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ROBUST ESTIMATION FOR SEMIPARAMETRIC

EXPONENTIAL MIXTURE MODELS
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Abstract: B-optimal robust estimates are considered for semiparametric exponential

mixture models, under the perception that the data may have been contaminated.

The B-optimal robust in
uence functions are de�ned by Hampel's variational problem:

minimizing the asymptotic variances over the class of in
uence functions bounded by a

constant. Explicit B-optimal in
uence functions are calculated for the semiparametric

exponential mixture models. The one-step procedure is used to construct the B-

optimal robust estimates from the B-optimal in
uence functions. A small Monte-Carlo

study is conducted for the semiparametric two-sample exponential mixture model to

con�rm the theory.

Key words and phrases: B-optimal, bounded in
uence function, exponential mixture

model, Hampel's problem, most robust estimate.

1. Introduction

Let (X;B; �) be a sample space, where B is a Borel �eld and � is the Lebesgue

measure. Consider a semiparametric mixture model on (X;B; �) of the form

P = fP�;G : � 2 � � R
d
; G 2 Gg (1)

with P�;G =
R
Q�;�dG(�), where Q = fQ�;� : � 2 � � R

d
; � 2 H � R

qg is a

regular parametric model and G is the distribution of �. Each member Q�;� of

Q has density f(�; �; �). The set G contains distribution functions on H. The

unconditional density corresponding to P�;G is denoted by f(�; �;G).
Motivating this model are situations when estimating the parameter � in

the parametric model Q, we bring in another incidental parameter �j with

each sampling Xj . The number of parameters becomes large as the sample size

increases. This poses di�culty for consistent estimation of �. Neyman and Scott

(1948) were the �rst to notice such a phenomenon. Instead of trying to estimate

� and the parameters �j simultaneously, we treat the �js as nuisance parameters

which come from an unknown distribution G. Thus it is possible to reduce the

number of parameters to be estimated. The following examples are exponential

mixture models, which will be studied in this paper.
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Example 1. (The Neyman-Scott Models) Assume that the components of a

random vector X = (X(1)
; : : : ; X

(k))T are i.i.d. samples from N(�; �2).

Model L. (Location) In Example 1, suppose the main interest is to estimate �,

the location of X, then the main parameter is � = �. The incidental parameter

is � = �(2�2)�1 which is assumed to follow an unknown distribution G. Thus,

for each given �, the random vector X has density

f(x; �; �) = exp

(
�

kX
j=1

(x(j) � �)2 � k

2
ln(��

�

)

)
: (2)

The unconditional density of X is
R
f(x; �; �)G(d�).

Model S. (Scale) In Example 1, one may choose to estimate the variance �2

instead, with the location � as the incidental parameter. Then the main param-

eter is � = �(2�2)�1; and the nuisance parameter is � = �=�
2. For model S, the

conditional density of X given � is

f(x; �; �) = exp

0
@
�

kX
j=1

x
(j) + �

kX
j=1

(x(j))2 � k

2

�
��

2

2�
+ ln(��

�

)

�1A
:

Again, assume that � has a distribution G(�). The class of (unconditional) dis-

tributions of X forms a mixture model. Neyman and Scott (1948) introduced

this model and pointed out that as the number of parameters becomes large, the

maximum likelihood estimate of �2 is no longer consistent.

Example 2. (Two Sample Exponential Mixture Model) Consider a bivariate

random vector X = (x(1); x(2))T which, for given � > 0, has a density

f(x(1); x(2); �; �) = expf��(x(1) + �x
(2)) + ln(�2�)g; x1; x2 > 0:

The nuisance parameter � is distributed according to G(�).
Here x(1) and x(2) are independent and have exponential distributions with

rates � and ��, respectively. The ratio � between the two rates is the main

parameter; and �, the baseline rate of x(1), is the nuisance parameter which has

unknown distribution G.

All the above examples share a common structure: the density f(x; �; �) is

exponential in �. These mixture models are called semiparametric exponential

mixture models and have been considered by many authors. Lindsay (1983)

studied e�cient score functions for exponential mixture models. Van der Vaart

(1988) constructed e�cient estimates for more general mixture models. A more

complete theory regarding e�cient estimation in mixture models may be found in
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Bickel, Klaassen, Ritov, and Wellner (1993) ([BKRW] hereafter). We are going to

follow their approach in this paper. According to [BKRW], a general exponential

mixture model has the form: for given �,

f(x; �; �) = expf�TT (x; �) + S(x; �)� b(�; �)g: (3)

This model has two special cases:

f(x; �; �) = expf�TT (x; �)� b(�; �)g (4)

and

f(x; �; �) = expf�TT (x) + �
T
S(X)� b(�; �)g: (5)

It can be seen that Model L in Example 1 and Example 2 belong to type

(4) and Model S belongs to type (5). Only exponential mixture models will be

considered in this paper.

