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Abstract: The paper reviews the iterative Image Space Reconstruction Algorithm

(ISRA) for solving Linear Inverse Problems with Positive Constraints. The develop-

ment follows that for the EM algorithm in Vardi and Lee (1993). The algorithm is set

down, a range of special cases for particular contexts are listed, convergence issues are

discussed, and there is a concluding discussion. The speeds of convergence of EM and

ISRA are comparable, although the latter often needs noticeably fewer operations per

iteration.
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1. Introduction to the Iterative Image Space Restoration Algorithm

The iterative Image Space Restoration Algorithm (ISRA) was christened by

Daube-Witherspoon and Muehllehner (1986) in the context of image reconstruc-

tion from emission computed tomography data. Suppose, in that context, there

are M source pixels, the ith of which has emission density fi. Measurements

fgjg are observed, where gj is the number of coincidences counted in the jth

of N pairs of detector elements. There are numbers fhijg such that hij is the

probability that an event emitted from pixel i is received at detector j. ThusP
j hij = 1 and the expected value of gj is

P
i fihij . The reconstruction problem

is that of inferring values for the ffig, given the fgjg and assuming that the

fhijg are known. The iterative procedure derived by Daube-Witherspoon and

Muehllehner (1986) for reconstructing the f = ffig is as follows: initialize the

procedure by choosing an f (o) > 0 (i.e. f
(o)
i > 0 for all i), and then generate a

sequence ff (n)g using the iteration

f
(n)
i = f

(n�1)
i

� NX
j=1

hijgj

�.n NX
j=1

hij

� MX
s=1

f (n�1)s hsj

�o
; i = 1; : : : ;M; n = 1; 2; : : : :

(1:1)
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This is the discrete version of the ISRA. Daube-Witherspoon and Muehlleh-

ner (1986) formulated the ISRA as an alternative to the Poisson-based EM algo-

rithm, for which the iterative step corresponding to (1.1) is

f
(n)
i = f

(n�1)
i

NX
j=1

n
hij

. MX
s=1

f (n�1)s hsj

o
gj ; i = 1; : : : ;M; n = 1; 2; : : : : (1:2)

They favoured the ISRA because it involves fewer calculations per iteration than

does EM when the number of detector-pairs, N , is large, although the speeds

of convergence of the two algorithms are comparable. It is clear, from (1.1),

that the summations over j need be carried out only once, at the beginning of

the procedure. Daube-Witherspoon and Muehllehner (1986) o�ered no formal

justi�cation for the algorithm, nor did they provide any theoretical arguments

justifying its convergence. They motivated the ISRA heuristically by noting that,

on the right-hand side of (1.1),
P

j hijgj represents a back-projection of the data

fgjg associated with pixel i, whereas
P

j hijf
P

s f
(n�1)
s hsjg represents a corre-

sponding back-projection of the current `�tted values' for the fgjg. The ISRA is

designed to lead eventually to matching of these two sets of back-projections.

Progress on formal justi�cation and convergence properties was made by

Titterington (1987) and De Pierro (1987). Titterington (1987) noted that the

algorithm could be interpreted as an iterative approach to the computation of

least-squares estimates, and De Pierro (1987) also identi�ed the algorithm with

a more general algorithm of Chahine (1970) for solving linear equations.

Before we review the work on this interpretation towards the end of Section 2,

we derive more general, discrete and continuous versions of the ISRA appropriate

for solving a more general class of LININPOS problems (Linear Inverse problems

with Positivity restrictions), which may or may not have probabilistic origins. We

use the nomenclature and notation of Vardi and Lee (1993), hereafter referred to

as VL, and the main purpose of this paper is to show that it is straightforward

to develop the ISRA, along the same lines as VL's work on the EM algorithm.

Section 3 demonstrates this for a number of special cases. Section 4 discusses

issues of convergence for the ISRA, and Section 5 describes both comparisons

with the EM algorithm and further generalizations.

2. The EM and ISRA Algorithms for a Class of LININPOS Problems

There are various forms for LININPOS problems, depending on the nature

of the underlying structure, and the following equations summarize two di�erent

cases:
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gj =
MX
i=1

fihij ; j = 1; : : : ; N ; (2:1)

g(y) =

Z

Df

h(x; y)f(x)dx; y 2 Dg: (2:2)

In (2.2), Df and Dg are the domains of, respectively, the nonnegative real-

valued functions f and g, and h is a non-negative, real-valued, bounded function

on Df � Dg. In the discrete version (2.1), Df = f1; : : : ;Mg; Dg = f1; : : : ; Ng

and gj ; fi and hij are non-negative for all i and j.

