
Statistica Sinica 5(1995), 41-54
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Abstract: We provide a su�cient condition for convergence of a general class of al-

ternating estimation-maximization (EM) type continuous-parameter estimation algo-

rithms with respect to a given norm. This class includes EM, penalized EM, Green's

OSL-EM, and other approximate EM algorithms. The convergence analysis can be ex-

tended to include alternating coordinate-maximization EM algorithms such as Meng

and Rubin's ECM and Fessler and Hero's SAGE. The condition for monotone con-

vergence can be used to establish norms under which the distance between successive

iterates and the limit point of the EM-type algorithm approaches zero monotonically.

For illustration, we apply our results to estimation of Poisson rate parameters in emis-

sion tomography and establish that in the �nal iterations the logarithm of the EM

iterates converge monotonically in a weighted Euclidean norm.

Key words and phrases: Penalized and approximate EM, convergence rates, norm

reducing property, applications to tomographic imaging.

1. Introduction

The maximum-likelihood (ML) expectation-maximization (EM) algorithm

is a popular iterative method for �nding the maximum likelihood estimate �̂ of

a continuous parameter � when the likelihood function is di�cult to maximize

directly (e.g: Dempster, Laird and Rubin (1977), Shepp and Vardi (1982), Lange

and Carson (1984), Miller and Snyder (1987), Feder, Oppenheim and Weinstein

(1989), and Segal, Weinstein and Musicus (1991)). The penalized EM algorithm

is a variant of the EM algorithm which can be used for �nding maximum a

posteriori (MAP) or posterior mode estimates of a random parameter (e.g: Green

(1990a, b), Hebert and Leahy (1989, 1992)). To implement the EM algorithm the

user �rst identi�es a complete data space, also called an augmented data space

(Wei and Tanner (1990)), for which there exists a many-to-one mapping from

the complete data to the measurement data, called the incomplete data. Then

one alternates between estimating the conditional mean of the complete data

log-likelihood function or log-posterior and updating the parameter estimate.

Three types of convergence results are of practical importance: conditions

under which the sequence of estimates converges globally to a �xed point, norms
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under which the convergence is monotone; and the asymptotic convergence rate

of the algorithm. A number of authors have established global convergence for

the exact EM algorithm when the likelihood function satis�es conditions such as

boundedness and unimodality (see Wu (1983), Boyles (1983), Lange and Carson

(1984), Csiszar and Tusnady (1984)). Sundberg (1976) and Louis (1982) have

derived asymptotic convergence rates for the EM algorithm which have been used

for estimating asymptotic estimator covariance (Louis (1982), Meng and Rubin

(1991)) and for accelerating the basic algorithm (Meilijson (1989)). A general

property of the EM algorithm is that successive iterates monotonically increase

the likelihood. While increasing the likelihood is an attractive property, it does

not guarantee monotone convergence of the parameter estimates: successive iter-

ates of the EM algorithm reduce the distance to the ML estimate in some norm.

In addition, for some implementations the region of convergence may only be a

small subset of the entire parameter space so that global convergence may not

hold. Furthermore, in some cases the EM algorithm can only be implemented

by making simplifying approximations in the conditional expectation step (E)

or the maximization step (M). While the resultant approximate EM algorithm

has a similar alternating estimation-maximization structure, previous approaches

developed to establish global convergence of the exact EM algorithm may not

be e�ective for studying asymptotic behavior of the algorithm. In this paper

we provide general conditions for monotone convergence and asymptotic conver-

gence rates for algorithms which can be implemented via alternating estimation-

maximization. The basics of this approach to EM algorithm convergence analysis

were �rst introduced in Hero (1992).

We illustrate the application of our convergence methodology for two exam-

ples. A linear EM algorithm for a simple linear Gaussian model provides the

most transparent illustration of the methodology. Then we consider the more in-

teresting non-linear case of emission computed tomography (ECT) with Poisson

statistics implemented with the EM algorithm of Shepp and Vardi (1982). For

the ECT problem we show that when the EM algorithm converges to a strictly

positive estimate, in the �nal iterations convergence is monotone in the follow-

ing sense: the natural logarithm of the n-th iterate converges monotonically as

n ! 1 to the natural logarithm of the ML estimate in a weighted Euclidean

norm.

