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Abstract: To compensate for lack of robustness in using regression splines via the

least squares principle, a robust data smoothing procedure is proposed for obtain-

ing a robust regression spline estimator of an unknown regression function, g0, of

a one-dimensional measurement variable. This robust regression spline estimator is

computed by using the usual M-type iteration procedures proposed for linear models.

A simulation study is carried out and numerical examples are given to illustrate the

utility of the proposed method. Assume that g0 is smoothed up to order r > 1=2

and denote the derivative of g0 of order l by g
(l)
0 . Let ĝ

(l)
n denote an M-type regres-

sion spline estimator of g
(l)
0 based on a training sample of size n. Under appropriate

regularity conditions, it is shown that the proposed estimator, ĝ
(l)
n , achieves the opti-

mal rate, n�(r�l)=(2r+1) (0 � l < r), of convergence of estimators for nonparametric

regression when the spline knots are deterministically given.

Key words and phrases: B-spline function, M-estimator, nonparametric regression,

optimal rate of convergence.

1. Introduction

Nonparametric regression analysis is an increasingly popular tool for the pur-

pose of data smoothing. Unfortunately, many of the commonly used estimators

of nonparametric regression functions including kernel estimators (Gasser and

M�uller (1979)), smoothing spline estimators (Eubank (1988)), regression spline

estimators (Friedman and Silverman (1989) and Friedman (1991)) are nonro-

bust. To compensate for this defect several authors (Lenth (1977), Huber (1979),

H�ardle (1984), H�ardle and Gasser (1984), Cox (1983), and Cunningham et al.

(1991)) have proposed parallels of M-estimators for �tting unknown regression

functions.

Suppose that (Ti; Yi), 1 � i � n, are i.i.d. observations of a two-dimensional

random vector (T; Y ) with

Yi = g0(Ti) + ui; 1 � i � n; (1:1)

where the ui's are random errors which are independent of T1; : : : ; Tn and g0 is

some unknown regression function. Let � be a knot set and B�(�) be a N -vector
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of splines associated with �. The regression spline estimator of g0 is de�ned

as bgn(t) = bgn�(t) = B�(t)
0b� (Friedman and Silverman (1989)), where b� is the

minimizer of
nX
i=1

(Yi �
NX
j=1

Bj�(Ti)�j)
2 (1:2)

and � is the trade-o� between smoothness and exibility.

It is well known that outliers in the response values can deteriorate the per-

formance of regression spline estimators based on the least squares (LS) principle.

To compensate for this drawback, we robustify criterion (1.2) by minimizing

nX
i=1

�(Yi �
NX
j=1

Bj�(Ti)�j); (1:3)

where � is a function chosen suitably and B1�(t); : : : ; BN�(t) are B-spline basis

functions. An estimator of g0 obtained by minimizing (1.3) is called an M-type

regression spline estimator.

The spline functions used in (1.3) are B-splines of order m+ 1. The special

case of m = 1 corresponds to piecewise linear smoothing used by Friedman and

Silverman (1989) where truncated power functions are taken as an equivalent

basis of the spline space. Since the B-spline method is e�cient in digital com-

putation and functional approximation, it is widely used for curve and surface

�tting. For example, deBoor (1978), Schumaker (1981) and Su and Liu (1989)

have convincingly demonstrated the utility of B-splines in curve and surface ap-

proximation in nonstochastic settings.

Just as with the selection of the bandwidth of kernel estimators and the

penalty parameters of smoothing spline estimators, the choice of the regression

spline knots is important. Therefore, we will give a stepwise forward/backward

knot placement and deletion strategy via the generalized cross validation criterion

(GCV). Related selection schemes of regression splines have been investigated by

Stone and Koo (1985), Atilgan (1988), Friedman and Silverman (1989), and Shi

(1993).