The objective is to invert (2.1) and (2.2); given g(�) in (2.2) to solve for f(�)

and, given fgjg in (2.1), to solve for ffig. VL point out that both of (2.1) and

(2.2) are special cases of the formulation

G(y) =

Z
Df

F (dx)H(x; y); y 2 Dg; (2:3)

where G(�) and, for any x 2 Df , H(x; �) are non-negative measures on Dg,

and F (�) is a non-negative measure on Df . They propose iterative algorithms,

similar to the EM algorithm, for inverting the equations. If G(�) and H(x; �),

for any x, are probability measures, then so must be F (�), and in this case the

algorithms are, for (2.1) and (2.2), respectively, iteration (1.2), initialized by

f
(o)
i > 0, i = 1; : : : ;M , and

f (n)(x) = f (n�1)(x)

Z
Dg

n
h(x; y)

. Z
Df

f (n�1)(s)h(s; y)ds
o
g(y)dy; x 2 Df ;

(2:4)

initialized by f (o)(x) > 0, for all x 2 Df ; n = 0; 1; : : :. See Titterington and Rossi

(1985) for an earlier account of the discrete case.

The ISRA's for solving (2.1) and (2.2) are, respectively, iteration (1.1), ini-

tialized by f
(o)
i > 0; i = 1; : : : ;M , and

f (n)(x)

= f (n�1)(x)
nZ

Dg

h(x; y)g(y)dy
o.hZ

Dg

h(x; y)
nZ

Df

f (n�1)(s)h(s; y)ds
o
dy
i
;

x 2 Df ; (2:5)

initialized by f (o)(x) > 0, for all x 2 Df . These formulae hold whether or not the

measures G(�) and fH(x; �) : x 2 Dfg in (2.3) are probability measures, whereas

the formulae of VL require normalization modi�cations in order to cover the case

of general, non-negative measures.
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VL discuss the convergence of (1.2) and (2.4) to a solution of the appropriate

version of (2.3), they relate the general structure to problems in statistics and

optimal portfolio investment, and they expound and illustrate some special cases

based on motion-blurred images.

The formulae of VL are related to solutions of maximum (log)likelihood

problems and, consequently, to the minimization of certain Kullback-Leibler di-

rected divergences, an observation which is a key point in convergence proofs.

The ISRA, on the other hand, is motivated by its relationship to least-squares

estimation, as hinted in Section 1.

To see this consider, �rst, the discrete case, and the sum of squares function

S(f) =
NX
j=1

�
gj �

MX
i=1

fihij

�2
= kg �HTfk22; (2:6)

where gT = (g1; : : : ; gN ), f
T = (f1; : : : ; fM) and H = fhijg. We wish to minimize

this, subject to f � 0. Any minimizer f̂ of S(f) satis�es

HHT f̂ = Hg;

i.e., X
j

hij

�X
s

f̂shsj

�
=
X
j

hijgj ; i = 1; : : : ;M; (2:7)

con�rming the desired equality of the two sets of back-projections identi�ed by

Daube-Witherspoon and Muehllehner (1986); see Section 1.

Thus

1 =
�X

j

hijgj

�.nX
j

hij

�X
s

f̂shsj

�o
; i = 1; : : : ;M:

Multiplication of both sides by f̂i leads to a set of equations that clearly stimulate

(1.1).

The sum of squares function underlying (2.5) is

S(f) =

Z
Dg

n
g(y)�

Z
Df

f(s)h(s; y)ds
o2
dy;

and application of the calculus of variations provides the stationarity equations

Z
Dg

h(x; y)
nZ

Df

f(s)h(s; y)ds
o
dy =

Z
Dg

h(x; y)g(y)dy: (2:8)

Iteration (2.5) evolves from (2.8) in the same way that (1.1) does from (2.7).