2. An Archetype Algorithm

Let � = [�1; : : : ; �p]
T be a real parameter residing in an open subset � of the

p-dimensional space Rp. Given a general function Q : ���! R and an initial

point �0 2 �, consider the following recursive algorithm, called the A-algorithm:
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A-algorithm: �i+1 = argmax
�2�Q(�; �

i); i = 0; 1; : : : : (1)

If there are multiple maxima, then �i+1 can be taken to be any one of them. Let

�� 2 � be a �xed point of (1), i.e. �� satis�es: �� = argmax
�2�Q(�; �

�).

By suitable speci�cation of the function Q(�; ��) the A-algorithm special-

izes to many popular iterative estimation algorithms. For example, for com-

plete data X and incomplete data Y the EM algorithm is obtained by identi-

fying Q(�; ��) = Efln f(X; �)jY; ��g, where f(X; �) is a density function of the

random variable X for a particular value of an unknown parameter �. If a

penalty function P (�) is introduced then Q(�; ��) = Efln f(X; �)jY; ��g � P (�)

gives the EM algorithm for penalized ML estimation, or, if exp (�P (�)) is a

prior for �, it gives the EM algorithm for the posterior mode. Alternatively,

when Q(�; ��) = Efln f(X; �)jY; ��g � (rP )(��)[� � ��] we obtain the one-step-late

approximation of Green (1990a, b) to the EM algorithm for the posterior mode.

Likewise, the generalized EM algorithm of De Pierro (1993) and the linearized

EM algorithm of Antoniadis and Hero (1994) are A-algorithms (see Hero and

Fessler (1993)). Fessler and Hero (1994) extend the convergence results of this

paper to the space-alternating generalized EM (SAGE) algorithm in which the

functional Q(�; ��) changes with iteration. Similar extensions apply to the study

of monotone norm convergence for the multi-cycle expectation/conditional max-

imization (ECM) algorithm of Meng and Rubin (1993) and the ECME algorithm

of Liu and Rubin (1994).

Let k � k denote a vector norm on Rp. For any p � p matrix A the induced

matrix norm jjjAjjj (see Section 5.6 of Horn and Johnson (1985)) of A is de�ned

as:

jjjAjjj
def
= max

u2Rp�f0g

kAuk

kuk
;

where the maximization is over non-zero u in Rp. A special case is the matrix-2

norm jjjAjjj2 which is induced by the Euclidean vector norm kuk22 = uTu. We say

that a sequence ui, i = 1; 2; : : :, converges monotonically to a point u� in the

norm k � k if:

kui+1 � u�k � �kui � u�k; i = 1; 2; : : : ;

for some constant �, � 2 [0; 1). Consider the general linear iteration of the form

vi+1 = Avi; i = 1; 2; : : :, with jjjAjjj < 1. Then, since kvi+1k � jjjAjjj � kvik < kvik,

the sequence fvig converges monotonically to zero and the asymptotic rate of

convergence is speci�ed by the root convergence factor �(A) which is de�ned as

the largest magnitude eigenvalue of A (Ortega and Rheinboldt (1970, p. 301)). If
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A is real symmetric non-negative de�nite then �(A) = jjjAjjj
2
. The above simple

convergence conditions only apply to linear iterations. Theorem 1 below gives a

related set of convergence conditions for the generally non-linear A-algorithm.