Let X1; : : : ;Xn be i.i.d. samples from P�;G. For simplicity, assume that � is

of one-dimension. We shall focus on asymptotically linear estimates of �, which

can be written as

�̂n = � + n
�1

nX
i=1

 (Xi; �;G) + o�;G(n
�

1

2 );

where  is called the in
uence function of �̂n. The asymptotic variance of �̂n is

given by V ( ) =
R
 
2
dP�;G. An in
uence function is called the e�cient in
uence

function if it minimizes V ( ) among all in
uence functions. The corresponding

estimate will be called e�cient estimate.

E�cient in
uence functions are unbounded for many models, which means

that a single outlier in the data may have large in
uence. When the presence

of outliers is suspected it is preferable to use (B-robust) estimates with bounded

in
uence functions. However, B-robust estimates may be less e�cient when the

data actually contain no contamination. To reduce the cost of using robust

estimates, we consider an in
uence function that solves Hampel's variational

problem: minimizing the asymptotic variance V ( ) among all in
uence functions

bounded by a constant C (e.g., Hampel et al. (1986)). The in
uence function

solving Hampel's problem is called B-optimal. In a di�erent context, Wu (1990)

also studies robust estimation problem in semiparametric mixture models and

makes minor compromise between e�ciency and robustness.

This paper is arranged in the following way: Section 2 gives explicit form

of the B-optimal in
uence functions in exponential mixture models; Section 3

constructs the optimal estimates from the optimal in
uence functions; Section
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4 applies the general theory to the above examples, and Section 5 presents the

result from a small simulation study.

2. B-Optimal In
uence Functions

We calculate the optimal in
uence functions in this section. The same nota-

tion as that in Section 4.5 of [BKRW] will be adopted.

For a semiparametric density f(x; �;G), de�ne the score function _l(x; �;G)

as the partial derivative of logff(x; �;G)g with respect to �. The tangent space

is de�ned as the L2-closure of the linear span of the set:

f @
@�

log f(x; �;G�) : fG� : 0 � � � 1g is a parametric subset of Gg:

Conventions

1. The density g and the distribution G of � are used interchangeably.

2. Write _
S(x; �), _

T (x; �), and _
b(�; �) for the partial derivatives of S(x; �),

T (x; �), and b(�; �) with respect to �.

3. Let S� and T� stand for S(�; x) and T (�; x) respectively.

According to Theorem 4.5.1 and Corollary 4.5.1 of [BKRW], the score func-

tion for � is

_l1(X; �; g) = _
T (X; �)E(�jT ) + _

S(X; �)�Ef_b(�; �)jTg; (6)

and the tangent space for G is _P2 = fw(T�) : w(T�) 2 L2(P ); and Ew(T�) = 0g.
Thus the e�cient score function for estimating � is given by

_l�1 = E(�jT )f _T (X; �)�E( _T (X; �)jT )g + _
S(X; �)�Ef _S(X; �)jTg:

The e�cient in
uence function is ~l = _l�1=k_l�1k2, which is unbounded if either

T (x; �) or S(x; �) is unbounded. An intuitive way to achieve boundedness is

to truncate the e�cient score function wherever it is too large. However, the

resulting function may fail to be an in
uence function. Some correction has to

be made to overcome this.

To explain the idea formally, let hc(x) = min(1; c=jxj)x be the Huber trun-

cating function. The optimal in
uence function  is then expected to be of the

form

 = hc(�0_l1 +w0(T�) + a0); (7)

where w0(T�) 2 _
P2; �0 and a0 are constants. According to [BKRW], in order for

 to be an in
uence function it has to satisfy the following conditions.



SEMIPARAMETER MIXTURE MODELS 337

Consistency: Z
 dP�;G = 0; (i)Z
 
_l1 dP�;G = 1; (ii)Z

 w(T�) dP�;G = 0 ; for any w(T�) 2 _
P2: (iii)

Lemma 1. If an in
uence function  of the form (7) satis�es conditions (i)-(iii)

then  is a B-optimal in
uence function.

Proof. The proof is similar to that of Theorem 4.1 of Hampel et al. (1986).

The conditional expectation of X given T plays an important role in the

calculation of the e�cient in
uence function. Write d�(x; �; t) = �(xjT� = t) for

the conditional measure of � given T� = t. De�ne

f(x; �jt) = e
S(x;�)

=E�(e
S(x;�)jT� = t); a.e. x; d�(x; �; t):

Then f(x; �jt) is the conditional density of X given T� = t with respect to

d�(x; �; t). Note that f(x; �jt) does not depend on G. This suggests that we

should focus the attention on f(x; �jt). De�ne for c > 0 a function �c(�) : R! R
+

by

�c(x) =

�
x
2
=2; if jxj � c,

c
2
=2 + c(jxj � c); if jxj > c.

