;A

The classical con�dence sphere for � is

CC = C(X;��1=2
q

(�)); (2:5)



BOOTSTRAP STEIN CONFIDENCE SET 113

where the square of ��1=2
q

(�) is the �th quantile of the chi-squared distribution

with q degrees of freedom. Evidently, P�(CC 3 �) is exactly �, for every �. By

the triangular array central limit theorem, CC is a sphere centered at X whose

radius is approximately q + (2q)1=2��1(�) for large values of q (cf. Section 4).

Thus,

lim
q!1

sup
j�j2�qc

jGq(CC ; �)� 2j = 0 (2:6)

for every positive �nite c. Moreover, the approximate critical value for CC

can be found directly from the asymptotic normal distribution of the di�erence

q
�1=2fjX � �j2 � qg, which compares the quadratic loss of X with an unbiased

estimator of its risk.

The Stein con�dence sets studied in this paper are also of the form (2.1),

with center �̂ = �̂S. To construct suitable critical values d̂ for such con�dence

sets, we proceed by analogy with the last sentence of the previous paragraph.

Consider the quantity

Dq(X; �) = q
�1=2fj�̂S � �j2 � [q � (q � 2)2=jXj2]g; (2:7)

which compares the loss of �̂S with an unbiased estimator of its risk. The next

step is to approximate the distribution of Dq(X; �) for large q. Stein (1962)

introduced large q asymptotics in studying con�dence sets for �. Theorem 2.1

below is related to ideas in the penultimate paragraph of Stein (1981). Section 3

re�nes the normal approximation to an Edgeworth expansion for the distribution

of Dq(X; �).

Berger (1980) explored a generalized Bayes approach to con�dence sets that

improve on CC . Empirical Bayes constructions of con�dence sets based on shrink-

age estimators were developed and studied by Morris (1983), Casella and Hwang

(1983, 1987) and others. The principal advances in this paper, described in Sec-

tion 3, are sharper control of the coverage probabilities of con�dence spheres

centered at �̂S and a convenient bootstrap algorithm for computing the bet-

ter critical values. The remainder of this section gives pre-requisite �rst-order

asymptotics for Stein con�dence spheres.

From Theorem 3 in Stein (1981), it follows that

E�Dq(X; �) = 0

Var�Dq(X; �) = 2 + 4E�[(q � 2)2=jXj4 � (q � 2)2=(qjXj2)]:
(2:8)

By orthogonal invariance, the distribution of Dq(X; �) depends on � only through

j�j, and so can be written as Hq(j�j
2
=q). Let the symbol ) denote weak conver-

gence of distributions.

Theorem 2.1. Suppose that f�q 2 R
qg is any sequence such that j�qj

2
=q ! a <

1 as q !1. Then
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Hq(j�q j
2
=q)) N(0; �2(a)); (2:9)

where

�
2(t) = 2� 4t=(1 + t)2 � 1: (2:10)

Moreover

Var�qDq(X; �q) = �
2(j�qj

2
=q) +O(q�1): (2:11)

The proofs of Theorem 2.1 and of all subsequent theorems are deferred to

Section 4. Let

ê = q � (q � 2)2=jXj2 + q
1=2
�(j�j2=q)��1(�); (2:12)

where ��1 is the standard normal quantile function, and let d̂ = [ê]
1=2

+ , meaning

the square root of the positive part. If we knew j�j, the con�dence set C(�̂S; d̂)

would have asymptotic coverage probability �. Indeed, let f�qg be as in Theorem

2.1. Because P�q
(j�̂S � �qj = 0) = 0, we have

P�q
[C(�̂S; d̂) 3 �q] = P�q

(j�̂S � �qj
2 � d̂

2)

= P�q
(j�̂S � �qj

2 � d̂
2
; ê � 0) + P�q

(j�̂S � �qj
2 = 0)

= P�q
(j�̂S � �qj

2 � ê)

= P�q
[Dq(X; �q) � �(j�qj

2
=q)��1(�)]: (2:13)

By Theorem 2.1, the last probability in this display converges to �.