Assume that the function Q(�; ��) is twice continuously di�erentiable in both

arguments � and �� over �; �� 2 �. De�ne the Hessian matrix of Q over ��� as

the following block partitioned 2p� 2p matrix:

r
2Q(�; ��) =

�
r20Q(�; ��) r11Q(�; ��)

(r11Q(�; ��))T r02Q(�; ��)

�
; (2)

where r20Q(�; ��) = r�r
T

�
Q(�; ��), r02Q(�; ��) = r��r

T
��
Q(�; ��), and r11Q(�; ��) =

r��r
T

�
Q(�; ��) are p� p matrices of partial derivatives @

2

@�i@�j
Q(�; ��), @

2

@��i@��j
Q(�; ��)

and @
2

@��i@�j
Q(�; ��), i; j = 1; : : : ; p, respectively.

A region of monotone convergence relative to the vector norm k � k of the

A-algorithm (1) is de�ned as any open ball B(��; �) = f� : k����k < �g centered

at � = �� with radius � > 0 such that if the initial point �0 is in this region then

k�i � ��k, i = 1; 2; : : :, converges monotonically to zero. Note that, as de�ned,

the shape in R
p of the region of monotone convergence depends on the norm

used. For the Euclidean norm kuk2 = uTu the region of monotone convergence

is a spherically shaped region in �. For a general positive de�nite matrix B

the induced norm kuk2 = uTBu makes this region an ellipsoid in �. Since

all norms are equivalent for the case of a �nite dimensional parameter space,

monotone convergence in a given norm implies convergence, however possibly

non-monotone, in any other norm.

De�ne the p� p matrices obtained by averaging r20Q(u; �u) and r11Q(u; �u)

over the line segments u 2
�!
��� and �u 2

�!
����:

A1(�; ��) =�

Z 1

0

r
20Q(t� + (1� t)��; t�� + (1 � t)��)dt; (3)

A2(�; ��) =

Z 1

0

r
11Q(t� + (1� t)��; t�� + (1� t)��)dt:

Also, de�ne the following set:

S(��) = f� 2 � : Q(�; ��) � Q(��; ��)g:

By the construction of the A-algorithm (1), we have �i+1 2 S(�i).

De�nition 1. For a given vector norm k�k and induced matrix norm jjj � jjj de�ne

R+ � � as the largest open ball B(��; �) = f� : k�� ��k < �g such that for each
�� 2 B(��; �):

A1(�; ��) > 0; for all � 2 S(��) (4)
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and for some 0 � � < 1����������A1(�; ��)
��1

� A2(�; ��)
��������� � �; for all � 2 S(��). (5)

The following convergence theorem establishes that, if R+ is not empty, the

region in De�nition 1 is a region of monotone convergence in the norm k �k for an

algorithm of the form (1). One can show that R+ is non-empty for su�ciently

regular problems. For example, assume that: (i) Q(�; ��) is continuously twice

di�erentiable in � and ��; (ii) Q can be written as Q(�; ��) = L(�) +H(�; ��)

where H(�; ��) � H(��; ��) and r11H(�; �) = �r20H(�; �) � 0 (as is

always the case for an EM algorithm (see Dempster, Laird and Rubin (1977)));

(iii) L(�) has a local maximum at � = �� and (iv) there exists a level L�

such that L(�) is strictly concave over the set f� : L(�) > L�g. Note that

under these conditions it follows from Corollary 1 of Wu (1983), that the set

f� : L(�) > L�g is a region of convergence to the global maximum, i.e: if the

initial point �0 is selected from this set subsequent iterates �i will converge to

��, although it is not generally a region of monotone convergence in norm.

A non-empty region of monotone convergence R+ is established as follows.

By assumptions (i) and (iv), for any � > 0 there exists a � > 0 such that

if �� 2 B2(�
�; �)

def
= f� : k� � ��k2 < �g then f� : L(�) � L(��)g � B2(��; �).

Since Q(�; ��) �Q(��; ��) � L(�)� L(��) we have S(��) � f� : L(�) � L(��)g.