It is easy to see that �0c(x) = hc(x).

Theorem 1. For any c0 > 0, let w(t; �;G) minimize the following expression:

E

�
�c0f_l1(x; �;G) + wg

��� T� = t

�
: (8)

Introduce  1 = hc0f_l1(x; �;G) + w(T (x; �); �;G)g and � =
R
 1
_l1(x; �;G)dP�;G.

Then  0 = �
�1
 1 is the B-optimal in
uence function with bound c = �

�1
c0.

Proof. The existence of w(�) follows from convexity of the function �c(�).
It is evident that  0 can be written in the form (7) with �0 = �

�1, a0 =

�
�1
Ew(T�(x); �;G), and w0(T�) = �

�1fw(T�)� Ew(T�)g. Since w(t; �;G) satis-
�es E(hc0f_l1(x; �;G) + wgjT� = t) = 0, it follows that E( 0jT� = t) = 0, for any

t. Therefore consistency conditions (i) and (iii) are satis�ed. Finally condition

(ii) follows from the de�nition of �.

One point worth mentioning is that the term Ef_b(�; �)jT�g which appears

in the expression of the score function may be ignored because it belongs to the

space f1g � _
P2 and can be assimilated into w(T ).
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Denote by pT (t; �;G) the marginal density of T� with respect to Lebesgue

measure; then, for some function �(t; �),

pT (t; �;G) =

Z
expf�T t� b(�; �)g dG(�)�(t; �):

Since _l1 depends on G only through E(�jT�), one can show that _l1 depends on

G only through pT (�) according to the following relation:

E(�jT = t; �) =
rtpT

pT

(t; �;G)� rt�

�

(t; �): (9)

where rtpT is the gradient of pT (�) with respect to t.

In particular when the model is given by (5), we have T (x; �) = T (x). Then

the score function equals _l1(x; �) = S(x)�Ef_b(�; �)jTg; and the optimal in
uence

function becomes  (x) = �
�1
hcfS(x)+w(T (x); �)g, where w(t; �) solves equation

E(hcfS(x) + wgjT = t) = 0. In this situation, the problem is reduced to robust

estimation for a parametric model derived by conditioning X on T . Since G is no

longer involved, the calculation of the optimal in
uence function becomes much

easier.

3. Construction of the Optimal Robust Estimates

In this section we shall apply Klaassen's method (Klaassen (1987)) to con-

struct an asymptotically linear estimate of � corresponding to the optimal in
u-

ence function. Let X1; : : : ;Xn be i.i.d. random samples from P�;G. Klaassen's

procedure will consist of the following steps.

First, we need to �nd a preliminary estimate ~
�n that is

p
n-consistent. We

assume, temporarily, the existence of ~�n. In Section 4 we provide initial estimates

for some examples. Using either the method of discretization introduced by

LeCam (1956) or the sample splitting method introduced by Bickel (1982), we

may treat ~
�n as nonrandom and hence write it as �n.

Secondly, we would like to estimate the score function. Assume that �n is

a discretized preliminary estimate. De�ne Ti = T (Xi; �n); i = 1; : : : ; n. Write

�(x) for the density function of the standard normal distribution. Let �n > 0

be a bandwidth tending to zero at a certain rate. For given t and �, the kernel

estimate of pT (t; �;G) is

p̂n(t; �) =
1

n�n

nX
i=1

�

�
t� T (Xi; �)

�n

�
:

Let the partial derivative of p̂n(t; �) with respect to t be denoted by p̂0n(t; �).

Following Bickel (1982), for given �n, cn, dn, en > 0 de�ne

q̂n(t; �)=

�
(p̂0n=p̂n)(t; �); if jp̂n(t; �)j � dn; jtj � en; j(p̂0n=p̂n)(t; �)j � cn,

0; otherwise.
(10)
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Since �n is close to �, p̂n(t; �n) and q̂n(t; �n) may serve as estimates of pT (t; �;G)

and qT (t; �;G)=p
0

T (t; �;G)=pT (t; �;G), respectively. The score function
_l1(x; �;G)

may be estimated by

l̂n(x; �n) = _
T (x; �n)Êf�jT (x; �n); �ng+ _

S(x; �n)�Ef_b(�n; �)jT (x; �n)g; (11)

where by (9), Ên(�jT; �n) = q̂n(T; �n)� (�0=�)(T; �n). Let ŵn(t; �n) minimize

E

�
�c

n
l̂n(x; �n) + w

o���T�n = t

�
:

Then ŵ(t; �n) solves the equation E(hcf̂ln(x; �n)+wgjT�n = t) = 0: The estimate

of  1 de�ned in Theorem 1 is given by

 ̂n(x; �n;X1; : : : ;Xn) = hc

n
l̂n(x; �n) + ŵn(T (x; �n); �n)

o
: (12)

It remains to estimate �, the inner product between  1 and _l1. For the sake

of later proofs, we usually split the samples, though we may not have to do so in

practical situations. Following Klaassen's approach, let mn � a0n with a0 a con-

stant. Split the samples fX1; : : : ;Xng into fX1; : : : ;Xmn
g and fXmn+1; : : : ; Xng.