Clearly, in both the discrete and continuous cases, if the initial f (o) > 0, then

f (n) � 0 for all n, in view of the nonnegativity of G(�) and fH(x; �)g. Even if the
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latter are all probability measures, there is no guarantee that f (n) is a probability

measure for any n, except possibly for n = 0, by design, but, if the algorithms

converge to a solution of (2.1) or (2.2), then the limit will be a probability measure

if the same is true for G(�) and fH(x; �)g. If only the fH(x; �)g are probability

measures, then the algorithm converges to a solution with total measure equal

to that of G. In principle, one might constrain the total measure associated with

F using a Lagrange multiplier (c.f: Section 4.5.2 of Titterington et al. (1985)),

but it seems an unnecessary complication in view of the limiting behaviour.

It is important to emphasize that, although both the EM and ISRA have

appealing statistical links, they are applied in VL and this paper, respectively,

at a level of generality that transcends statistical contexts.

3. Examples

In this Section we list briey versions of the ISRA for a variety of particular

cases, drawing heavily from the examples considered by VL. In particular, we

illustrate the performance of the ISRA on their `cart' experiment, and compare

the resulting restoration with that obtained with the EM algorithm.

Example 1. Inversion of simple linear equations

This example is extremely trivial, but illustrates elementary features of the

behaviour of the ISRA and EM algorithms in solving under-determined linear

systems.

Case 1. One equation in two unknowns

Suppose we wish to �nd f1 and f2 to solve

g = h1f1 + h2f2:

The ISRA is easily shown to be

f
(n)
i = f

(n�1)
i g=fh1f

(n�1)
1 + h2f

(n�1)
2 g; i = 1; 2:

Thus, for any f (o); h1f
(1)
1 + h2f

(2)
2 = g, so that the ISRA converges in one

step. It is easy to show that the same is true of the EM algorithm.

Case 2. Two equations in three unknowns

In this case, neither algorithm converges at once. For illustrative purposes,

consider the equations

g1 =f1 + f2;

g2 =f2 + f3;
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with g1 = g2 = 2. Clearly any f of the form fT = (f1; 2 � f1; f1) solves these

equations. The ISRA is

f
(n)
1 = 2f

(n�1)
1 =(f

(n�1)
1 + f

(n�1)
2 );

f
(n)
2 = 4f

(n�1)
2 =(f

(n�1)
1 + 2f

(n�1)
2 + f

(n�1)
3 );

f
(n)
3 = 2f

(n�1)
3 =(f

(n�1)
2 + f

(n�1)
3 ):

The �rst and third equations for the EM algorithm match those of the ISRA,

whereas the second one is

f
(n)
2 = f

(n�1)
2 f(f

(n�1)
1 + f

(n�1)
2 )�1 + (f

(n�1)
2 + f

(n�1)
3 )�1g:

Table 1 compares the algorithms in terms of the number of iterations required

to obtain the limiting point correct to three decimal places in each component of

f̂ . If f (o) = (a; a; a), for any a, each algorithm converges at once to f̂ = (1; 1; 1).

If f (o) = (a; b; a), for b 6= a, each algorithm also converges at once, to the same f̂

for both algorithms. Otherwise, the algorithms converge to di�erent, but similar,

f̂ 's, in roughly the same number of iterations as each other.

Table 1. Iterations required for convergence of ISRA and EM algorithms from various

starting points. Solutions required to be correct to 3 decimal places in all elements.

f (o) (f̂1; f̂2) Iterations

ISRA EM ISRA EM

(0.5, 1.0, 1.5) (0.951, 1.049) (0.906, 1.094) 12 13

(0.5, 1.5, 1.0) (0.646, 1.354) (0.636, 1.364) 18 18

(1.5, 0.5, 1.0) (1.425, 0.575) (1.416, 0.584) 6 7

(0.1, 1.0, 9.9) (0.648, 1.352) (0.664, 1.336) 10 20

(1.0, 0.1, 9.9) (1.963, 0.037) (1.899, 0.101) 3 3

(1.0, 9.9, 0.1) (0.063, 1.937) (0.061, 1.939) 190 182

Example 2. Portfolio Optimization (VL, Section 3.1)

VL introduce a di�erent notation here but we retain that of our earlier Sec-

tions. As a result, the algorithm is precisely that of (1.1), with the following

interpretations for f , g and H. For each i, fi is the proportion of total assets to

be invested in stock i, the jth column of H contains one of the N possible sets

of returns from the M stocks, and gj denotes the probability that the jth set of

returns will materialize, j = 1; : : : ; N .