The uniformly minimum variance unbiased estimator of j�j2 is jXj2�q. This

and the de�nition of �̂S suggest estimating j�j by j�̂CLj, where

�̂CL = [1� (q � 2)=jXj2]
1=2

+ X: (2:14)

The implied estimator of �(j�j2=q) is then

�̂A = �(j�̂CLj
2
=q); (2:15)

the function � being de�ned in (2.10). A stronger rationale for the estimator �̂A
is the local asymptotic minimax property to be stated in Section 2.3.

The asymptotic Stein con�dence set is de�ned to be CS;A = C(�̂S; d̂A), where

d̂A = [q � (q � 2)2=jXj2 + q
1=2
�̂A�

�1(�)]
1=2

+ : (2:16)

Constructions related to (2.16) are suggested in the penultimate paragraph of

Stein (1981).

Theorem 2.2. For every �nite positive c,

lim
q!1

sup
j�j2�qc

jP�(CS;A 3 �)� �j = 0 (2:17)
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and

lim
q!1

sup
j�j2�qc

jGq(CS;A; �)� rS(j�j
2
=q)j = 0; (2:18)

where

rS(t) = 2(t=(1 + t))1=2 < 2: (2:19)

Like the classical con�dence set CC de�ned in (2.5), CS;A has correct asymp-

totic coverage probability �, uniformly over large compact balls about the shrink-

age point � = 0. However, the geometrical risk of CS;A is asymptotically smaller

than that of CC , especially when � is near 0.
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Figure 1. Asymptotic geometry of the classical con�dence set CC (larger dotted circle)

and of the Stein con�dence sets CS;A, CS;B , or CS;BB (smaller dotted circle).

2.2. Asymptotic geometry

The asymptotic risks of CS;A and of the classical con�dence set CC , given

by (2.18) and (2.6) respectively, have a simple geometrical interpretation that is

exhibited in Figure 1. Let f�q 2 R
qg be any sequence such that j�qj

2
=q converges

to a. From model (1.1) and the weak law of large numbers, it follows that the

following relations are very nearly true with high P�q
-probability when q is large:

jq�1=2�qj
2 � a; jq�1=2X � q

�1=2
�qj

2 � 1; jq�1=2Xj2 � 1 + a: (2:20)
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Consequently, the triangle in Figure 1 with base vector q�1=2�q and with hy-

potenuse q�1=2Xq is very nearly right-angled. The angle � between q
�1=2

�q and

q
�1=2

X is therefore approximately determined by cos2(�) � a=(1 + a).

In seeking minimax or admissible estimators of �, we may consider only

estimators that are equivariant under the orthogonal group. This follows from

the Hunt-Stein theorem and the compactness of the orthogonal group. Any

orthogonally equivariant estimator �̂ has the structure �̂(X) = h(jXj)X for some

real-valued measurable function h (Stein (1956)) and so lies along the vector X.

The scaled orthogonally equivariant estimator q�1=2�̂ that minimizes the loss

jq�1=2�̂� q
�1=2

�qj
2 is thus the orthogonal projection of q�1=2�q onto X. For large

q, this minimizing �̂ satis�es

q
�1=2

�̂ � jq�1=2�qj cos(�)X=jXj � [a=(1 + a)]q�1=2X � q
�1=2

�̂S (2:21)

with high probability for large q. This geometrical argument explains both the

structure and asymptotic optimality of �̂S. By the geometry of the projection,

illustrated in Figure 1, the minimized loss is asymptotically

q
�1j�̂S � �qj

2 � a sin2(�) � a=(1 + a) (2:22)

with high probability, in agreement with the analytical evaluation by Casella and

Hwang (1982).