The �rst part fX1; : : : ;Xmn
g is used to obtain the estimates  ̂n and l̂n as before.

We estimate � from the second part by

�̂n =
1

n�mn

nX
i=mn+1

 ̂n(Xi; �n)̂ln(Xi; �n): (13)

The optimal in
uence function can be estimated by

 ̂0(x; �n;X1; : : : ;Xn) = �̂
�1
n  ̂n(x; �n;X1; : : : ;Xn): (14)

Having estimated the optimal in
uence function, we calculate the one-step esti-

mate:

�̂n = �n +
1

n�mn

nX
i=mn+1

 ̂0(Xi; �n;X1; : : : ; Xn): (15)

Theorem 2. Let �n be a discretized preliminary
p
n-consistent estimate of

�. Assume �̂n and  ̂0 are estimates of � and  , de�ned by (13) and (14),

respectively. Then the one-step estimate �̂n in (15) is an asymptotically linear

estimate of � with the optimal in
uence function  0 as de�ned by Theorem 1.

The proof will use Theorem 2.1 of Klaassen (1987). The key steps are to

show that the conditions for the theorem are valid. The following regularity

conditions are necessary.
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(R.1) Functions pT (t; �;G), p
0

T (t; �;G), and �(t; �) are all continuous in (t; �).

(R.2) For �xed G, fpT (�; �;G) : � 2 �g is a regular parametric model.

Klaassen's Theorem 2.1 is based on conditions (1.1)-(1.2), (2.1)-(2.2), and

(1.4)-(1.5) of Klaassen (1987). To avoid confusion, we mark `K' in front of the

above numbers for Klaassen's conditions. For instance, Klaassen's condition

(1.1) will be denoted by (K1.1). Note that the de�nition of the optimal in
uence

function  0 ensures conditions (K1.1) and (K1.2) and that condition (R.2) implies

condition (K2.1). Then it remains to establish (K2.2) for  0 and (K1.4)-(K1.5)

for  ̂0.

To show that  0(x; �;G) satis�es (K2.2), we need continuity of f(x; �jt) and
 0(x; �;G) in �. Di�culties arise since d�(x; �; t) is no longer absolutely contin-

uous with respect to the Lebesgue measure on the space X. In order to de�ne

the density of d�(x; �; t), we have to focus on its support, which resides in a

lower dimensional space. In the following we shall expand f(x; �jt) and study its

smoothness.

Let R� � R stand for the range of mapping T (x; �) : X � � ! R. Write

x = (x1; x
T
2 )

T with x2 2 Rk�1. For each t 2 R�, de�ne

A�(t) = fx2 : There exists an x1 such that T (x1; x2; �) = tg:

Assume that there exist regions A1; : : : ; Am � R, with Ai \ Aj = ; (i 6= j) andSm

i=1Ai = R, such that T (x; �) = T (x1; x2; �) is strictly monotonic in x1 in the

regions A1; : : : ; Am. De�ne inverse functions xi1(t; x2; �) : R� � R
d�1 � � ! Ai

as satisfying T (xi1(t; x2; �); x2; �) = t; for all i; x2 and �. Furthermore, assume

that each xi1(t; x2; �) is jointly continuous in (t; x2; �) and has continuous partial

derivative with respect to t.

Simple calculation shows that f(x; �jt) has support on A�(t). De�ne

pi(x2; �jt) =
1

pT (t; �;G)
p(xi1(t; x2; �); x2; �)j

@

@t

x
i
1(t; x2; �)j 1A�(t):

Then for any function g(x) we have

E(g(X)jT = t) =

Z
g(x)f(x; �jt)d�(x; �; t)

=

Z
� � �
Z mX

i=1

g(xi1(t; x2; �); x2)pi(x2; �jt)dx2: (16)

We introduce more regularity conditions.

(R.3) The conditional expectations E(j _T (X; �)j j T� = t) and E(j _S(X; �)j j T� =
t) are continuous in (t; �) for almost all t.
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(R.4) For each i and each x2, pi(x2; �jt) is continuous in (t; �) for almost all t.

Lemma 2. Assume that conditions (R.3) and (R.4) are valid. Let  0(x; �;G)

be de�ned by Theorem 1. Then  0(x; �;G) is continuous in �.