Thus for �� 2 B2(�
�; �) and � 2 S(��) we have: A1(�; ��) = �r20Q(��; ��) +

O(�) and
������[A1(�; ��)]

�1A2(�; ��)
������ = jjj[r20Q(��; ��)]�1r11Q(��; ��)jjj+O(�). By

assumptions (ii) and (iv) the matrix �r20Q(��; ��) is symmetric positive

de�nite and r11Q(��; ��) is symmetric non-negative de�nite. Hence, for

su�ciently small � > 0, for all �� 2 B2(�
�; �) and for all � 2 S (��) the condition

(4) is satis�ed and, de�ning the norm k � k by kuk2 = uT [�r20Q(��; ��)] u:

we see jjj[�r20Q(��; ��)]�1r11Q(��; ��)jjj = �([�r20Q(��; ��)]�1 r11Q(��; ��))

= �([�r20L(��) � r20H(��; ��)]�1 [�r20H(��; ��)]) < 1 so that the condition

(5) is also satis�ed. Thus R+ is non-empty for any EM algorithm satisfying the

regularity conditions (i)-(iv).

Theorem 1. Let �� 2 � be a �xed point of the A algorithm (1), where

�i+1 = argmax
�2�Q(�; �

i), i = 0; 1; : : :. Assume: (i) for all �� 2 �, the max-

imum max�Q(�; ��) is achieved on the interior of the set �; (ii) Q(�; ��) is twice

continuously di�erentiable in � 2 � and �� 2 �, and (iii) the A-algorithm (1) is

initialized at a point �0 2 R+ for a norm k � k. Then

1. The iterates �i; i = 0; 1; : : : all lie in R+,

2. the successive di�erences ��i = �i��� of the A algorithm obey the recursion:

��i+1 = [A1(�
i+1; �i)]�1A2(�

i+1; �i) ���i; i = 0; 1; : : : : (6)
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3. the norm k��ik converges monotonically to zero with at least linear rate,

and

4. ��i asymptotically converges to zero with root convergence factor

�
��
�r

20Q(��; ��)
��1

r
11Q(��; ��)

�
< 1:

If the iterates are initialized within a region R+, or for that matter if any

iterate �i lies in R+, then all subsequent iterates will also lie within R+. Within

that region, Theorem 1 provides a functional relationship (6) between successive

iterates, which in turn ensures that the iterates converge monotonically in norm

to �� with an asymptotic linear rate governed by the spectral radius of a matrix

depending on the partial derivatives of Q. When specialized to the EM algorithm,

the root convergence factor is equivalent to the expression obtained by Dempster,

Laird and Rubin (1977) and used by Meng and Rubin (1991) to estimate the

asymptotic estimator covariance matrix.

Proof of Theorem 1. De�ne �� = �� �� and ��i = �i� ��. Convergence will

be established by showing that k��i+1k � �k��ik for some 0 � � < 1. De�ne

the 2p � 1 vectors � =
h
�

�i

i
, �� =

h
�
�

��

i
and �� = � � ��. By assumption (ii) of

the Theorem we can use the Taylor formula with remainder (Polak (1971), Eq.

B.1.4)

h(�)� h(��) =

Z 1

0

(rh) (t� + (1� t)��)dt ��

to expand the column vector h(�)
def
= [r10Q(�; �i)]T about the point � = �� to

obtain from (3)

r
10Q(�; �i) = �A1(�; �

i)�� +A2(�; �
i)��i: (7)

To obtain (7) we have used the assumption that �� is a �xed point of the A-

algorithm: h(��) = r10Q(��; ��) = 0.

Since �i+1 = argmax
�
Q(�; �i) lies in the interior of �, we have r10Q(�i+1; �i)

= 0. Therefore from (7):

�A1(�
i+1; �i)��i+1 +A2(�

i+1; �i)��i = 0: (8)

We prove the �rst part of the theorem using induction. Firstly, �0 2 R+ by

assumption. Now suppose �i 2 R+. Since �i+1 2 S(�i), by (4) A1(�
i+1; �i) is

invertible, so, rearranging (8) yields:

��i+1 = [A1(�
i+1; �i)]�1A2(�

i+1; �i) ���i; (9)
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and

k��i+1k �
������A1(�

i+1; �i)]�1A2(�
i+1; �i)

������ � k��ik
� sup

�2S(�i)

������[A1(�; �
i)]�1A2(�; �

i)
������ � k��ik

� �k��ik; (10)

where the last inequality follows from (5) and the supposition that �i 2 R+.