This last calculation helps explain why the critical value of CS;A satis�es

q
�1=2

d̂A � (a=(1 + a))1=2. Indeed, if q�1=2d̂A were to converge in probability to a

smaller or larger limit, then the asymptotic coverage probability of CS;A would

be 0 or 1 respectively, by Figure 1. The smaller dotted circle in Figure 1 is

the limiting form of q�1=2CS;A. The larger dotted circle represents the limit of

q
�1=2

CC . Evidently, the asymptotic geometrical risk of q�1=2CS;A is rS(a), in

agreement with (2.18), while that of q�1=2CC is 2, as in (2.6).

2.3. Asymptotic minimaxity of �̂A

A stronger basis for the estimator �̂A de�ned in (2.15) is the following result

on estimation of functions of j�j2=q. Let u be a non-negative monotone increasing

function de�ned on R
+, with u(0) = 0.

Theorem 2.3. Suppose that f : R+ ! R is di�erentiable on its domain, with

derivative f 0. For every positive �nite a,

lim
b!1

lim inf
q!1

inf
f̂

sup
jj�j2=q�aj�q�1=2b

E�u(q
1=2jf̂ � f(j�j2=q)j)

� Eu[(2 + 4a)1=2jf 0(a)Zj] = �u(a); say; (2:23)
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where Z has a standard normal distribution and the in�mum is taken over all

estimators f̂ . When u is bounded, the estimator f̂A = f(j�̂CLj
2
=q) attains the

lower bound (2:23) asymptotically in that

lim
q!1

sup
jj�j2=q�aj�q�1=2b

E�u(q
1=2jf̂A � f(j�j2=q)j) = �u(a) (2:24)

for every positive �nite a and b.

This theorem establishes a local asymptotic minimax bound of the H�ajek-

LeCam type. Hasminski and Nussbaum (1984) derived a closely related bound

when f � 1. The plug-in estimator �̂A de�ned in (2.15) attains the lower bound

for all estimators of �(j�j2=q). Inequality (2.23) also implies that, for every posi-

tive �nite c,

lim inf
q!1

inf
f̂

sup
j�j2�qc

E�u(q
1=2jf̂ � f(j�j2=q)j) � �u(c): (2:25)

This minimax lower bound parallels the structure of (1.6) and is again attained

asymptotically by the estimator f̂A when u is bounded.

3. Bootstrap Stein Con�dence Sets

Figures 2 and 3 plot the coverage probability of CS;A (as diamonds) versus

j�j2=q for q between 3 and 19 and � = :90. These coverage probabilities are

estimates based on 20,000 Monte Carlo samples. Three points stand out:

� In the range 0 � j�j2=q � 2, the actual coverage probability varies sharply,

attaining a maximum value around j�j2=q = 1 and a minimum around

j�j2=q = 2.

� The maximum coverage probability exceeds � = :90. For j�j2=q � 2, the

coverage probability stays below .90.

� The convergence of the coverage probabilities to � = :90 as q increases is not

swift.

This section o�ers some theoretical insight into these �ndings and proposes im-

proved Stein con�dence sets.

Suppose f�q 2 R
qg is such that j�qj

2
=q ! a as q ! 1. By straightforward

algebra (cf. the proof of Theorem 2.1),

lim
q!1

q
1=2
E�q

D
3

q
(X; �q) = �3(a); (3:1)

where

�3(t) = 8(1� 2=(1 + t))(1� t=(1 + t)2): (3:2)
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����

����

� ���

q = 3

NCP/dimension

q = 5

NCP/dimension

Figure 2. Simulated coverage probabilities of CS;A (diamonds), of CS;B (crosses), and

of CS;BB (squares) when dimension q is 3 and 5. This Monte Carlo simulation used

20,000 normal samples, each bootstrap critical value being computed from 199 bootstrap

samples. The standard error of each coverage probability plotted is thus .002.
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����

����

����

q = 9

NCP/dimension

q = 19

NCP/dimension

Figure 3. Simulated coverage probabilities of CS;A (diamonds), of CS;B (crosses), and

of CS;BB (squares) when dimension q is 9 and 19. This Monte Carlo simulation used

20,000 normal samples, each bootstrap critical value being computed from 199 bootstrap

samples. The standard error of each coverage probability plotted is thus .002.
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�

NCP/dimension

Figure 4. The values of �̂2(j�j2=q) (solid curve) and �3(j�j2=q) (dashed curve) are plotted

against j�j2=q. Both quantities a�ect coverage probability error of Stein con�dence sets.