This example is essentially the same as the example of grouped data consid-

ered in Section 3.2 of VL.
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Example 3. Emission Tomography (VL, Section 3.3, Shepp and Vardi (1982))

Again (1.1) is the relevant ISRA, if we use fi to denote the emission intensity

at pixel i, gj as the number of recorded events at detector j, and hij as the

probability that a Poisson emission in pixel i is picked up in detector j. This

manifestation is similar to the case of estimating the mixing weights of a mixture

ofM known multinomials, each de�ned on the same sample space ofN categories.

In that case, f is the set of mixing weights, g is the proportion of observations

that fall into category j, and the ith row of H contains the ith `pure' multinomial

distribution.

Titterington and Rossi (1985) noted the relationship between these two prob-

lems in the context of the EM algorithm, building on the earlier work of Di Gesu

and Maccarone (1984).

Example 4. Mixtures (VL, Section 3.4)

The special case of �nite mixtures of multinomials is dealt with in Example

3. For more general �nite mixtures, VL distinguish between two cases related to

the \estimation" of the mixing weights fi corresponding to the following version

of (2.3):

G(�) =
X
i

fiH(i; �): (3:1)

Suppose hi(�) denotes the density associated with H(i; �). If the problem is

the statistical estimation of the ffig from a random sample Y1; : : : ; YN from the

mixture, and if GN denotes the corresponding empirical distribution, then the

ISRA is

f
(n)
i = f

(n�1)
i

nZ
Dg

hi(y)dGN (y)
o.hZ

Dg

hi(y)
nX

s

f (n�1)s hs(y)
o
dy
i
: (3:2)

If, on the other hand, one is simply inverting (3.1), then the ISRA is given

by (3.2) but with GN replaced by G.

Example 5. Convolutions and Motion Blurring (VL, Sections 4 and 5).

In this example, h(x; y) � h(y � x). We follow VL in concentrating, for

simplicity, on the case of one-dimensional images, so that f(�) and g(�) denote,

respectively, the unblurred and blurred images, and � = f(t); 0 � t � Tg

describes the blur in terms of the path followed by an origin of the coordinate

system during the exposure interval [0; T ] of the photograph that produced g.

Thus, instead of (2.3) we have, for all y,

g(y) =

Z T

0

ffy � (t)gdt =

Z
f(x)

1�(y � x)

j0f�1(y � x)gj
dx;
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where the limits of integration are de�ned by the indicator function. In terms of

(2.3),

h(x; y) � 1�(y � x)=j0f�1(y � x)gj:

In the continuous case (c.f: (4.8) of VL) the general form of the ISRA is

f (n)(x) = f (n�1)(x)
nZ

x+�
j0f�1(y � x)gj�1g(y)dy

o.
hZ

x+�

j0
n
�1(y � x)

o
j�1
nZ

y��

f (n�1)(s)j0f�1(y � x)gj�1ds
o
dy
i
:

Special versions for the cases of constant-speed linear motion and constant

acceleration from rest along a straight line (both dealt with by VL) are easily

written down (see Archer and Titterington (1993) for details).

In the discrete case, the general form of the algorithm is given by (1.1).

In the version for constant-speed linear motion, hij = a1f0;:::;bg(j � i), for some

a > 0, and (1.1) becomes (c.f: (5.6) of VL)

f
(n)
i = f

(n�1)
i a�1

� i+bX
j=i

gj

�.n i+bX
j=1

L2X
s=L1

f (n�1)s

o
; (3:3)

where L1 = maxf1; j � bg and L2 = minfM; jg.

For details of the version for constant acceleration from rest along a straight

line, see Archer and Titterington (1993).

We applied the algorithm to the `cart' example that constitutes Experiment

2 of VL. We followed their procedure as closely as possible and ran both the EM

and ISRA algorithms for 106 iterations.

Two details of the image were considered, each of which was a 250 � 250

pixel scene (M = 62500). It was assumed, as in VL, that motion blur of 106

pixels had been imposed and, in analyzing the two subimages, data were used

from adjoining strips of widths 106 pixels. The ISRA was therefore based on

(3.3).

Figure 1(a) shows the �rst sub-image, which comprises the area of the whole

image near a blurred wheel. Figs. 1(b) and 1(d) show, respectively, the results of

applying the EM-algorithm and the ISRA for 106 iterations, and Fig: 1(c) shows

the di�erence-image between EM and ISRA. The only substantial di�erences

occur near the bottom left edge of the wheel. In both Fig: 1(b) and Fig: 1(d)

there is evidence of the vertical artefacts, mentioned in VL, that are, interestingly,

less evident after 40 iterations, as shown in Fig: 2. Fig: 2 is the 40-iterations

equivalent of Fig: 1; at that stage, the EM and ISRA results are very similar.