Since � < 1 and R+ is an open ball centered at �� which contains �i, this implies

that �i+1 2 R+, proving the induction step. Furthermore, from (10) we conclude

that k��ik = k�i � ��k converges monotonically to zero with at least linear

convergence rate.

Next, we establish the asymptotic convergence rate stated in the theorem.

By continuity of the derivatives of Q(�; �i) and the result (10) we obtain:

A1(�
i+1; �i) = �r

20Q(��; ��) +O(k��ik);

A2(�
i+1; �i) = r

11Q(��; ��) +O(k��ik):

Thus, by continuity of the matrix norm:

�� sup
�2S(�i)

������[A1(�; �
i)]�1A2(�; �

i)
������= �����������r20Q(��; ��)

��1
r

11Q(��; ��)
���������+O(k��ik):

Since � < 1, taking the limit of the right hand side as i!1 establishes that�����������r20Q(��; ��)
��1

r
11Q(��; ��)

��������� < 1: (11)

Furthermore (9) takes the asymptotic form : ��i+1=[�r20Q(��; ��)]�1r11Q(��; ��)

���i + o(k��ik): Therefore, the asymptotic rate of convergence is given by the

root convergence factor � ([�r20Q(��; ��)]�1r11Q(��; ��)). For any matrix A we

have �(A) � jjjAjjj (Horn and Johnson (1985), Thm: 5.6.9) so that, in view of

(11), the root convergence factor is less than one.

As will be seen in the next section, to apply Theorem 1 it is sometimes useful

to make a transformation of parameters � ! � . Consider a smooth invertible

functional transformation g: � = g(�). Then �i can be represented as g�1(� i),

where g�1 is the inverse of g; and the sequence f� ig is generated by an analogous

A-algorithm:

� i+1 = argmax
�2g(�)

~Q(�; � i); i = 0; 1; : : : ;

and
~Q(�; � i)

def
= Q

�
g�1(�); g�1(� i)

�
= Q(�; �i)

��
�=g�1(�);�i=g�1(� i)

:
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The convergence properties of the sequence � i = g(�i) can be studied using

Theorem 1 with A1 and A2 de�ned in terms of the mixed partial derivatives of
~Q:

r
11 ~Q(�; � i) = (J�1(�))T

�
r

11Q
�
g�1(�); g�1(� i)

��
J�1(� i); (12)

r
20 ~Q(�; � i) = (J�1(�))T

�
r

20Q
�
g�1(�); g�1(� i)

��
J�1(�); (13)

where J(�) = rg(�)j
�=g�1(�)

is the p � p Jacobian matrix of partial derivatives

of g.

3. Examples

To illustrate the usefulness of Theorem 1 we consider two examples.

3.1. Linear Gaussian model

Consider the following model:

Y = G� +Wy;

where G is a known m � p matrix with full column rank p � m, and Wy is

an m-dimensional zero mean Gaussian noise with known positive de�nite covari-

ance matrix �yy. The ML estimator of � given Y is the weighted least squares

estimator which is the solution �� to the normal equations:

[GT��1
yy
G]�� = G

T��1
yy
Y: (14)

An EM algorithm for estimating � can be derived by decomposing the matrix

G into the matrix product: G = BC, where the m � n matrix B has full row

rank m, the n � p matrix C has full column rank p, and p � m � n. With

this decomposition we de�ne the hypothetical observations X = C�+Wx where

Wx is a zero mean Gaussian noise with �-independent positive de�nite covari-

ance matrix �xx. We assume that Wx and Wy are statistically independent.