Proof. For (�n; tn)! (�; t), de�ne

gn(x) = _
T (x; �n)

�
q(tn; �n; G)� �

0

�

(tn; �n)

�
+ _
S(x; �n)

and

g(x; t; �;G) = _
T (x; �)

�
q(t; �;G)� �

0

�

(t; �)

�
+ _
S(x; �):

It is evident that gn(x) converges to g(x; t; �;G) as n tends to in�nity. By (16),

conditions (R.3) and (R.4) imply conditions (C.3)-(C.5) in Theorem 3 of Shen

(1994). It follows that hcfgn + w(tn; �n)g(x) converges to hcfg + w(t; �)g(x) for
almost all x. Hence the function

hc

�
_
T (x; �)

�
q(t; �;G)� �

0

�

(t; �)

�
+ _
S(x; �) + w(t; �;G)

�

is continuous in (t; �). Since T (x; �) is continuous in �, so is  0(x; �;G).

Proposition 1. Let fp(x; �) : � 2 � � Rg be a regular parametric model.

Assume that the density function p(x; �) and the score function _l = @

@�
log p(x; �)

are continuous in � for almost every x. Suppose a function  (x; �) is bounded,

continuous in �, and satis�es
R
 (x; �)p(x; �)dx = 0 and

R
 (x; �) _lp(x; �)dx = 1

for every �. Let X1; : : : ;Xn be i.i.d. samples from p(x; �). Then for any sequence

f�ng with
p
nj�n � �j = O(1),

p
n

 
�n � � +

1

n

nX
i=1

f (Xi; �n)�  (Xi; �)g
!
= o�(1): (17)

Lemma 2 and Proposition 1 together indicate that  0 satis�es condition

(K2.2). The proof of Proposition 1 can be found in Shen (1992). Next, we show

that the estimate  ̂0(�) de�ned in (14) satis�es conditions (K1.4) and (K1.5).

First it needs to be shown that the q̂n(�) de�ned in (10) tends to q(t; �; g). Fol-

lowing Bickel (1982), we assume cn !1, en ! 0 and dn ! 0 such that �ncn ! 0,

and en�
�3
n = o(n).

Lemma 3. Assume the above conditions hold and
p
n(�n� �) = O(1). Suppose

the regularity conditions (R.1)-(R.4) hold. Let q̂n(t; �) be de�ned by (10). Then

for almost every t, q̂n(t; �n) tends to q(t; �;G) in P�n;G.

Proof. When
p
n(�n � �) = O(1), condition (R.2) implies that

LP�n;g
(T (X1; �n); : : : ; T (Xn; �n)) <> LP�;g(T (X1; �); : : : ; T (Xn; �));
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where \<>" stands for mutual contiguity between two probability distributions.

Since q̂(t; �) is determined only by (T�(X1); : : : ; T�(Xn)), the lemma holds if and

only if q̂(t; �)! q(t; �;G) in P�;G, which is a direct result from (6.12) and (6.13)

of Bickel (1982).

This lemma also implies that Ê(�jt; �n) tends to E(�jt; �) in P�n;G. Thus,

l̂n(x; �n) de�ned by (11) is a consistent estimate of the score function _l1(x; �;G).

Lemma 4. Let  ̂n(x; �n;X1; : : : ;Xn) be de�ned by (12) and  1(x; �;G) by The-

orem 1. Assume that conditions (R.1)-(R:4) hold. Then

Z
j ̂n(x; �n;X1; : : : ;Xn)�  1(x; �;G)j2dP�n;G(x)! 0 in P�n;G: (18)

Proof. Note thatZ
j ̂n(x; �n;X1; : : : ;Xn)�  1(x; �;G)j2dP�n;G(x)

=

Z �Z
j ̂n(x; �n;X1; : : : ; Xn)�  1(x; �;G)j2f(x; �njt)d�(x; �n; t)

�
pT (t; �n; G)dt

=

Z Z �
hc

n
_
T (x; �n)Ê(�jt; �n) + _

S(x; �n) + ŵn(t; �n)
o

� hc

n
_
T (x; �)E(�jt; �) + _

S(x; �) + w(t; �;G)
o�2

� f(x; �njt)d�(x; �n; t)pT (t; �n; G)dt: (19)

It follows from Lemma 3 that for �xed t

_
T (x; �n)Ê(�jt; �n) + _

S(x; �n) �! _
T (x; �)E(�jt; �) + _

S(x; �) in P�n;G:

By (R.3), (R.4) and Theorem 3 of Shen (1994) again, we conclude that

hc

n
_
T (x; �n)Ê(�jt; �n) + _

S(x; �n) + ŵn(t; �n)
o

�! hc

n
_
T (x; �)E(�jt; �) + _

S(x; �) + w(t; �;G)
o

in P�n;G:

By the Dominated Convergence Theorem, the inside integral in (19) converges

to zero in P�n;G. Since the inside integral itself is also bounded by c, the entire

integral tends to zero in P�n;G by the Dominated Convergence Theorem and

Sche�e's theorem applied to PT (�; �n; G).
Corollary 1. Let �̂n and � be de�ned by (13) and Theorem 1, respectively.