Let �3(t) = �3(t)=�
3=2(t), for � de�ned in (2.10), and let p(x) = (1� x

2)=6.

By the methods of Hall (1992), the cdf ofHq(j�j
2
=q) has the Edgeworth expansion

Hq(x; j�j
2
=q) = �[x=�(j�j2=q)] + q

�1=2
�3(j�j

2
=q)p[x=�(j�j2=q)] +O(q�1) (3:3)

uniformly over x and the compact fj�j2 � qcg, for every positive �nite c.

The critical value d̂A in (2.13) ignores the skewness term in (3.3) and es-

timates �(j�j2=q) by �̂A. Both errors introduce coverage probability errors of

order O(q�1=2). Figure 4 shows plots of �2(j�j2=q) and �3(j�j
2
=q) against j�j2=q.

The slope of �2(j�j2=q) | and hence our ability to estimate �(j�j2=q) | changes

sharply for small values of j�j2=q. The skewness �3(j�j
2
=q) changes sign when

j�j2=q = 1 and stabilizes as j�j2=q increases. These factors underlie the marked

uctuations in the coverage probability of CS;A that occur as j�j2=q ranges be-

tween 0 and 2.

As a possible improvement on CS;A, we consider, next, bootstrap critical

values for Stein con�dence sets. The following result clari�es how to bootstrap

successfully.

Theorem 3.1. Suppose that f�q 2 R
qg is any sequence such that j�qj

2
=q ! a <

1 as q !1. Then, for �2 de�ned in (2:10),

Hq(j�̂CLj
2
=q)) N(0; �2(a)) (3:4)
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while

Hq(jXj
2
=q)) N(0; �2(1 + a)) (3:5)

and

Hq(j�̂Sj
2
=q)) N(0; �2(a2=(1 + a))); (3:6)

all three convergences being in P�q
-probability.

Thus, the bootstrap estimator

ĤB = Hq(j�̂CLj
2
=q) (3:7)

is consistent for Hq(j�j
2
=q) while its plausible competitors in (3.5) and (3.6) are

not. Let X� be a random vector whose conditional distribution, given X, is

N(�̂CL; I). Then

ĤB = L[Dq(X
�
; �̂CL)jX]: (3:8)

This representation as a conditional distribution leads immediately to a simple

Monte Carlo algorithm for approximating ĤB.

The bootstrap Stein con�dence set is de�ned to be CS;B = C(�̂S; d̂B), where

d̂B = [q � (q � 2)2=jXj2 + q
1=2
Ĥ
�1

B
(�)]

1=2

+ (3:9)

and Ĥ
�1

B
denotes the quantile function of ĤB. It is clear from Theorem 3.1 that

Theorem 2.2 holds for CS;B as well as CS;A. In particular, the limiting form of

q
�1=2

CS;B coincides with that of q�1=2CS;A in Figure 1.