When the knot set of the B-spline basis is given, the minimization of (1.3) can

be performed e�ciently with the usual M-type iteration procedures proposed for

linear models (Huber (1981)). Three other papers concerning regression splines

in related settings are Lenth (1977), Agarwal and Studden (1980) and Friedman

(1991).

In this paper, we prove, under some regularity conditions, that the M-type

regression spline estimator and the derivatives of it all achieve the optimal rates of

convergence of estimators for nonparametric regression when the spline knots are

deterministically given. These results are shown in Section 3. The computational
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aspects of the estimator are discussed in Section 2. In Section 4, examples are

given to illustrate the utility of the proposed methodology and a Monte Carlo

study is carried out. The proofs of the main results are given in Section 5. Our

simulation results show that when the random errors are normally distributed the

M-estimators are as good as LS estimators; however, when the random errors are

drawn from a symmetrically contaminated normal distribution the M-estimators

are superior to LS estimators; and when the random errors are distributed as

Cauchy distribution the M-estimators seem acceptable but the LS estimators

behave poorly.

The asymptotics of M-estimators of nonparametric regression functions has

been investigated by several authors, e.g: Cox (1983), H�ardle and Luckhaus

(1984), H�ardle (1984), H�ardle and Tsybakov (1988), H�ardle (1990), and Cun-

ningham et al. (1991).

2. Computation of the Estimator

First, some notation is needed. Let m � 0 and kn > 0 be integers, N =

kn +m, and t0; t1; : : : ; tkn be a D0-quasi-uniform sequence of partitions of [0; 1]

(Schumaker (1981, p.216))

max
1�i�kn

(ti � ti�1)= min
1�k�kn

(tk � tk�1) � D0

uniformly in n, where D0 > 0 is a constant. Let � = fti; 0 � i � kng and

B�(t)b=(B1�(t); : : : ; BN�(t))
0 be a vector of normalized B-splines (of order m+1)

associated with an extended partition of [0; 1] determined by ftig
kn
1 (Schumaker

(1981, p.224)). Note that the B-splines B1�(t); : : : ; BN�(t) are m� 1 times con-

tinuously di�erentiable in (0; 1). In the sequel, B�(�); B1�(�); : : : ; BN�(�) will be

abbreviated as B(�); B1(�); : : : ; BN(�) respectively when it is necessary.

From Corollary 6.21 in Schumaker (1981), g0(t) can be reasonably approxi-

mated with a B-spline function B(t)0�. Therefore, we de�ne

bgn(t) = bgn�(t) b= B�(t)
0b�

as the M-type regression spline estimator of g0(t), where b� minimizes

nX
i=1

�(Yi �B�(Ti)
0�) (2:1)

or satis�es
nX
i=1

	(Yi �B�(Ti)
0b�)B(Ti) = 0; (2:2)

where 	(s) = �0(s).
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For a given knot set and an initial vector �(1), we adopt Huber's Iteration

Procedure (see Huber (1981, p.182)) with unit scale

�(l+1) = �(l) +

0@ nX
j=1

B(Tj)B(Tj)
0

1A�1
nX
i=1

	(Yi �B(Ti)
0�(l))B(Ti) (2:3)

for l = 1; 2; : : :. If at some step l0, j�
(l0+1)��(l0)j < 10�3, then the above iteration

procedure is terminated.

As in the linear model case, an alternative to procedure (2.3) is a reweighted

least square iteration procedure based on the equivalence between (2.1) and

nX
i=1

wiB(Ti)B(Ti)
0b� = nX

i=1

wiYiB(Ti);

where wi = 	
�
Yi �B(Ti)

0b�� /(Yi � B(Ti)
0b�) (Huber (1981, p.184)). But in this

way we incur a little more computational expense in each iteration.