Then �̂n �! � in P�n;G.

The proof for the corollary follows along the same lines as in Bickel (1982).
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Proof of Theorem 2. It only remains to establish condition (K1.5). However,

by de�nition of  ̂n,Z
 ̂n(x; �n;X1; : : : ;Xn)dP�n;G =

Z
E

n
 ̂n(x; �n;X1; : : : ;Xn)

��� T�no dP�n;G = 0:

4. Examples

In this section we calculate B-optimal in
uence functions for the examples

introduced in Section 1.

The �rst one we consider is the Neyman-Scott model (S). Recall that for given

�, the random vector X = (X(1)
; : : : ;X

(k)) has density f(x; �; �) = expf�T (x) +
�S(x) � b(�; �)g, where T (X) =

Pk
j=1X

(j), S(X) =
Pk

j=1(X
(j))2 and b(�; �) =

(k=2)f��2=(2�) + ln(��=�)g:
Assume that the marginal distribution of � is G(�). According to [BKRW],

the score function for � is _l1 = S(x)�Ef_b(�; �)jTg. For c > 0, choose w(T ) such

that

Efhc(_l1 + w)jTg = 0: (20)

Let U = �2�Pk

j=1(X
(j) � T (X)=k)2; then S(X) = �(2�)�1U + k

�1
T
2(X). It is

well known that U is independent of T (X) and has a �2k�1 distribution. Write

gk�1(u) for the �
2
k�1 distribution density. Then (20) is equivalent toZ

hc(� 1

2�
u+ w1)gk�1(u)du = 0:

The function w1(�) depends only on �. Since gk�1(�) is a non-atomic den-

sity, it is easy to show that w1(�) is a continuous and strictly monotonic func-

tion of �. De�ne �(�) =
R
hc(�U=2� + w1)S(X)dP�;G. By Theorem 1,  0 =

�
�1
hc(�(2�)�1U + w1) is an optimal in
uence function corresponding to bound

�
�1
c.

Next we construct the optimal estimate corresponding to the optimal in
u-

ence function just derived. Suppose we have i.i.d. samples Xi=(X
(1)
i ; : : : ;X

(k)
i ),

i = 1; : : : ; n, from the Neyman-Scott model. Let �̂n be the M-estimate solving

the equation

nX
i=1

hc

0
@ kX
j=1

n
X

(j)
i � k

�1
T (Xi)

o2
+ w1(�)

1
A = 0: (21)

There are two extreme cases, c = 1 and c = 0. Clearly when c = 1, �̂n
becomes the e�cient estimate; and the e�cient estimate of the variance �2 is

equal to

�(2�̂n)�1 = 1

n(k � 1)

nX
i=1

kX
j=1

fX(j)
i � k

�1
T (Xi)g2:
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This agrees with the result in [BKRW]. Next we consider the case when c = 0.

The corresponding in
uence function is called the most robust in
uence function

because its bound is the lowest among all in
uence functions. The corresponding

estimate is called the most robust estimate.

Lemma 5. De�ne an estimate of � through

�(2~�n)�1 = C
�1
k�1median

0
@ kX
j=1

n
X

(j)
i � k

�1
T (Xi)

o2
: i = 1; : : : ; n

1
A

with Ck�1 = median(�2k�1). Then
~
�n is the most robust estimate of �.

Proof. The random variables fPk

j=1(X
(j)
i � T (Xi)=k)

2 : i = 1; : : : ; ng are i.i.d.

samples from the �(2�)�1�2k�1 distribution, which is a purely parametric model.

Using the standard theory of robust estimation in parametric models (Hampel

et al. (1986)), we can show that ~�n is an asymptotically linear estimate of � with

in
uence function

 0 = Constant � sgn

0
@ kX

j=1

n
X

(j) � k
�1
T (X)

o2
+ w1(�)

1
A
:

However,  0 corresponds to the case c = 0 in (21). This completes the proof.

Theorem 3. For 0 < c < 1, let �̂n solve (21). Then �̂n is an optimal robust

estimate of � corresponding to bound C0 = �
�1
c.

Proof. Since w1(�) is continuous and is strictly monotonic, the standard theory

of M-estimates (e.g., Hampel et al. (1986), or Fernholz (1983)) may be applied

here to show that �̂n is asymptotically linear, with optimal in
uence function  0.

The above procedure may be viewed as applying robust estimation theory

to the conditional density of X given T (X), which is a parametric model. This

observation has enabled us to avoid estimating the marginal density of T .