Figures 2 and 3 plot the coverage probability of CS;B (as crosses) versus

j�j2=q. In the range 0 � j�j2=q � 2, the coverage probabilities of CS;B and CS;A

are very similar. Only for j�j2=q > 2 is CS;B markedly more accurate in coverage

probability. The rate of convergence of coverage probability to � = :90, as q

increases, remains slow. To understand these simulation results, observe that

(3.3) entails an empirical Edgeworth expansion for the cdf of ĤB:

ĤB(x) = �(x=�̂A) + q
�1=2

�3(j�̂CLj
2
=q)p(x=�̂A) +Op(q

�1): (3:10)

Thus, ĤB successfully estimates the skewness term in (3.3) with an error of

Op(q
�1), but still incurs an error of Op(q

�1=2) in estimating the leading term on

the right side of (3.3). Recall, from the discussion preceding Theorem 3.1, that

the Op(q
�1=2) error in estimating the leading term is most pronounced for small

values of j�j2=q, and that the corresponding coverage error is committed by both

CS;A and CS;B. On the other hand, the e�ect of not correcting for skewness | the

additional O(q�1=2) coverage error in CS;A | remains prominent for j�j2=q � 2.

These theoretical observations agree with the patterns found in Figures 2 and 3.
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The overall coverage probability error of CS;B, like that of CS;A, is of or-

der O(q�1=2); this result forms part of Theorem 3.2. To improve the rate-of-

convergence of coverage probability, it is desirable to bootstrap not Dq(X; �)

but a related quantity whose limiting distribution does not depend on the un-

known parameter �. Lessening the dependence of the sampling distribution upon

unknown parameters should enhance the accuracy with which we can estimate

its quantiles. One possibility | bootstrapping Dq(X; �)=�̂A | meets the re-

quirement just proposed but, in numerical trials, did not give accurate coverage

probability for small values of q.

The author has experienced similar disappointment with bootstrapping-after

-studentization in several situations where the quantity being studentized has

a skewed and heavy-tailed distribution. For example, con�dence sets for the

mean based on nonparametric bootstrapping of the t-statistic have inaccurate

coverage when the data is drawn from an exponential distribution and the sample

size is modest. On the other hand, bootstrapping-after-studentization can be

very successful in other contexts, such as the Behrens-Fisher problem, where the

numerator has a normal distribution (cf. Beran (1988)).

Fisher's classical transformation of the sample correlation coe�cient suggests

an alternative strategy: bootstrapping a transformed version of Dq(X; �) whose

limiting distribution is standard normal. This approach turns out to work well in

small samples, as described below . A satisfactory theoretical explanation for why

transformation works better than studentization is an open problem. Current

understanding of bootstrap coverage accuracy relies on Edgeworth expansions

valid for q tending to in�nity. These expansions need not reect what happens

for small q.

Consider the strictly monotone increasing function

b(t) = 2�1 log[�2 + 4t+ 23=2(2t2 � 2t+ 1)1=2]; (3:11)

whose �rst derivative is

b
0(t) = 2�1=2(2t2 � 2t+ 1)�1=2: (3:12)

Let

Eq(X; �) = q
1=2fb[j�̂S � �j2=q]� b[1� (q � 2)2=(qjXj2)]g (3:13)

and let Jq(j�j
2
=q) denote the distribution of Eq(X; �) under model (1.1). Under

the conditions of Theorem 2.1, it follows from (3.13), (2.9) and (3.12) that

Jq(j�qj
2
=q)) N(0; 1): (3:14)

Consequently, as in Theorem 3.1, the bootstrap distribution

ĴB = Jq(j�̂CLj
2
=q)) N(0; 1) (3:15)
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in probability.

Further analysis (cf. Hall (1992)) shows that the cdf of Jq(j�j
2
=q) has an

Edgeworth expansion analogous to (3.3) but with leading term �(x). Because

this leading term does not depend on j�j, the cdf of ĴB estimates the cdf of

Jq(j�j
2
=q) with an error of Op(q

�1). By contrast, ĤB estimates Hq(j�j
2
=q) with

an error of Op(q
�1=2). For this reason, we expect that critical values based on ĴB

will generate Stein con�dence sets with higher coverage accuracy than do critical

values based on ĤB. The next paragraph describes these improved con�dence

sets and their coverage probabilities.