To determine the spline knots, one may choose the knot number kn and use

equispaced knots. Another way, which is more reasonable in practical applica-

tions, is to select spline knots 0 = t0 < t1 < � � � < tkn = 1 with a data driven

method. For simplicity, we select the knots and the knot number by minimizing

the well known GCV criterion GCV(�) = n�1
Pn

i=1(Yi � bgn�(Ti))2=(1 � (kn +

m)=n)2. Alternative criteria are cross validation (CV), modi�ed GCV (Fried-

man and Silverman (1989)), AIC (Akaike (1973)), the generalized version of the

corrected Akaike information criterion (GAICC) (see Shi (1993))

GAICC(�) = b�2
n exp

�
2N

n
+

2(N + 1)(N(1 � c) + 2)

n(n�N(1� c)� 2)

�
;

where b�2
n = n�1

Pn
i=1(Yi � bgn�(Ti))2 and c is a constant in (0; 1) (e.g. c = 7=8),

and the M-type Akaike information criterion (MAIC) (Shi (1992)) MAIC(�) =Pn
i=1 �(Yi � bgn�(Ti)) + 2(kn +m), which is the robusti�ed AIC.

To implement our estimating method, we adopt a forward/backward stepwise

knot placement and deletion strategy similar to that of Friedman and Silverman

(1989). First, the knot t1 is placed at the position for which the following equation

is satis�ed:

GCV(ft1g) = inf
s2(0;1)

GCV(fsg):

Suppose that t1; : : : ; tk�1 have already been found, �1 = ft1; : : : ; tk�1g and �1 [

ftkg = �. The additional knot tk is placed at the position satisfying

GCV(f�g) = inf
s2(0;1)

GCV(�1 [ fsg) and GCV(�) < GCV(�1): (2:4)
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If there is no such point that satis�es (2.4), the knot placement process is termi-

nated. The current knot set � selected is taken to be the input of the backward

stepwise deletion strategy. Each of its elements is in turn deleted and the corre-

sponding leave-one-knot-out model is �tted. The �t with the smallest GCV value

is found and the corresponding knot is permanently deleted unless this �t results

in a signi�cantly improved GCV. The above knot deletion procedure is repeated

for the knots left. Sometimes, no selected knots are deleted or left in the �nal

knot set. Generally, more knots selected corresponds to �tting a more compli-

cated curve unless the signal-to-noise ratio (standard deviation of the function

divided by the standard deviation of the noise) is too low.

3. Asymptotic Theory

In this section, we examine the large sample properties of bgn� when the knot

set is deterministically given. Throughout, it will be assumed that the function

�(�) is continuously di�erentiable everywhere.

Let  2 (0; 1] be a number such that m+  > 1=2 and let M0 2 (0;1). Let

H stand for the collection of functions on [0; 1] such that, for every h 2 H, the

mth derivative of h, denoted by h(m), exists and satis�es a H�older condition of

order  :

jh(m)(t)� h(m)(t0)j �M0jt� t0j ; for 0 � t; t0 � 1:

The following four conditions are su�cient for the statement of the theoret-

ical results.

Condition 1. The distribution of T is absolutely continuous with density f and

there are two constants b and B such that 0 < b � f(t) � B <1 for all t 2 [0; 1].

Condition 2. g0 2 H.

Condition 3. 	(�) = �0(�) is continuously nondecreasing on R, E	(u1) = 0

and E	2(u1) = v0 <1, where u1 is a random error in (1.1).

Condition 4. There exist six positive constants c1; c2; c3; d1; d2, and d3 (d3 �

d1) such that

q b= P(ju1j � c1) > 0;

D(s; t) � d1 when jsj � c1 and jtj � c2; and

D(s; t) � d2 when jtj � c3;

where

D(s; t) =

�
(	(s+ t)�	(s))/t; t 6= 0,

d3; t = 0.

Remark 3.1. It is well known that if the function �(�) is convex and continuously
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di�erentiable everywhere with derivative 	(�), then (2.1) and (2.2) are equivalent.

By Theorem 27.2 of Rockafellar (1970), the convexity of �(�) and the equivalence

between (2.1) and (2.2), if limt!1 �(t) = 1, we can easily conclude that the

solution set of (2.2) is non-empty for each given sample f(T1; Y1); : : : ; (Tn; Yn)g.