THE ITERATIVE IMAGE SPACE RECONSTRUCTION ALGORITHM 85

(a) (b)

(c) (d)

Figure 1. Wheel sub-image after 106 iterations: (a) data; (b) EM; (c) EM-ISRA di�er-

ence image; (d) ISRA.
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(a) (b)

(c) (d)

Figure 2. Wheel sub-image after 40 iterations: (a) data; (b) EM; (c) EM-ISRA di�erence

image; (d) ISRA.
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(a) (b)

(c) (d)

Figure 5. Letter sub-image after 106 iterations: (a) data; (b) EM; (c) EM-ISRA di�er-

ence image; (d) ISRA.

The other part of the image examined includes the letters `RPO' from the

word `AIRPORT'. Fig: 5 is the 106-iterate version (c.f: Fig: 1) and Fig: 6

corresponds to 40 iterations (c.f: Fig: 2). Again, the two algorithms produced,
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(a) (b)

(c) (d)

Figure 6. Letter sub-image after 40 iterations: (a) data; (b) EM; (c) EM-ISRA di�erence

image; (d) ISRA.

in general, very similar results, and the 40-iterate restorations seem to be at least

as appealing as those after 106 iterations. It seems likely that, as emphasized

later in Section 5.2, the inverse problem is somewhat ill-posed, and that stopping

at, say, 40 iterations imposes bene�cial regularization.
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4. Convergence of the ISRA

As remarked by VL (end of Section 1.3) in the context of their algorithm,

if the LININPOS has no nonnegative solution (in particular, if M < N in the

discrete version), then convergence of the algorithm should obtain to a closest,

in some sense, approximation to such a solution.

Convergence aspects of the discrete ISRA are discussed by Titterington

(1987) and De Pierro (1987, 1990), and for Chahine's algorithm by Chu (1985).

However, the most complete discussion appears to be that of Eggermont (1990)

and we summarize this below.

De�ne Dr = diagff
(r)
i =(HHT f (r))i; i = 1; : : : ;Mg. Then, by Lemma 6.1 of

Eggermont (1990),

S(f (n�1))� S(f (n)) � (f (n�1) � f (n))TD�1
n�1(f

(n�1) � f (n)); (4:1)

where S(f) is de�ned in (2.6). Thus, fS(f (n))g is decreasing and since, for every

n, ff � 0 : S(f) � S(f (o))g is a compact set, ff (n)g is bounded and every

subsequence itself contains a convergent subsequence.

Now let f̂ be any point of accumulation of ff (n)g, let � = diagf(Hg)i; i =

1; : : : ;Mg, let

�KL(x; y) =
MX
i=1

fxi log(xi=yi) + yi � xig;

the Kullback-Leibler directed divergence for x > 0; y > 0, and let

e(f̂ ; f) = �KL(�f̂ ; �f) + S(f)� S(f̂): (4:2)

Then Lemma 6.2 of Eggermont (1990) shows that

e(f̂ ; f (n�1)) � e(f̂ ; f (n)):

The convergence properties of ff (n)g imply that fe(f̂ ; f (n))g and, hence,

f�KL(�f̂ ; �f
(n))g converge to zero. The last result implies that ff (n)g converges

to f̂ , which can be shown to be a minimizer of S(f), subject to f � 0. The

consummation of this analysis is therefore the following theorem.

Theorem 1. The ISRA de�ned by (1:1) and initialized by f (o) > 0, generates a

sequence ff (n)g that converges to an f̂ that minimizes S(f) subject to f � 0.