Model (L). Note from (2) that for this model T (x; �) =
Pk

j=1(x
(j) � �)2. The

score function is _l1 = �2Pk

j=1(x
(j) � �)E(�jT ). For c > 0, the optimal in
uence

function has the form:  c = �
�1
hc(_l1) for some constant �, since by symmetry,

E

0
@
hc

8<
:�2

kX
j=1

(x(j) � �)E(�jT )
9=
;
������
kX

j=1

(x(j) � �)2

1
A = 0:

For c = 0, we are led to  0 = �
�1sgn(k�1

Pk

j=1 x
(j)��), the most robust in
uence

function. The most robust estimate ~
�n is the median of �

X1; : : : ;
�
Xn, where �

Xi
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is the mean of (X
(1)
i ; : : : ; X

(k)
i ). For c > 0, one needs to estimate E(�jT ), which

can be derived from the estimate of p0T (�)=pT (�). Then the one-step procedure as

de�ned in the last section gives the optimal estimate.

Two sample exponential mixture model. Recall that the distribution of

the bivariate random vector X = (X(1)
;X

(2)) has density

f(X; �;G) =

Z
expf�T (X; �)� b(�; �)gdG(�);

where T (X; �) = �(X(1) + �X
(2)) and b(�; �) = � ln(�2�). The marginal density

of T is pT (t; G) = � constant � t

R
�
2 exp(�t)dG(�), for t < 0. The conditional

density of X(2) given T is uniform (0;���1T ). By symmetry, the e�cient score

function is
_l�(X; �;G) = f�X(2) +E(X(2)jT )gE(�jT )

=�
�
X

(2) +
T

2�

�
E(�jT )

=
�
X

(1) � �X
(2)

2�

�
E(�jT ):

The conditional expectation in the above formula is E(�jT ) = p
0

T=pT � T
�1. To

obtain the optimal in
uence function, we solve for w from Efhc(�X(2)
E(�jT ) +

w)jTg = 0. By the symmetry of the uniform distribution again, w(T ) = �(T=2�)
E(�jT ). Then the optimal in
uence function is given by

 c(x) = �
�1
hc

(
X

(1) � �X
(2)

2�
�E(�jT )

)
;

where � is the normalizing constant. Thus, the optimal in
uence function may be

expressed as  (X) = �
�1
hc(_l

�). When c = 0, it becomes the most robust in
u-

ence function:  0 = �
0sgn(X(1) � �X

(2)). Note that the conditional expectation

E(�jT ) disappears from the formula of  because it is always non-negative.

Lemma 6. Suppose Xi = (X
(1)
i ;X

(2)
i ), i = 1; : : : ; n, are i.i.d. samples from

the two sample exponential mixture model. Let ~
�n = medianfX(1)

i =X

(2)
i : i =

1; : : : ; ng. Then ~
�n is the most robust estimate of �.

Proof. The proof is similar to that of Lemma 5.

Having obtained the preliminary estimate ~
�n, one can apply the procedure

described in the last section to calculate the optimal estimate for any c > 0.
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5. Simulation

We have conducted a small simulation study for the two sample exponential

mixture model. In the models we have used, the true value for � is equal to 1.

The nuisance parameter � may come from the following mixing distributions:

1. Degenerate distribution: The distribution of � degenerates to � � 1.

2. G = Uniform (0:3; 6): The two sample exponentials are mixed over the

uniform distribution.

3. G = Abs-normal (4; 2): The two sample exponentials are mixed over the

absolute values of N(4; 2)-distribution.

4. G = Log-normal (1:5; 2): The two sample exponentials are mixed over the

log-normal distribution.

Model 1 is in fact a parametric model with the main parameter � and the

nuisance parameter �. Models 2, 3, and 4 are genuine mixture models. Let each

of the above models be denoted by P�;G. The sample size in the simulation is

n = 100. For each of the above models, the simulated data are generated from

the contaminated distribution:

Fn =

�
1� �p

n

�
P�;G +

�p
n

H; for � 2 f0:0; 0:5; 1:0; 1:5g: (22)

In the above expression, the contaminating distribution H is chosen such that

it causes the �rst variable X(1) to be of the form X
(1) = �X

(2) + jN(6:5; 0:5)j
and leaves the second variable X(2) unchanged. Since the ratio between X(1) and

X
(2) is of the order of �, this contamination is chosen to signi�cantly a�ect their

relationship. For simplicity we do not put outliers in the distribution of X(2).

In each case, we use the most robust estimate ~
�n as our initial estimate.