From Conditions 3 and 4, it follows that limt!1 �(t) =1.

Let khkL2 denote the L2 norm, de�ned by khk2L2 b= R 10 h2(t)f(t)d t. Let j � j

denote either the Euclidean norm of a vector or the absolute value of a real

number according to the context. For positive numbers an and bn, n � 1, let

an � bn denote that an=bn is bounded away from zero and in�nity.

Then we have the following theorem.

Theorem 1. Suppose that 	(�) = �0(�), b� is a solution of (2:2), bgn(t) = B(t)0b� is

the regression spline M-estimator of g0(t) and kn � n1=[2(m+)+1]. If Conditions

1� 4 are all satis�ed, then for l = 0; 1; : : : ;m

kbg(l)n � g
(l)
0 kL2 = OP (n

�(m+�l)=[2(m+)+1]):

Remark 3.2. According to Stone (1980, 1982), the convergence rates of bgn are

the optimal global convergence rates of estimators for nonparametric regression.

Remark 3.3. Our proof of Theorem 1 with the quasi-uniform knots can not be

extended to the case of data-dependent knots described in Section 2 for technique

reasons.
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Figure 1. The example of simulated data with sample size n = 50. Error distribution is

N(0; 1). The solid line is the true curve; the dash line is the regression spline M-�t; the

closely spaced dot line is the regression spline LS-�t.
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4. Numerical Results

We have presented the procedure, which will be illustrated numerically,

for estimating the unknown regression function. The measure for goodness

of �t of the estimator bgn of g0 is called MSE and de�ned by MSE(bgn; g0) =

n�1
Pn

1 (bgn(Ti)� g0(Ti))
2:

4.1. Simulated examples

We select a pseudo-sample of size 50, f(T1; Y1); : : : ; (T50; Y50)g, such that

Yi = sin(2�Ti) + expf�3(Ti � 0:5)2g+ 0:4 + ui; 1 � i � 50; (4:1)

where the ui's are independently drawn from the standard normal distribution

N(0; 1) and T1; : : : ; T50 are independent and identically distributed as the uni-

form distribution U(0; 1) on [0; 1]. The M-type regression spline curve and the

least squares curve are obtained. The corresponding MSEs are 0.018 and 0.011

respectively. The �tted curves are shown in Figure 1. Another pseudo-sample

of size 50 is drawn in the same way as above except that the error distribution

is the symmetric contaminated normal 0:9N(0; 1) + 0:1N(0; 92). The MSEs of

M-estimator and the LS-estimator are 0.058 and 0.313 respectively. The �tted

curves are shown in Figure 2. From Figure 2 we can see that there are two out-

liers present at the upper right and one present at the lower right. The LS-curve

turns in attempting to accommodate them but the M-curve shows little change.
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Figure 2. The example of simulated data with sample size n = 50. Error distribution is

0:9N(0; 1) + 0:1N(0; 92). The solid line is the true curve; the dash line is the regression

spline M-�t; the closely spaced dot line is the regression spline LS-�t.
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4.2. Simulation study

In our simulated experiment we investigate Huber's M-estimators and the

LS estimators which are obtained in (2.1) for �(v) = v2=2, where 	 is Huber

 -function (Huber (1981, p.177)) with parameter 1:5. When the knot set is

determined by the method described in Section 2, Huber's Iteration Procedure

(2.3) is employed to produce the �nal solution. MSE's of the M-estimators and

LS estimators are compared by simulation for three kinds of error distributions,

the normal, the symmetric contaminated normal, and Cauchy distributions.