The better bootstrap Stein con�dence set is de�ned to be CS;BB = C(�̂S; d̂BB),

where

d̂BB = [qb�1fb[1 � (q � 2)2=(qjXj2)] + q
�1=2

Ĵ
�1

B
(�)g]

1=2

+ (3:16)

and Ĵ�1
B

is the quantile function of ĴB . In view of (3.14) and (3.15), Theorem 2.2

also holds for CS;BB. The improvement achieved by CS;BB is expressed formally

as follows.

Theorem 3.2. For every �nite positive c,

sup
j�j2�qc

jP�(CS;BB 3 �)� �j = O(q�1) (3:17)

while the corresponding coverage probability errors for CS;A or CS;B are O(q�1=2).

Conclusion (2:18) of Theorem 2:2 holds for CS;BB as well as for CS;A and CS;B.

Figures 2 and 3 show the plot of the coverage probability of CS;BB (as

squares) versus j�j2=q. The improvement over CS;A and CS;B is evident, especially

for j�j2=q � 2, and suggests that the asymptotics in (3.17) take hold for q � 5.

Theoretically, CS;BB reduces to O(q�1) the O(q�1=2) coverage error in both CS;A

and CS;B that is caused by estimating asymptotic variance; this e�ect shows up

most for small values of j�j2=q, as previously discussed. At the same time, like

CS;B, the re�ned con�dence set CS;BB retains the O(q�1) coverage error due to

estimating skewness.

Further re�nement of the critical values for Stein con�dence sets is possible

by prepivoting Eq(X; �) as follows. Let Jq(�; j�j
2
=q) denote the cumulative distri-

bution function of Eq(X; �) under the model P�. Construct a Stein con�dence set

for � by referring Fq(X; �) = Jq[Eq(X; �); j�̂CLj
2
=q] to the �th quantile of its boot-

strap distribution. As in (3.7), this bootstrap distribution is L[Fq(X
�
; �̂CL)jX].

The coverage probability of this new Stein con�dence set will di�er from the

desired � by O(q�3=2) as q increases. A heuristic argument for this conclusion

and a double bootstrap Monte Carlo algorithm for approximating the con�dence

set follow the pattern in Beran (1988). It is not known whether this further
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asymptotic re�nement in the critical value of Stein con�dence sets is bene�cial

for small or moderate values of q.

4. Proofs

The following lemma plays an important role in our derivations. Let

Wq(X; �) = (q�1=2[jX � �j2 � q]; q�1=2�0(X � �)): (4:1)

Lemma 4.1. Suppose that f�q 2 R
qg is any sequence such that j�qj

2
=q ! a <1

as q !1. Then, under P�q
,

Wq(X; �q)) (21=2Z1; a
1=2
Z2); (4:2)

where Z1, Z2 are independent standard normal random variables.

Proof. By orthogonal invariance, the distribution of Wq(X; �q) depends on �q

only through j�qj. Without loss of generality, take each component of �q to be

q
�1=2j�qj. The weak convergence (4.2) now follows from model (1.1) and the

Lindeberg-Feller central limit theorem.

We now prove the theorems and related remarks in Sections 2 and 3.

Proof of (2.6). Let f�qg be as in Lemma (4.1). From (2.2) and (2.5),

Gq(CC ; �q) = q
�1=2

E�q
jX � �qj+ q

�1=2
�
�1

q
(�): (4:3)

By Lemma 4.1 and Polya's theorem,

q
�1=2

�
�1

q
(�) = q

�1=2[q + (2q)1=2��1(�) + o(q1=2)]1=2 = 1 +O(q�1=2): (4:4)

The �rst term on the right side of (4.3) also converges to 1, because q�1=2jX �

�qj ! 1 in probability and q
�1
E�q

jX � �qj
2 = 1. Assertion (2.6) follows.