Extension beyond the discrete case proceeds along similar lines to those in

Section 3.4 of VL; the main steps are sketched below.
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4.1. The case of �nite Df

Suppose Df = f1; : : : ;Mg, that

g(y) =
MX
i=1

hi(y)fi; y 2 Dg;

and that ff (n)g are generated according to

f
(n)
i = f

(n�1)
i

nZ
Dg

hi(y)g(y)dy
o.hZ

Dg

hi(y)
n MX
s=1

f (r)s hs(y)
o
dy
i
; i = 1; : : : ;M;

(4:3)

starting from f (o) > 0. Then (4.1) and (4.2) hold with

S(f) =

Z
Dg

n
g(y)�

X
i

hi(y)fi

o2
dy; (4:4)

Dr = diag
n
f
(r)
i

.hZ
Dg

hi(y)
n MX
s=1

f (r)s hs(y)
o
dy
i
; i = 1; : : : ;M

o

and � = diagf
R
Dg

hi(y)g(y)dy; i = 1; : : : ;Mg. The argument of Theorem 1 then

con�rms that ff (n)g converges to an f̂ that minimizes S(f), as de�ned by (4.4),

subject to f � 0.

4.2. The case of continuous Df

As in the case of Section 3.4.2 of VL, we attack this by way of a discretization

approach. Suppose g(�) and h(x; �) are nonnegative, integrable functions on Dg

and suppose

g(y) =

Z
Df

h(x; y)f(x)dx; x 2 Df ; (4:5)

has a non-negative solution that is piecewise constant over the measurable parti-

tion fB1; : : : ; BM 0g of Df (�(Bi)>0, all i). Then, for any re�nement fA1; : : : ; AMg

of fB1; : : : ; BM 0g(�(Ai) > 0, all i), the ISRA

�
(n)
i = �

(n�1)
i

nZ
Dg

H2(Ai; y)g(y)dy
o.hZ

Dg

H2(Ai; y)
nX

s

�(n�1)s H2(As; y)
o
dy
i
;

(4:6)

i = 1; : : : ;M , n = 1; 2; : : : ; initialized by �(o) > 0, converges to a limiting value

�� (� 0), and

fM�(x) =
MX
i=1

��i 1Ai
(x); x 2 Df ; (4:7)
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is a solution of (4.5). In (4.6), H2(Ai; y) =
R
Ai
h(x; y)dx, all i, and in (4.7), 1Ai

(�)

is the indicator function for Ai, all i.

This result follows from the results already obtained in this, our Section 4,

and the �nal steps to the continuous case are parallel to those in Section 3.5 of

VL.

5. Discussion

5.1. ISRA versus EM

The illustration in Section 3 provides empirical information about the com-

parison between the ISRA and the EM algorithm. In general, both algorithms are

prone to slow convergence. In the context of emission tomography (ET), Daube-

Witherspoon and Muehllehner (1986) provide further empirical evidence of this,

but point out that the number of operations per iteration is signi�cantly lower

in the ISRA. Both algorithms can be accelerated, either by applying Aitken's �2

procedure, or by adding a linear search embellishment. Lewitt and Muehllehner

(1986) implement this in the case of the EM algorithm for ET, and De Pierro

(1987) points out for the ISRA that both the optimal step-length in the proposed

direction is easily computed and the link with Chahine's (1970) algorithm makes

available further improvement mechanisms developed in other branches of the

inverse-problems literature.

An alternative general approach to the inversion of linear equations is through

the Fourier domain. In the situation when there are missing data, Ollinger and

Karp (1988) compare the ISRA with two such methods, �nding that the ISRA

is slow in comparison but admitting that it could be accelerated.

The (very limited) evidence from Table 1 is that the convergence rates of

the EM and ISRA algorithms may be similar. The local (near the limit point)

convergence behaviour in the case of f with �nite domain, Df , is dependent on

Ostrowski's Theorem; see, for instance, Ortega and Rheinboldt (1970, p.300).

Consider an iterative algorithm of the form

f
(n)
i = �i(f

(n�1)); i = 1; : : : ;M; n = 1; 2; : : : ;

and suppose that f̂ is the limit of ff (n)g. De�ne the matrix U(f) = fUis(f)g by

Uis(f) = @�i(f)=@fs, for i; s = 1; : : : ;M . Then the rate of local convergence to

f̂ is dictated by the spectral radius of U(f̂).