Let g0(t) = sin(2�t) + expf�3(t� 0:5)2g+ 0:4. T1; : : : ; Tn are independently

drawn from U(0; 1). Thus, Yi = g0(Ti) + ui, 1 � i � n, where the ui are

independently taken from either of the following distributions:

1. Normal N(0; 1);

2. Symmetric contaminated normal SCN(0; 9) = 0:85N(0; 1) + 0:15N(0; 92);

3. Cauchy CAU(0; 1).

The data in each case of error distributions consist of K = 250 replications

of samples of sizes n = 30; 50; 100.

Table 1. Means and medians of the 250 MSEs of the M(LS)-estimates

Distri- M-estimators LS estimators

bution Sample Mean Median Mean Median

Normal 30 0.282 0.255 0.275 0.245

50 0.183 0.166 0.179 0.162

100 0.097 0.086 0.095 0.085

SCN 30 0.966 0.499 2.359 1.492

50 0.717 0.388 1.714 1.260

100 0.280 0.264 0.806 0.661

Cauchy 30 1.127 0.715 5234.806 5.695

50 0.799 0.586 18819.180 5.173

100 0.576 0.408 14289.802 6.062

The average and median values of the MSEs of the M-type regression spline

M-estimators and the regression spline LS estimators are listed in Table 1.

From the results presented in Table 1, we observe that when the random

errors are normally distributed the M-estimators are as good as LS estimators;

however, when the random errors are drawn from a symmetrically contaminated

normal distribution the M-estimators are superior to LS estimators; and when

the random errors are distributed as Cauchy distribution the M-estimators seem
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acceptable, but the LS estimators behave poorly.

Our computations were done on COMPAG 386. It took at most 40 seconds

of CPU time for each data set.

5. Proof of Theorem 1

The remainder of the paper is devoted to proving Theorem 1 based mainly

on the monotonicity of 	(�). Note, from the quasi-uniform partition assumption,

that D�1
0 k�1

n � ti � ti�1 � D0k
�1
n . For the sake of simplicity and convenience,

we assume uniform partitions ti = i=kn, i = 1; : : : ; kn. Only nonessential modi-

�cations are needed to deal with the general quasi-uniform partitions described

in Section 2.

First, some notation is needed. Let V 0
n = (B(T1); : : : ; B(Tn))N�n, H

2
n =

V 0
nVn,

b�n = Hn
b�, �0 = Hn�

�; zi = H+
n B(Ti), Rni = RnTi , and H

+
n stand for the

Moore inverse of Hn.

Outline of a proof of Theorem 1. From Condition 2 and Corollary 6.21 in

Schumaker (1981), p.227 (cf. also Theorem XII.4 in de Boor (1978), p.178), we

conclude that there exists a constant M1 depending only on m andM0 such that8<:
sup
t2[0;1]

jRntj �M1k
�(m+)
n ;

g0(t) = B(t)0�� �Rnt;

(5:1)

where �� is a vector depending on g0. From (5.1), the triangular inequality,

kn � n1=[2(m+)+1] and Lemmas 8 and 9 of Stone (1985), to prove Theorem 1, we

need only verify
nX
i=1

�
B(Ti)

0(b� � ��)
�2

= OP (kn): (5:2)

Lemma 5.1 below and (2.2) imply

nX
i=1

	(ui � z0i(
b�n � �0)�Rni)zi = 0 a.s. (5:3)

Write U(�; L) =
Pn

i=1	(ui�Lz
0
i��Rni)z

0
i� for L 2 R

1 and � 2 RN . From (5.3)

and the monotonicity of 	(�),

0 = U
� b�n � �0

jb�n � �0j
; jb�n � �0j

�
� sup

j�j=1

U(�; Lk1=2n ) a.s.

Thus,

P
n
jb�n � �0j � Lk1=2n jW �

o
� P

(
sup
j�j=1

k�1=2
n U(�; Lk1=2n ) � 0 jW �

)
;
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for almost all W � = (T1; T2; : : :). From this fact and (5.2), we need only check

lim
L!1

lim sup
n!1

P

(
sup
j�j=1

k�1=2
n U(�; Lk1=2n ) � 0 jW �

)
= 0 (5:4)

for almost all W �, which will be done by decomposing U(�; Lk1=2n ) into three

parts based mainly on Conditions 3 and 4. These statements will be made precise

latter.