Proof of Theorem 2.1. Write p = q � 2. Then

q
1=2
Dq(X; �q) = j(1� p=jXj2)X � �qj

2 � (p� p
2
=jXj2)� 2: (4:5)

Observe that

j(1� p=jXj2)X � �qj
2 = (1� p=jXj2)2jX � �qj

2 + p
2j�qj

2
=jXj4

� 2(p=jXj2)(1� p=jXj2)�0
q
(X � �q) (4:6)

and

p� p
2
=jXj2 = p[(1� p=jXj2)2 + (p2=jXj4)(jXj2=p� 1)] (4:7)
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and

jXj2 = jX � �qj
2 + j�qj

2 + 2�0
q
(X � �q): (4:8)

Substituting the last three expressions into (4.5) yields

q
1=2
Dq(X; �q) = (1� 2p=jXj2)(jX � �qj

2 � p)� (2p=jXj2)�0
q
(X � �q)� 2: (4:9)

The weak convergence (2.9) follows from (4.9) and Lemma 4.1.

Stein's variance formula (2.8), a Taylor expansion, and Lemma 4.1 imply

Var�qDq(X; �q) = 2 + 4[(
q

q + j�qj2
)2 �

q

q + j�qj2
] +O(q�1)

= �
2(j�qj

2
=q) +O(q�1); (4:10)

as in (2.11).

Proof of Theorem 2.2. Suppose j�qj
2
=q ! a <1. Since j�̂CLj

2 = [jXj2 � q �

2]+, it follows from (4.8) and the weak law of large numbers that

q
�1j�̂CLj

2 ! a in probability: (4:11)

Thus, by Theorem 2.1, �̂A converges to �(a) in probability and the distribution

of q�1=2Dq(X; �q)=�̂A converges weakly to the standard normal distribution. This

and reasoning like that in (2.13) imply (2.17).

From (2.6) and (2.2),

Gq(CS;A; �q) = q
�1=2

E�q
j�̂S � �qj+ q

�1=2
E�q

d̂A: (4:12)

By the weak law of large numbers, q�1=2j�̂S � �qj ! rS(a)=2 and q
�1=2

d̂A !

rS(a)=2, both in probability. Moreover, from (1.5), q�1E�q
j�̂S � �qj

2 ! r
2
S
(a)=4.

Dominated convergence reasoning completes the proof of (2.18).

Lemma 4.2. Suppose that f�q 2 R
qg is any sequence such that j�qj

2
=q ! a <1

as q !1. Then, under P�q
,

q
�1=2(j�̂CLj

2 � j�qj
2)) N(0; 2 + 4a): (4:13)

Proof. By (4.8),

q
�1=2(jXj2 � q � j�qj

2) = q
�1=2(jX � �qj

2 � q) + 2q�1=2�0
q
(X � �q): (4:14)

The desired weak convergence follows from the de�nition (2.14) of �̂CL and from

Lemma 4.1.
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Proof of Theorem 2.3. The lower asymptotic minimax bound (2.23) follows

by an extension of the argument for Theorem 3.2 in Beran (1994). Because of

Lemma 4.2, the limiting distribution of q�1=2[f(j�̂CLj
2
=q)� f(j�qj

2
=q)] under P�q

is N(0; (2+4a)[f 0(a)]2). Because the function u is continuous almost everywhere,

conclusion (2.24) follows.

Proof of (3.1). This follows from (4.9), the �rst three moments of the chi-

squared and normal distributions, and a dominated convergence argument.

Proof of Theorem 3.1. Suppose j�qj
2
=q ! a < 1 as q ! 1. Then, by

Lemma 4.1 and (4.8), j�̂CLj
2
=q ! a, jXj2=q ! a and j�̂Sj

2
=q ! a

2
=(1 + a), all in

P�q
-probability. These convergences and Theorem 2.1 imply Theorem 3.1.

Proof of Theorem 3.2. A relatively short heuristic argument for (3.17) and

for the analogous assertions concerning CS;A or CS;B parallels the discussion in

Beran (1988), Section 3. The starting point is the Edgeworth expansion (3.3).

A more rigorous argument can be constructed by the methods in Hall (1992).
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