Consider now the versions of U(f) corresponding to the discrete ISRA given

by (1.1) and the discrete EM algorithm de�ned by

f
(n)
i = f

(n�1)
i

� NX
j=1

hij

�
�1 NX

j=1

n
hij

.� MX
s=1

f (n�1)s hsj

�o
gj ; i = 1; : : : ;M: (5:1)



94 G. E. B. ARCHER AND D. M. TITTERINGTON

This is the version of (1.2) corresponding to the more general case in whichP
j hij 6= 1 for all i. It is straightforward (Archer and Titterington (1993)) to

show that, for the ISRA,

Uis(f̂) = �is � f̂i

� NX
j=1

hijhsj

�.� NX
j=1

hijgj

�
; i; s = 1; : : : ;M; (5:2)

and, for the EM algorithm,

Uis(f̂) = �is � f̂i

� NX
j=1

hij

�
�1 NX

j=1

�
hijhsj=gj

�
; i; s = 1; : : : ;M; (5:3)

in both of which �is is the Kronecker delta. The methods of Titterington (1987)

show that, in both cases, the eigenvalues of U(f̂) are non-negative and strictly

less than unity. Comparison of the maximum eigenvalues in particular cases

would complete the comparison of local convergence properties. In the case of

the illustration in Example 1, Case 2, in which N = 2 and g1 = g2, (5.2) and

(5.3) are identical.

5.2. Addition of penalty functions

Many practical inverse problems su�er from ill-posedness, with the result

that direct inversion can lead to an unsatisfactory f̂ , particularly if there is any

chance of uncertainty or noise. A common device for counteracting this is to

add a roughness penalty function to a loglikelihood or sum-of-squares function

before optimizing. The resulting f̂ is typically improved in terms of mean-squared

error properties and can often be interpreted in Bayesian terms as a maximum

a posteriori (MAP) estimate of f .

Consider, �rst, the discrete case. Instead of S(f) in (2.6) one would consider

S�;C(f) = kg �HTfk22 + �fTCf; (5:4)

in which � > 0 and C is nonnegative de�nite. Since (5.4) is interpretable as

equivalent to the logarithm of a (Normal) posterior density for f , given g, an

EM algorithm for seeking the posterior mode (the MAP estimate of f) can be

constructed along the lines of Section 4.5 of Dempster et al. (1977).

So far as the ISRA is concerned, any minimizer of S�;C(f) satis�es

Kf = v;

where K = (HHT + �C) and v = Hg, stimulating the algorithm

f
(n)
i = f

(n�1)
i vi

.�X
s

kisf
(n�1)
s

�
; i = 1; : : : ;M:
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In this case, it is typical that some of the elements of C are negative, so that

it is not automatic that f (n) � 0 for all n.

In the case of a continuous function, the usual kind of penalty function is

based on derivatives of f , a common one being

�

Z
Df

ff 00(x)g2dx; (5:5)

where f(�) is the density associated with the measure F (�). However, it is common

to restrict the choice of f to some space spanned by a certain class of basis

functions, and (5.5) reduces to a quadratic form in a transformed, �nite vector

of parameters (see Silverman (1985), for example). The corresponding S(f) is

similarly transformed and the problem reverts to one of the form (5.4). Byrne

(1993) studies penalized versions of the EM algorithm.

5.3. Wider Classes of Algorithms

In this �nal section we refer again to Eggermont (1990), who considers wider

classes of algorithms which include the EM algorithm and the ISRA as special

cases. Consider the (discrete-case) problem of minimizing S(f), subject to f � 0,

where S(�) is a convex, continuously di�erentiable function on RM , with compact

level sets and locally Lipschitz continuous gradient. Eggermont (1990) considers

three classes of multiplicative, iterative algorithms, of the following forms:

f
(n)
i = f

(n�1)
i [1� wnfrS(f

(n�1))gi]; i = 1; : : : ;M; (5:6)

f
(n)
i [1 + wnfrS(f

(n))gi] = f
(n�1)
i ; i = 1; : : : ;M; (5:7)

and

f
(n)
i = f

(n�1)
i =[1 + wnfrS(f

(n�1))gi]; i = 1; : : : ;M: (5:8)

In (5.6)-(5.8), wn is a step-length parameter. Algorithm (5.7) is called an

implicit algorithm and (5.8) explicit. For appropriate choices of S, wn � 1 in

(5.6) gives the EM algorithm in emission tomography and (5.8) gives the ISRA.

In discussing (5.8), Eggermont (1990) develops the convergence properties for the

ISRA as described above in Section 4, and establishes the convergence properties

of the implicit algorithm (5.7) by a similar but slightly simpler argument.

It would be of interest to investigate other versions of these algorithms, for

di�erent choices of S, for various choices of the step-lengths fwng, and in the

context of the versions appropriate for solving integral equations.
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