Remark 5.1. From (5.1) and (5.2), we see that the approximating error (mod-

eling error) has the order of magnitude k�(m+)
n and the estimating error is of the

order of magnitude (kn=n)
1=2. Thus, the estimator of g0 achieves the best rates

of convergence only when k�(m+)
n � (kn=n)

1=2, which results in the choice of kn
having the order of magnitude n1=[2(m+)+1].

Our proofs need a result that we state here for convenience, the proof of

which will be given later. First, denote the smallest eigenvalue of (N=n)H2
n by

�n and let � = b
�
(m+ 1)2(5(m+ 2))2(m+1)

��1
. From Lemma 5.1 (i) below, we

can �nd a set S0 such that P (S0) = 1 and for any W � = (T1; T2; : : :) 2 S0, there

is an n1(W
�) > 0 for which V 0

nVn, Hn and H+
n are all positive de�nite when

n � n1(W
�).

Lemma 5.1. If Condition 1 holds and limn!1 n�0�1k2n = 0 for some positive

constant �0, then as n!1

(i) �n � � a.s.;

(ii) max1�i�n jzij
2 � 2(m+ 3)N=(n�) a.s.

Proof of (5.4). Observe, from the de�nition of U(�; �), that

k�1=2
n U(�; k1=2n L) =

nX
i=1

	(ui)z
0

i�k
�1=2
n � L

nX
i=1

D(ui;�Lk
1=2
n z0i� �Rni)(z

0

i�)
2

�

nX
i=1

D(ui;�Lk
1=2
n z0i� �Rni)z

0

i�Rnik
�1=2
n

b= J2(�)� LJ4(�)� J3(�): (5:5)

By (5.1) and Lemma 5.1, for anyW � 2 S0 and L > 0, there exists an n2(W
�; L) �

n1(W
�) such that for n � n2(W

�; L),

k1=2n Ljzij+ jRnij � min(c2; c3): (5:6)

Thus,

E f

nX
i=1

(z0i�)
2I(juij � c1) jW

�g = �0
nX
i=1

ziz
0

i�Pfjuij � c1g = q

and
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nX
i=1

D(ui;�Lk
1=2
n z0i� �Rni)(z

0

i�)
2 � d1

nX
i=1

(z0i�)
2Ifjuij � c1g

= d1q � d1

 
Pf

nX
i=1

(z0i�)
2Ifjuij � c1g jW

�g �

nX
i=1

(z0i�)
2Ifjuij � c1g

!
b= d1q � J1(�) (5:7)

for n � n2(W
�). Equations (5.5) and (5.7) imply

sup
j�j=1

k�1=2
n U(�; Lk1=2n ) + Ld1q � L sup

j�j=1

jJ1(�)j+ sup
j�j=1

jJ2(�)j+ sup
j�j=1

jJ3(�)j

for n � n2(W
�; L). Therefore, to prove (5.4), it su�ces to verify

lim sup
n!1

Pfsup
j�j=1

jJ1(�)j �
d1q

3
jW �g = 0; (5:8)

lim
L!1

lim sup
n!1

Pfsup
j�j=1

jJk(�)j �
Ld1q

3
jW �g = 0 for k = 2; 3. (5:9)

First, by a simple calculation we conclude, from Lemma 5.1 and kn �

n1=[2(m+)+1], that

E fsup
j�j=1

jJ1(�)j
2 jW �g � 2d21q(1� q)(m+ 3)2(kn +m)2/(n�) �! 0

for any W � 2 S0 as n!1. This fact and Tchebychev's Inequality imply (5.8).