Using (X;Y) as a complete data set, the EM algorithm takes the form of the

A-algorithm (1) with Q(�; ��) = Efln f(X; �)jY; ��g given by:

Q(�; ��) = �TFX
�� � �TFY

�� + �TGT��1
yy
y�

1

2
�TFX�; (15)

where FX = Ef�r2
�
ln f(X; �)g = C

T��1
xx
C and FY = Ef�r2

�
ln f(Y; �)g =

G
T��1

yy
G are respectively the Fisher information matrices for � associated with

data sets X and Y. Since the Q function (15) is quadratic the M step is in closed

form and we have the EM recursion:

�i+1 = [I �F
�1
X
FY ]�

i +F
�1
X
G

T��1
yy
Y: (16)
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For diagonal FX the EM recursion is equivalent to the well known Jacobi it-

erations technique (Golub and Van Loan (1989), Sec: 10.1.2) for solving linear

equations of the type (14). The advantages of Jacobi iterations relative to direct

solution of (14) are: (i) the computations in (16) are parallelizable; (ii) if the it-

erations of (16) converge rapidly, a good approximation to (14) can be obtained

with fewer 
oating point operations, particularly if G is large but sparse.

The convergence properties of the Jacobi iteration (16) are well known. How-

ever, due to the simplicity of this example it is instructive to illustrate how The-

orem 1 directly applies. It is easy to see that A1(�; ��) = �
R 1
0
r20Q(�; ��)dt = FX

and A2(�; ��) =
R 1
0
r11Q(�; ��)dt = FX � FY . The condition A1(�; ��) > 0 (4)

is satis�ed since C is full rank. Thus we obtain directly from Theorem 1 the

recursion for ��i = �i � ��:

��i+1 = (I�F
�1
X
FY )��

i:

We remark that, unless I � F
�1
X
FY is symmetric, convergence of ��i is not

monotone with respect to the unweighted Euclidean norm.

The ��i+1 recursion is equivalent to

F
1

2

X
��i+1 = F

� 1

2

X
[FX �FY ]F

� 1

2

X
� F

1

2

X
��i:

Take the Euclidean norm of both sides to obtain

k��i+1k �
���������F� 1

2

X
[FX �FY ]F

� 1

2

X

���������
2
� k��ik;

where jjj�jjj
2
is the matrix-2 norm and k � k is the weighted Euclidean norm de�ned

on vectors u 2 Rp

kuk2
def
= uTFXu: (17)

Since jjjAjjj
2
= �(A) for symmetric nonnegative de�nite A���������F� 1

2

X
[FX �FY ]F

� 1

2

X

���������
2
= �

�
F
� 1

2

X
[FX �FY ]F

� 1

2

X

�
= �

�
I�F

�1
X
FY

�
< 1;

where strict inequality follows from the fact that the eigenvalues of I � F
�1
X
FY

all lie in the interval [0; 1) due to nonnegative de�niteness of FX � FY . Thus,

conditions (4) and (5) hold for all �; �� and the region of monotone convergence

R+ is the entire parameter space � = R
p. By part 2 of Theorem 1, convergence

of the EM algorithm is monotone in the weighted Euclidean norm (17) and by

part 4 the root convergence factor is the maximum eigenvalue of I�F
�1
X
FY .

3.2. ECT image reconstruction

In the ECT problem the objective is to estimate the intensity vector � =
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[�1; : : : ; �p]
T , �b � 0, governing the number of gamma-ray emissionsN = [N1; : : :,

Np]
T over an imaging volume of p pixels. The estimate of � must be based on

the projection data Y = [Y1; : : : ;Ym]
T . The elements Nb of N are indepen-

dent Poisson distributed with rate parameters �b, and the elements Yd of Y

are independent Poisson distributed with rate parameters �d(�) =
P

p

b=1 Pdjb�b,

where Pdjb is the transition probability corresponding to emissions from pixel

b being detected at detector module d. We consider only the unpenalized EM

algorithm here. A similar treatment of penalized EM is contained in Hero and

Fessler (1993). To ensure a unique ML estimate we assume that m � p, the

m� p system matrix (Pdjb; d = 1; : : : ;m; b = 1; : : : ; p) has full column rank, and

(�d(�), Yd) are strictly positive for all d = 1; : : : ;m. We also assume that the

ML estimate �� lies in the interior, ��
b
> 0, b = 1; : : : ; p, of the parameter space.