Then we may calculate Ti = �(X(1)
i + ~

�nX
(2)
i ), for i = 1; : : : ; 100. Estimate the

marginal density of T by

p̂n(t) =
1

n�n

nX
i=1

�
�

�
t� Ti

�n

�
� �

�
t+ Ti

�n

��
: (23)

The bandwidth �n is chosen according to a similar rule in Silverman (1986):

�n = :79R0n
�

1

5 , where R0 is the interquartile range of T1; : : : ; Tn. The re
ection

in (23) is introduced to ensure that p̂n(0) = 0, which is the case for the true

marginal density pT (t). Let p̂
0

n(t) be the derivative of p̂n(t). We can estimate the

conditional expectation E(�jT ) by

Ê(�jT = t) =
p̂
0

n

p̂n

(t)� 1

t

; for t < 0:
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For c > 0, de�ne

 ̂(x; c) = �̂n(c)
�1
hc

(
X

(1) � ~
�nX

(2)

2~�n
Ê(�jT )

)
; (24)

where �̂n(c) is de�ned in the same way as (13) using the whole data set (mn = 0).

It is well known (e.g., Bickel (1981)) that when the underlying distribution is

(22), the empirical version of the asymptotic mean squared error takes the form

(�c)2

�̂
2
n(c)

+
1

n

nX
i=1

 ̂
2
c (Xi); (25)

where the �rst term estimates the squared bias and the second term estimates

the variance. In the simulation we choose numerically the trimming parameter

c to minimize (25). However, the true value of � in (22) is usually unknown and

has to be chosen subjectively. In the simulation we use �0 = 0:5 to enter (25), no

matter what � is actually used to generate the data. Assume that the minimum

of (25) is reached at ĉ. Then  ̂(x; ĉ) is used to construct the optimal estimate:

�̂n = ~
�n +

1

n

nX
i=1

 ̂ĉ(Xi): (26)

In our simulation we compare the performance of the following estimates:

(i) The parametric estimate:
Pn

i=1X
(1)
i =

Pn

i=1X
(2)
i (see Lindsay (1983)).

(ii) The M-estimate: the solution of
Pn

i=1 h1(X
(1)
i � �X

(2)
i ) = 0.

(iii) The e�cient estimate: the estimate de�ned by (24) with trimming parameter

c = 9:0.

(iv) The optimal estimate �̂n: the estimate de�ned by (26).

(v) The most robust estimate: ~
�n = medianfX(1)

i =X

(2)
i : i = 1; : : : ; ng.

The simulation results are entered into Table 1. Each simulation is repeated

10,000 times. For each particular estimate, we calculate the Root Mean Squared

Error by

RMSE =

 
1

10000

10000X
i=1

100 � (�̂i � �)2
! 1

2

;

where �̂i is the estimate calculated from the ith sample. The �gures in Table 1

are the ratios between the RMSEs of the estimates (i)-(iv) and those of the most

robust estimates.

The standard errors are also calculated for the original RMSEs. With 10; 000

simulations, the standard errors are in the range from 0.005 to 0.02 for the

situation without contamination. Therefore the numbers in Table 1 are accurate

almost up to the second decimal points.
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Table 1. Ratios of RMSEs

�

Models Estimates 0 0.5 1.0 1.5

Model 1 Parametric est. 0.70 1.45 1.76 1.73

M-estimate 0.82 0.89 0.97 1.01

E�cient est. 0.78 0.97 1.12 1.23

Optimal est. 0.81 0.82 0.91 1.05

Model 2 Parametric est. 1.00 2.74 3.38 3.35

M-estimate 0.81 1.07 1.26 1.36

E�cient est. 0.92 0.97 1.05 1.26

Optimal est. 0.91 0.79 0.79 1.07

Model 3 Parametric est. 3.64 4.10 4.57 4.30

M-estimate 0.81 1.15 1.42 1.54

E�cient est. 0.89 0.92 0.97 1.16

Optimal est. 0.88 0.75 0.72 0.94

Model 4 Parametric est. 3.06 2.69 2.39 2.09

M-estimate 1.06 1.39 1.69 1.85

E�cient est. 1.12 1.24 1.47 1.71

Optimal est. 1.11 1.12 1.36 1.71

Conclusion

From Table 1 one can see that the parametric estimate is inferior to other

estimates except in the parametric model where it is supposed to be the best.

The parametric estimate is also quite sensitive to contamination.

The second �nding is that even at the true model (� = 0), the optimal

estimate is no worse than the e�cient estimate. This is a little surprising however.

One possible explanation is that the exponential distribution has relatively long

tails and we may have bene�ted from using the optimal estimates. Another

possible explanation may be that we need better estimates of the score function

to improve the performance of the e�cient estimates. It is also interesting to

note that the M-estimate behaves well for this situation. Thus the M-estimate

may serve as a simple estimate when the chance for contamination is small.

It is encouraging to see that in most models, as the amount of contamination

increases, the optimal estimates tend to out-perform the other estimates. This

agrees with the theoretical results.

We have paid special attention to the most robust estimates as they are easy

to compute. When the contamination is moderate, the most robust estimates
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have relatively large RMSEs (the ratios < 1). However, as the amount of con-

tamination increases, the most robust estimates start to show better performance

(the ratios � 1).
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