(5.6) and Condition 4 yield

jD(ui;�Lk
1=2
n z0i� �Rni)j � d2

for all j�j � 1 when n � n2(W
�; L). Hence, by (5.1) and Lemma 5.1

sup
j�j=1

jJ3(�)j �
d2

2
sup
j�j=1

 
nX
i=1

(z0i�)
2 +

nX
i=1

R2
nik

�1
n

!
�

d2

2

�
1 + nM 2

1k
�[2(m+)+1]
n

�
for any W � 2 S0 and L > 0 when n � n2(W

�; L). Consequently, (5.9) follows for

k = 3 from Tchebychev's Inequality and kn � n1=[2(m+)+1].

Finally, Condition 3 and Lemma 5.1 give

E ( sup
j�j=1

j

nX
i=1

	(ui)z
0

i�k
�1=2
n j2

��� W �) � v0k
�1
n trace

 
nX
i=1

ziz
0

i

!
= v0(kn +m)=kn

for any W � 2 S0 when n � n1(W
�). Thus, (5.9) follows for k = 2 from this

inequality and Tchebychev's Inequality.



314 PEIDE SHI AND GUOYING LI

Proof of Lemma 5.1. (ii) It is easily seen, from the de�nition of Bi(�), that

supt2[0;1] jBi(t)j � 1 and Bi(t) = Bi(t)I(si � t � si+m+1) for i = 1; : : : ; N: Hence

sup
t2[0;1]

B(t)0B(t) =max
i

sup
t2[t�

i
;t�
i+1

]

NX
j=1

Bj(t)
2

=max
i

sup
t2[t�

i
;t�
i+1

]

X
fj:[sj ;sj+m+1]\[t

�

i
;t�
i+1)6=;

j=1;:::;ng

Bj(t)
2 � m+ 3:

From this inequality and (i), we obtain

jzij
2 = B(Ti)

0 (V 0

nVn)
�1
B(Ti) � 2(m+ 3)N=(n�)

for any W � 2 S0 when n � n1(W
�). Therefore, assertion (ii) of Lemma 5.1

follows.

For a k�k matrixA, let kAk2 = (supj�j=1 �
0A0A�)1=2. Let P denote the proba-

bility measure corresponding to the distribution of T and Pn denote the empirical

probability measure associated with T1; : : : ; Tn. The notation P h stands for the

expectation of h(T ), i.e. P h b= R hdP . Set Hn = fN Bi(t)Bj(t) : i; j = 1; : : : ;

Ng. From Corollary 2.3.2 in Golub and Loan (1989), p.58,

k(Pn � P )B(t)B(t)0Nk22

� N 2 max
1�l�N

NX
i=1

j(Pn � P )Bi(t)Bl(t)j max
1�i�N

NX
l=1

j(Pn � P )Bi(t)Bl(t)j:

Thus, noting that each Bi(�) vanishes outside of [si; si+m+1], we conclude

k(Pn � P )B(t)B(t)0Nk22 = N 2

24 max
1�l�N

(l+m+2)^NX
i=1_(l�m�2)

j(Pn � P )Bi(t)Bl(t)j

352

� 4(m+ 3)2
"
sup
h2Hn

j(Pn � P )hj

#2
:

This inequality and Lemmas 5.2 and 5.3 below yield assertion (i) of Lemma 5.1.

Lemma 5.2. If limn!1 n�0�1k2n = 0 for some positive constant �0, then

sup
h2Hn

jPnh� P hj �! 0 a.s.

Proof. By using the symmetrization method (Pollard (1984, p.15)), from the Ho-

e�ding inequality (cf. Pollard (1984, p.191)) and Borel-Contelli Lemma, Lemma

5.2 can easily be established. We omit the details here.
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Lemma 5.3. If Condition 1 is satis�ed, then

lim inf
n!1

��n � �;

where ��n denotes the smallest eigenvalue of P (B(t)B(t)0N).