The standard choice of complete data X for estimation of � via the EM

algorithm is the set fNdbg
m;p

d=1;b=1, where Ndb denotes the number of emissions in

pixel b which are detected at detector d (see Lange and Carson (1984)). These

complete data are related to the incomplete data via the deterministic many-to-

one mapping: Yd =
P

p

b=1Ndb, d = 1; : : : ;m. It is easily established that fNdbg

are independent Poisson random variables with intensity E�fNdbg = Pdjb�b, d =

1; : : : ;m, b = 1; : : : ; p, and that the Q function in the A-algorithm (1) is (Green

(1990a,b))

Q(�; �i) = Efln f(X; �)jY; �ig =
mX
d=1

pX
b=1

"
YdPdjb�

i

b

�d(�i)
ln(Pdjb�b)� Pdjb�b

#
:

By solving for � = �i+1 in the equation r�Q(�; �
i) = 0 the EM algorithm is

obtained:

�i+1
b

=
�i
b

Pb

mX
d=1

YdPdjb

�d(�i)
; b = 1; : : : ; p; (18)

where Pb

def
=
P

p

b=1 Pdjb is positive under the assumption that Pdjb has full column

rank.

We have:

�r
20Q(�; �i) = diag

b

�
�i
b

�b

�
� [B(�i) +C(�i)] � diag

b

�
�i
b

�b

�
; (19)

r
11Q(�; �i) = diag

b

�
�i
b

�b

�
�C(�i); (20)

where, similar to the de�nition in Green (1990a), B(�i) is the positive de�nite

p� p matrix:

B(�i)
def
=

mX
d=1

Yd

[�d(�i)]2
Pdj�P

T

dj�;
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Pdj� = [Pdj1; : : : ; Pdjp]
T , and B(�i) +C(�i) is the p� p positive de�nite matrix

B(�i) +C(�i)
def
= diag

b

 
1

�i
b

mX
d=1

YdPdjb

�d(�i)

!
:

From (19) and (20) it can be shown that for any �i, the norm sup
�2S(�i)

jjj[A1(�; �
i)]�1A2(�; �

i)jjj
2
is greater than or equal to 2� ([B(��) +C(��)]�1C(��)).

Now � ([B(��) +C(��)]�1C(��)) < 1 but it is typically greater than 0:5 and The-

orem 1 cannot be applied to establish monotone convergence of �i in Euclidean

norm. The principal di�culty lies in the unboundedness of (19) and (20) as a

function of �.

Consider the alternative parameterization de�ned by the logarithmic trans-

formation g:

� = ln � = [ln �1; : : : ; ln �p]
T :

Using the relations (12)-(13), and the identities (19)-(20):

�r
20Q(�; � i) = diag

b

�
e�

i

b

�
� [B

�
e�

i
�
+C

�
e�

i
�
] � diag

b

�
e�

i

b

�
; (21)

r
11Q(�; � i) = diag

b

�
e�

i

b

�
�C

�
e�

i
�
� diag

b

�
e�

i

b

�
: (22)

Note that unlike (19) and (20), which are in the original parameter coordinates,

the matrices (21) and (22) are constant and bounded in the transformed param-

eter � = ln �.