Proof. By Condition 1, for all kn > 1

inf
j�j=1

�0P (B(t)B(t)0N)� � bN inf
j�j=1

Z 1

0

 
NX
i=1

�iBi(t)

!2

d t:

It is easily seen that

NX
j=1

Z sj+m+1

sj

 
NX
i=1

�iBi(t)

!2

d t � (m+ 1)

Z 1

0

 
NX
i=1

�iBi(t)

!2

d t

for all � = (�1; : : : ; �N )
0 2 RN and kn > 1. Therefore, to prove Lemma 5.3, we

need only check

NX
i=1

�2i � (m+ 1)(5(m+ 2))
2(m+1)

kn

NX
j=1

Z sj+m+1

sj

 
NX
i=1

�iBi(t)

!2

d t (5:10)

for all kn > 1 and � 2 RN .

To prove (5.10), we follow essentially the notation of Chapter 4 of Schumaker

(1981). Let L2[0; 1] denote a class of functions such that for each h 2 L2[0;1], it

satis�es
R 1

0
h2(t) d t <1. Let t�i = cos((m+1� i)�=(m+1)); i = 0; 1; : : : ;m+1,

and B0(t) = 2m�1((t� t�0)
m
+ � 2(t� t�1)

m
+ + � � �+ 2(�1)m(t� t�m)

m
+ + (�1)m+1(t�

t�m+1)
m
+ ), where t

k
+ is the truncated power function. Set

h0(t) =

8<:
0; for t < �1,R t
�1
B0(s)ds; for jtj � 1,

1; for t � 1,

Hj(t) = h0

�
2t� sj � sj+m+1

sj+m+1 � sj

�
; hj(t) = Hj(t)�j(t); �j(t) =

mY
l=1

(t� sj+l)=m!;

�j(h) =

Z sj+m+1

sj

h(t)
dm+1
+

dsm+1
hj(s)js=td t; for h 2 L2[0;1]; j =1; : : : ;N ;(5:11)

where
dk+
dsk

is the kth right derivative operator. Note that
dm+1

+

dsm+1hj(s) 2 L2[0;1].

Hence, �j(�) is well de�ned. From the proof of Theorem 4.41 in Schumaker (1981)

(see also Shi (1991)), we conclude that for i; j = 1; : : : ; N

�j(Bi) = m!(si+m+1 � si)[si; : : : ; si+m+1]hj =

�
1; i = j,

0; i 6= j,
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which together with the de�nition of �j(�) implies

�j(
NX
i=1

�iBi) =
NX
i=1

�i�j(Bi) = �j; j = 1; : : : ; N: (5:12)

It is easily seen that

sup
t2[sj ;sj+m+1]

j�
(k)
j j �

((m+ 1)�n)
m�k

(m� k)!
and sup

t2[0;1]

j
dm+1
+

dtm+1
Hj(t)j � (4=�n)

m+1
m!=4;

(5:13)

where �n = 1=kn. From de Boor (1976), we get sup[�1;1] j
dl+
dtl
B0(t)j � 2l+1m!=(m�

l � 1)! for l = 0; 1; : : : ;m� 1. This inequality gives

sup
[sj ;sj+m+1]

j
dm�k+1
+

dtm�k+1
Hj(t)j � (4=�n)

m�k+1 m!

(k � 1)!
(5:14)

for 1 � k � m+ 1. Note that
dm+1

+

d tm+1 �j(t) � 0. From (5.13) and (5.14), we have

�n sup
t2[sj ;sj+m+1]

j
dm+1
+

d tm+1
hj(t)j

� �n

m+1X
k=0

 
m+ 1

k

!
sup

t2[sj ;sj+m+1]

j
dk+
d tk

�j(t)j sup
t
j
dm+1�k
+

d tm+1�k
Hj(t)j:

� (5(m+ 2))m+1:

This inequality and the Schwarz inequality yield

�j(h)
2 � (m+ 1)��1

n (5(m+ 2))
2(m+1)

Z sj+m+1

sj

h2(t)dt:

Consequently, (5.10) follows from the last inequality and (5.12).
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