Let A1(�; �� ) and A2(�; �� ) be de�ned as in (3) with the integrands (21) and

(22), respectively. If �i lies in the interior of �, �r20Q(�; � i), (21) is positive

de�nite. In this case the recursion (6) of Theorem 1 applies to �� i = � ln �i =

ln(�i=��). After some algebraic manipulations we obtain:

� ln �i+1 = [ ~B(�i) + ~C(�i)]�1 ~C(�i) ��ln �i; (23)

where

~B(�i) + ~C(�i) = diag
b

 
mX
d=1

Yd

Z 1

0

Pdjb(�
i

b
=��

b
)t��

bP
p

b=1 Pdjb(�
i

b
=��

b
)t��

b

dt

!
(24)

~C(�i) =
mX
d=1

Yd

  Z 1

0

Pdjj(�
i

j
=��

j
)t��

jP
p

b=1 Pdjb(�
i

b
=��

b
)t��

b

�
Pdjk(�

i

k
=��

k
)t��

kP
p

b=1 Pdjb(�
i

b
=��

b
)t��

b

dt

!!
j;k=1;:::;p

For simplicity, in the sequel we suppress the functional dependence on �i in

the notation for ~B(�i) and ~C(�i). The recursion (23) is equivalent to:

[ ~B+ ~C]
1

2�ln �i+1 = [ ~B+ ~C]�
1

2 ~C[ ~B+ ~C]�
1

2 � [ ~B+ ~C]
1

2�ln �i:
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Taking the Euclidean norm of both sides we obtain:

�
�ln �i+1

�T
[ ~B+ ~C]

�
�ln �i+1

�
�

���������[ ~B+ ~C]�
1

2 ~C[ ~B+ ~C]�
1

2

���������
2
�
�
�ln �i

�T
[ ~B+ ~C]

�
�ln �i

�
= �

�
[ ~B+ ~C]�1 ~C

�
�
�
�ln �i

�T
[ ~B+ ~C]

�
�ln �i

�
: (25)

It can easily be shown that if �i is in the interior of � then ~B is positive de�nite,
~C is non-negative de�nite and therefore �

�
[ ~B+ ~C]�1 ~C

�
< 1.

From (24) we obtain the small ��i asymptotic forms:

~B+ ~C = diag
b

 
��
b

mX
d=1

Yd

Pdjb

�d(��)

!
+ I O(k��ik2);

�
�
[ ~B+ ~C]�1 ~C

�
= �

�
[B+C]�1C

�
+O(k��ik2);

where, as long as �� is in the interior of �, � ([B+C]�1C) = � < 1. Further-

more, since �� is a stationary point of (18):
P

p

d=1Yd

Pdjb

�d(��)
= Pb: Thus to order

O(k��ik2) (25) is equivalent to:

pX
b=1

Pb�
�
b

�
ln �i+1

b
� ln ��

b

�2
� �

pX
b=1

Pb�
�
b

�
ln �i

b
� ln ��

b

�2
:

We thus obtain the following theorem.

Theorem 2. Assume that the unpenalized ECT EM algorithm speci�ed by

(18) converges to the strictly positive limit ��. Then, for some su�ciently large

positive integer M :

k ln �i+1 � ln ��k � �k ln �i � ln ��k; i �M;

where � = �([B+C]�1C), B = B(��), C = C(��), the norm k � k is de�ned as:

kuk2
def
=

pX
b=1

Pb�
�
b
u2
b
; (26)

and Pb

def
=
P

m

d=1 Pdjb.

Lange and Carson (1984) showed that the ECT EM algorithm converges to

the maximum likelihood estimate. As long as �� is strictly positive, the theorem

asserts that in the �nal iterations of the algorithm the logarithmic di�erences

ln �i � ln �� converge monotonically to zero relative to the norm (26).
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4. Concluding Comments

We have presented a general methodology for studying the norm convergence

properties of EM-type algorithms. Since Theorem 1 can specify a norm relative

to which convergence of a properly implemented EM algorithm must be mono-

tone our results may provide a practical veri�cation tool, similar to checking

the increasing-likelihood property, for testing for errors in algorithm implemen-

tation. To perform such a test the algorithm should be run to its convergence

limit whereby the �nal iterations can be checked for the norm reducing property.

A weakness of the method given here is that it does not apply to cases where

the maximization in the M step is achieved on a boundary of the parameter

space. While there are a certain number of such problems where this method

will not apply, we believe that the method will nonetheless be useful for a number

of applications areas.
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